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Stochastic Multi-Object Guidance Laws for
Interception and Rendezvous Problems

Daniel E. Clark

Abstract—This paper considers the problem of guiding an
unknown number of controllable interceptors to rendezvous with
the same target at the same time. It is assumed that the all of the
interceptors and the target are described by linear dynamics with
Gaussian noise, though the theory presented does not preclude
more general models. This extends the work of Athans to consider
a scenario where the number of interceptors is unknown and
time-varying. In particular, the focus is on the development of
a stochastic multi-object guidance law for simulaneous rendez-
vous and interception. The work is presented as an homage to
Athans’ original work which was published nearly 50 years ago.

Index Terms—linear-quadratic control, guidance, multi-object
estimation, point processes, interception.

I. INTRODUCTION

There has been recent interest in the problem of controlling
a number of interceptors for a co-ordinated and co-operative
simultaneous attack on the same target by a number of missiles
at the same time [1]–[4]. These systems are either given
target information independently and they devise their own
guidance separately, or develop co-operative strategies sharing
information between missiles [5]–[8].

Athans proposed the rendezvous and interception problem
of controlling the motion of N dynamical interceptors to the
state of N dynamical targets, giving the example of the barrage
of N targets [9]. Taking into account the uncertainty of the
motions of both the interceptors and the targets, the initial
allocation of interceptors and targets may become suboptimal
over time and thus recalculation of the cost function may be
required. Athans’ cost function involved evaluation over all
permutations of the interceptors to targets, where the number
of targets and number of interceptors are the same and known.

This paper develops a stochastic multi-object guidance
approach where the number of interceptors is potentially
unknown and time-varying. Hence, within the window, new
interceptors may appear and can be guided to the target, and
some targets may expire during the period. This paper explores
an extension of Athan’s approach to introduce uncertainty
in the number and states of controllable interceptors and
potentially the number of targets. The approach is based on
point process theory [10] which accounts for uncertainty in
the number of objects and their state vectors.

Algorithms for detecting and tracking multiple targets have
been developed since the 1970s, principally motivated by ap-
plications in aerospace for surveillance applications. Methods
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based on Multiple Hypothesis Tracking [11], [12] and Joint
Probabilistic Data Association [13] underpin such systems,
as well as methods founded on point process theory [14]–
[17]. Despite the widespread use of the Kalman filter coupled
with the linear-quadratic regulator, this approach has not been
applied for a general multi-target tracking problem. Some
results have been demonstrated for a simple scenario where
the number of targets and interceptors is known [9], and in
other target-tracking related applications [18]–[23], though a
systematic approach to a controlled multi-target problems has
not yet been demonstrated for the linear-quadratic regulator
(LQR). One application recently applied the LQR to a multi-
target scenario [24], though did not exploit the classical ana-
lytic results. Recent work on multi-target control has typically
focussed on developing information-theoretic approaches for
point process models, including Rényi divergence [25], [26],
Cauchy-Schwartz divergence [27], [28], and Kullback-Leibler
divergence [29], as well as using the second-order statistics of
point processes to enable decision-making [30], [31].

Most multi-target tracking algorithms, eg. [32]–[34] assume
that the each target state or hypothesised target is described
with a Gaussian. We shall exploit this constraint to determine
analytic forms for stochastic multi-target control applied to
different multi-target representations. In particular, we show
that when all of the targets attempt to minimise the same cost
function, then the entire system of targets can be controlled
by the same linear-quadratic gain matrix.

The paper is structured as follows: The next section sum-
marises Athans’ stochastic rendez-vous problem [9] of guid-
ing an interceptor to a target in the original continuous-time
context. The discrete-time version is also presented which
enables the connection to be made with multi-object tracking
algorithms. The following section describes the stochastic ren-
dezvous problem for guiding a known number of interceptors
to a target and connects this to multi-object tracking algorithm
implementations. Section IV extends the known many-to-one
scenario to an unknown number of interceptors which are
described by a point process. Section V describes the problem
of pure interceptor birth, that is the problem of guiding newly
incoming interceptors not visible at the current time to a target.
Section VI describes the problem of guiding an unknown
number of interceptors, which may expire in the time window.
Section VII combines the results of section V and section VI
to deal with the usual model in multi-object tracking, where
there are births and deaths of targets. Section VIII discusses
possible extensions for dealing with an unknown number of
target interceptors and an unknown number of targets.



2

II. THE STOCHASTIC RENDEZVOUS PROBLEM

This section describes Athans’ stochastic rendezvous prob-
lem [9] that underpins the approach taken in the paper. It is
assumed that these are detected separately, and the interceptor
is controlled towards the target.

A. Target dynamic and observation models

1) Target dynamics: Suppose that the target state vector
z(t) ∈ Rn satisfies the linear stochastic differential equations

ż(t) = G(t)z(t) + ξ(t), z (t0) = z0,

where the initial target state z0 is a Gaussian random variable
with known mean and covariance matrix Σ0, and G(t) is the
target transition matrix. The process noise ξ(t) is assumed
to be a Gaussian noise process with zero mean and known
covariance matrix Ξ(t) which is independent of the target
state. This can also be described in a discrete-time formulation
where zk ∈ Rn is the state of the target at time-step k, Gk is
the transition matrix at time-step k. The Markov transition
density describing the stochastic evolution of the target is
described with

fzk|k−1 (zk|zk−1) = N (zk;Gk−1ẑk−1,Ξk−1),

where N (·;m,P ) denotes a Gaussian density with mean m
and covariance P , where Ξk is the process noise at time-step
k. The posterior density at time-step k − 1 is given by

pzk−1 (zk−1) = N (zk−1; ẑk−1,Σk−1),

where ẑk−1 is the mean of the posterior at time-step k − 1.
The predicted density from time-step k − 1 to time-step k is
described by the Chapman-Kolmogorov equation, i.e.

pzk|k−1 (zk) =

∫
fzk|k−1 (zk|zk−1) pzk−1 (zk−1) dzk−1.

Since the dynamic and observation models are linear and
Gaussian, this is described by the discrete-time Kalman filter
prediction. We present this formulation since it will be useful
to relate to the multi-target case in the following sections.

2) Target observations: The target state z(t) is observed
indirectly via a noisy sensor observation described with rela-
tion

w(t) = H(t)z(t) + γ(t),

where the target measurement noise γ(t) is assumed to be a
Gaussian noise process with zero mean and known covariance
Γ(t) which is independent of the target state. In the discrete-
time case, we describe this relation through a Gaussian like-
lihood function

`zk (wk|zk) = N (wk;Hkzk,Γk),

where wk is the observation vector at time-step k, Hk is
the observation matrix that projects the target state onto the
observation space, and Γk is the observation noise covariance
matrix. In the Bayesian formulation, the likelihood is used
to update the predicted distribution, due to the properties of
Gaussians, the posterior density is also Gaussian.

B. Interceptor dynamic and observation models

1) Interceptor dynamics: Assume that the interceptor state
vector x(t) ∈ Rn, and the interceptor control vector u(t) ∈
Rm, are related by means of the linear stochastic differential
equation

ẋ(t) = A(t)x(t) + B(t)u(t) + φ(t); x (t0) = x0.

The initial interceptor state x0 is assumed to be a Gaussian
random variable with known mean x̂0 and covariance Φ0.
The interceptor driving noise φ(t) is a vector-valued Gaussian
noise process with zero mean and known covariance matrix
Φ(t), and φ(t) is independent of z0,x0, z(t), and γ(t). The
additive noise term φ(t) models uncertainties in the interceptor
dynamical model.

In the discrete-time formulation, we consider the state of
the target xk ∈ Rn at time-step k, which evolves according to
state transition matrix Ak. The posterior density at time-step
k − 1 is assumed to be Gaussian, i.e.

pxk−1 (xk−1) = N (xk−1; x̂k−1,Πk−1)

is the Gaussian posterior density, with mean x̂k−1, and covari-
ance Φk−1. The state evolves according to Markov transition
fxk|k−1 (xk|uk−1,xk−1) , which is equal to

N (xk;Ak−1xk−1 + Bk−1uk−1,Φk−1),

which includes the control vector uk−1. The predicted density
then becomes

pxk|k−1 (xk) =

∫
fxk|k−1 (xk|uk−1xk−1) pxk−1 (xk−1) dxk−1.

2) Interceptor observations: The interceptor state x(t) is
observed via the interceptor data vector y(t) ∈ Rq , defined
with

y(t) = C(t)x(t) + θ(t),

where θ(t) is the interceptor Gaussian measurement noise.
In the discrete-time case, we describe this relation through

a Gaussian likelihood function

`xk (yk|xk) = N (yk;Hkxk,Θk),

where yk is the observation vector at time-step k, Hk is
the observation matrix that projects the target state onto the
observation space, and Θk is the observation noise covariance
matrix.

C. Dynamics of the Error Vector

Since both z(t) and x(t) have the same dimension, the error
vector e(t) is can be described with the difference between
z(t) and x(t), i.e.

e(t) , z(t)− x(t); ek , zk − xk.

The error vector e(t) satisfies the differential equation

ė(t) = A(t)e(t)−B(t)u(t) + [G(t)−A(t)]z(t),

with the initial condition

e0 = z0 − x0.



3

D. The Target Kalman Filter
The minimum variance estimate ẑ(t) of the target state z(t)

is generated by the target Kalman filter,

d

dt
ẑ(t) =

[
G(t)− Σ(t)Hᵀ(t)Γ−1(t)

]
ẑ(t)

+ Σ(t)H(t)Γ−1(t)w(t); ẑ (t0) = ẑ0,

where the superscript ᵀ denotes the transpose, Σ(t) is the
covariance matrix of the target estimation error ẑ(t) − z(t)
and is the solution of the matrix Riccati differential equation

Σ̇(t) = G(t)Σ(t) + Σ(t)Gᵀ(t) + Ξ(t)

− Σ(t)Hᵀ(t)Γ−1(t)H(t)Σ(t); Σ (t0) = Σ0.

The prediction step from time-step k− 1 to time-step k for
the target is described with the following equations.

ẑk|k−1 = Gk−1ẑk−1,

Σk|k−1 = Gk−1Σk−1G
ᵀ
k−1 + Ξk−1,

where ẑk|k−1 and Σk|k−1 are the discrete-time predicted
mean and covariance respectively, Gk−1 is the state transition
matrix, Σk−1 is the covariance at time-step k − 1, and Ξk−1
is the process noise covariance. When measurement wk is
received at time-step k, the update equations are

ẑk = ẑk|k−1 + Uk

(
wk −Hkẑk|k−1

)
,

Σk = (I−UkHk) Σk|k−1,

Uk = Ξk|k−1H
ᵀ
k

(
HkΞk|k−1H

ᵀ
k + Γk

)−1
,

where Hk is the observation matrix, Γk is the observation
noise covariance, and Uk is the Kalman gain matrix.

E. The Interceptor Kalman Filter
Similarly, the minimum variance estimate x̂(t) of the inter-

ceptor state x(t) is generated by the interceptor Kalman filter
specified below where Π(t) is the covariance matrix of the
interceptor estimation error x(t)− x̂(t) and is the solution of
the matrix Riccati differential equation

d

dt
Π(t) = A(t)Π(t) + Π(t)Aᵀ(t) + Φ(t),

−Π(t)Cᵀ(t)Θ−1(t)C(t)Π(t),

Π (t0) = Π0.

The discrete-time interceptor Kalman filter is computed with

x̂k|k−1 = Ak−1x̂k−1 + Bk−1uk−1,

Πk|k−1 = Ak−1Πk−1A
ᵀ
k−1 + Φk−1,

where x̂k|k−1 and Πk|k−1 are the predicted mean and covari-
ance respectively, Gk−1 is the state transition matrix, Ak−1 is
the covariance at time-step k−1, and Φk−1 is the process noise
covariance. When measuremeant yk is received at time-step
k, the update equations are

x̂k = x̂k|k−1 + Vk

(
yk −Ckx̂k|k−1

)
,

Πk = (I−VkCk) Πk|k−1,

Vk = Πk|k−1C
ᵀ
k

(
CkΠk|k−1C

ᵀ
k + Θk

)−1
,

where Ck is the observation matrix, Θk is the observation
noise covariance, and Vk is the Kalman gain matrix.

F. The Continuous-time Stochastic Control

Suppose that at time t ∈ [t0,ᵀ], we have available the target
state estimate ẑ(t) and the interceptor state estimate x̂(t). Then
the minimum value of the cost to go J̃(t) is given by

J̃(t) , E

[
1

2
eᵀ(T ) Me(T ) +

1

2

∫ T

t

uᵀ(τ)R(τ)u(τ)dτ

]
=

1

2
x̂ᵀ(t)K(t)x̂(t)− x̂ᵀ(t)S(t)ẑ(t)

+
1

2
ẑᵀ(t)P(t)ẑ(t) + β(t),

where the scalar β(t) is independent of x̂(t) and ẑ(t), and
depends on the error covariance matrices Σ(t) and Π(t).

The optimal interceptor control exists, is unique, and is
given in feedback form by

u∗(t) = R−1(t)B′(t)[S(t)z(t)−K(t)x(t)].

The matrices K(t),S(t), and P(t) are determined with the
solutions to the following matrix Riccati nonlinear differential
equations

K̇(t) =

−K(t)A(t)−Aᵀ(t)K(t) + K(t)B(t)R−1(t)Bᵀ(t)K(t),

K(T ) = M,

Ṡ(t) =

− S(t)G(t)−Aᵀ(t)S(t) + K(t)B(t)R−1(t)Bᵀ(t)S(t),

S(T ) = M,

Ṗ(t) =

− S(t)G(t)−Gᵀ(t)P(t) + S(t)B(t)R−1(t)Bᵀ(t)S(t),

P(T ) = M.

G. The Discrete-time Stochastic Control

The discrete-time rendezvous interceptor control is com-
puted with [20],

J̃(t) = E

[
eᵀKMeK +

K∑
k=0

uᵀ
kRuk

]
.

The optimal interceptor control for the discrete-time filter
is given by

uk = R−1k Bᵀ
k[Sk+1ẑk −Kk+1x̂k],

where the matrices Kk and Sk are given by

Kk = −Kk+1Ak −Aᵀ
kKk+1 + Kk+1BkR

−1
k Bᵀ

kKk+1,

KK = M,

Sk = −Sk+1Gk −Aᵀ
kSk+1 + KkBkR

−1
k Bᵀ

kSk+1,

SK = M,

Pk = −Sk+1Gk −Gᵀ
kPk+1 + SkBkR

−1
k Bᵀ

kSk+1,

PK = M.

These are the matrix Riccati difference equations that run back
in time obtained by the discrete-time linear quadratic regulator.
In the following sections, these will be used to determine the
controls of a number of interceptors.
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III. THE KNOWN MANY-TO-ONE STOCHASTIC
RENDEZVOUS PROBLEM

In this section we assume that N interceptors are to be
guided toward a dynamic target. Let i index the interceptor,
i = 1, 2, . . . , N , where N is known. This is the same approach
as the many-to-many approach of Athans [9], though each
interceptor is controlled to the same target. This is presented
in anticipation of the unknown many-to-one approach to be
taken in the following sections, where these concepts will be
generalised to accommodate an unknown number of intercep-
tors that are driven to a rendezvous with the same target.

A. Target models
We assume that there is a single target and that it is

characterised as in the previous section. Hence, we assume
that the target is characterized by the following equations:

ż(t) = G(t)z(t) + ξ(t), z (t0) = z0,
w(t) = H(t)z(t) + γ(t).

B. Interceptor models
We assume that there are N interceptors, and assume

that each interceptor, indexed by i, is characterized by the
following equations:

ẋ(i)(t) = A(t)x(i)(t) + B(t)u(i)(t) + φ(i)(t); x(i) (t0) = x
(i)
0 ,

y(i)(t) = C(t)x(i)(t) + θ(i)(t).

We also assume that x(i)
0 is Gaussian with

E
[
x
(i)
0

]
= x̂

(i)
0 ,

cov
[
x
(i)
0 x

(i)ᵀ
0

]
= Π0,

for all i = 1, 2, . . . , N that φ(i)(t) and θ(i)(t) are mutually
independent Gaussian noise processes, both of zero mean. All
of the interceptors are assumed to be identical and observed
by the same sensor (or a sensor with identical characteristics).
It is assumed that any false alarms on the sensor do not affect
the observations of the targets.

C. The target state estimates
As in the previous section, the target state estimates are

generated by the following differential equation:

d

dt
ẑ(t) =

[
G(t)− Σ(t)Hᵀ(t)Γ−1(t)

]
ẑ(t)

+ Σ(t)Hᵀ(t)Γ−1(t)w(t).

D. Interceptor state estimates
There are N interceptor Kalman filters, and the interceptor

state estimates are generated by

d

dt
x̂(i)(t) =

[
A(t)−Π(t)Cᵀ(t)Θ−1(t)C(t)

]
x̂(i)(t)

+ B(t)u(i)(t) + Π(t)Cᵀ(t)S−1(t)C(t)y(i)(t).

Again, our assumptions on the interceptors imply that the
gain matrices in the interceptor Kalman filters are identical
in particular, the interceptor error covariance matrix Π(t) is
the same for each interceptor.

E. Discrete-time Kalman filter for the interceptors

The discrete-time interceptor Kalman filter of the ith inter-
ceptor is computed with the predicted mean and covariance,

x̂
(i)
k|k−1 = Ak−1x̂

(i)
k−1 + Bk−1u

(i)
k−1;

Π
(i)
k|k−1 = Ak−1Π

(i)
k−1A

ᵀ
k−1 + Φk−1;

and updated mean, covariance, and Kalman gain.

x̂
(i)
k = x̂

(i)
k|k−1 + Vk

(
y
(i)
k −Ckx̂

(i)
k|k−1

)
;

Π
(i)
k =

(
I−V

(i)
k Ck

)
Π

(i)
k|k−1;

V
(i)
k = Π

(i)
k|k−1C

ᵀ
k

(
CkΠ

(i)
k|k−1C

ᵀ
k + Θk

)−1
.

F. The optimal guidance of each interceptor

We are interested in minimizing the expected cost to go for
each interceptor:

E

[
1

2
e(i)ᵀ(T )Me(i)(T ) +

1

2

∫ T

t

u(i)ᵀ(τ)R(τ)u(i)(τ)dτ

]
.

The optimal control for the ith interceptor is given by

u(i)(t) = R−1(t)Bᵀ(t)
[
S(t)ẑ(t)−K(t)x̂(i)(t)

]
,

where K(t),S(t), and P(t) are independent of the interceptor.

G. Discrete-time control

The optimal interceptor control for the ith discrete-time
interceptor filter is given by

u
(i)
k = R−1k Bᵀ

k[Sk+1ẑk −Kk+1x̂
(i)
k ].

where the matrices Kk and Sk for each filter . Note here
that the calculation of the control u(i)

k of the ith interceptor
requires knowledge of Rk,Bk,Sk+1,Kk+1, which are the
same for each interceptor, ẑk, which is the estimated state
of the target, and x̂

(i)
k , the estimated state of the interceptor.

Thus, if Rk,Bk,Sk+1,Kk+1, and ẑk were broadcast to each
interceptor, then each interceptor can independently calculate
their own required control vector.

H. The Global Cost Function

The overall cost functional J̃(t) is given by

E

[
N∑
i=1

1

2
e(i)ᵀ(T )Me(i)(T ) +

1

2

∫ T

t

u(i)ᵀ(τ)R(τ)u(i)(τ)dτ

]
,

which, due to independence of the trajectories, is equal to
N∑
i=1

E

[
1

2
e(i)ᵀ(T )Me(i)(T ) +

1

2

∫ T

t

u(i)ᵀ(τ)R(τ)u(i)(τ)dτ

]
.

In the following section, this approach is extended to a
scenario where N is not necessarily known. Hence, the number
of interceptors may not be known to the controller. This is
possible by modelling the population of objects as a point
process.
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IV. THE UNKNOWN MANY-TO-ONE STOCHASTIC
RENDEZVOUS PROBLEM WITH A FIXED NUMBER OF

INTERCEPTORS

In this section we assume that there are a finite but unknown
number of interceptors described by a set of target states ϕ =
{x1, . . . , xN} that are to be guided toward a dynamic target.
This extends the scenario described in the previous section to
account for an unknown number of targets. In this section,
we assume that the number of interceptors does not change in
the time period [t, T ]. This scenario has not previously been
considered.

A. The cost function and optimal control

Theorem IV.1. The Global Cost Function: Assume that we
have a finite set of interceptors described with random finite
set ϕ = {x1, . . . , xN}, where ϕ is described with a point
process. The overall cost functional J̃ϕ(t) is given by

J̃ϕ(t) = E

[∑
x∈ϕ

Jx(t)

]
=

∫
X
J̃x(t)Λ(dx),

where Λ(dx) is the first-order moment measure of the point
process describing the set of interceptors evolving from time
t to time T ,

Jx(t) =
1

2
exᵀ(T )Mex(T ) +

1

2

∫ T

t

ux(τ)ᵀR(τ)ux(τ)dτ,

is the deterministic cost function for interceptor with state x,
and J̃x(t) = E [Jx(t)].

Proof. The theorem is an application of Campbell’s theorem,
eg. [35, p103].

Corollary IV.2 (Mixture of Gaussian intensity function). Sup-
pose that Λ(dx) can be described with a mixture of Gaussian
processes of the form

Λ(dx) =

N∑
j=1

w(j)N (dx(j), x̂(j),Π(j)),

evolving from time t to time T . Then the cost function is
determined with

N∑
j=1

w(j)E
[
J (j)(t)

]
,

where J (j)(t) is the cost function equal to

1

2
e(i)ᵀ(T )Me(j)(T ) +

1

2

∫ T

t

u(j)(τ)ᵀR(τ)u(j)(τ)dτ.

Hence, the control for jth term in the summation is computed
with

u(j)(t) = R−1(t)Bᵀ(t)
[
S(t)ẑ(t)−K(t)x̂(j)(t)

]
.

Proof. This follows directly by considering each term in the
summation and its control trajectory.

Note that mathematically there is very little difference be-
tween the known many-to-one stochastic rendezvous problem

and this scenario: we use the same control calculations. How-
ever, conceptually, there is a significant difference here. This
Theorem and its Corollary show that we do not need to know
how many interceptors there are in order to control them. Just
as in the calculation of the control u(i)

k of the ith interceptor
in the preceding section, the computation of the control for
each Gaussian requires knowledge of Rk,Bk,Sk+1,Kk+1,
which are the same for each Gaussian, ẑk, which is the
estimated state of the target, and x̂

(i)
k , the estimated state of

the ith Gaussian. Thus, if Rk,Bk,Sk+1,Kk+1, and ẑk were
broadcast then each interceptor can independently calculate
their own required control vector irrespective of whether the
operator knows whether the interceptor exists or not.

B. Application to multi-target tracking models

To demonstrate the approach for multi-target tracking al-
gorithms, we consider the different parametrisations used to
represent them in a point process parametric.

1) Multiple hypothesis process: Consider M possible hy-
potheses, where for hypothesis j there are N (j) known targets.
Suppose that hypothesis j has hypothesis weight w(j), such
that

∑M
j=1 w

(j) = 1 and conditioned on a particular hypothesis
j, there are N(j) independent Gaussians. This is the case
with Reid’s multiple hypothesis tracking algorithm [34]. The
intensity function for this example averages the intensities
according to the hypothesis weights, i.e.

Λ(x) =

M∑
j=1

w(j)
N(i)∑
i=1

N (x;m(i,j), P (i,j)).

2) Bernoulli process: Now consider a process which has
at most one object, where the existence probability is p. Then
the intensity becomes

Λ(x) = pN (x;m,P ).
This was used in Musicki’s IPDA filter [36].
3) Poisson-binomial process: The Poisson-binomial pro-

cess [37]–[40] is the process describing the superposition of a
given number of Bernoulli distributions. This is of particular
interest in multi-target tracking applications since it is able to
describe a set of target tracks and their existence probabilities.
As seen in the N -object process, the intensity function is the
sum over the independent intensities, so that

Λ(x) =

N∑
i=1

p(i)N (x;m(i), P (i)).

4) Mixture of Poisson-binomial processes: Following the
approach for multiple hypotheses, we can describe a similar
process with M Poisson-binomial process hypotheses. This
is similar to the process used in the Generalized Labelled
Multi-Bernoulli filter by Vo and Vo [32], and the Poisson
multi-Bernoulli mixture filter by Williams [16]. The intensity
function of the Gaussian density case becomes

Λ(x) =

M∑
j=1

w(j)
N(i)∑
i=1

p(i,j)N (x;m(i,j), P (i,j)).
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V. THE UNKNOWN MANY-TO-ONE STOCHASTIC
RENDEZVOUS PROBLEM WITH PURE INTERCEPTOR BIRTH

Here we determine the control for interceptors that appear
in the time interval [t, T ] according to a spatio-temporal point
process. It is assumed that there are no current interceptors
under surveillance, and hence it is called a pure birth process.

A. The cost function and optimal control

Theorem V.1 (Cost function for the birth process). Let us
suppose that interceptors appear in the time interval [t, T ]
according to a spatio-temporal point process with intensity
measure Λb(dx, dr), where dx ⊂ X describes the spatial
distribution of and dr ⊂ [t, T ] describes the time window
of interceptor appearance. Then the cost functional J̃(t) of
ensuring that these interceptors rendezvous with the target is
given by

E

[∑
x∈ϕb

Jx(t)

]
=

∫
X×[t,T ]

J̃x(r)Λb(dx, dr),

where

Jx(t) =
1

2
exᵀ(T )Mex(T ) +

1

2

∫ T

t

ux(τ)ᵀR(τ)ux(τ)dτ

is the cost function of interceptors, and J̃x(t) = E [Jx(t)] .

Proof. This is a direct application of Campbell’s theorem for
a spatio-temporal point process.

Example 1 (Spatio-temporal Poisson birth process). Suppose
that the birth process is a spatio-temporal Poisson point pro-
cess, homogeneous in time with rate λb, spatially distributed
with a mixture of Gaussians, so that

Λb(dx, dt) = λbdt

M∑
j=1

w
(j)
b N (dx; x̂

(j)
b ,Σ

(j)
b ).

Hence the cost function becomes

E

[∑
x∈ϕb

Jx(t)

]
= λb(T − t)

Nb∑
j=1

w
(j)
b

∫ T

t

J̃
(j)
b (r)dr,

where, in a similar manner to the previous example, J̃ (j)
b (r)

is the cost function associated with the jth component, and∑Nb
j=1 w

(j)
b = 1.

Corollary V.2 (Discrete-time model). Let the process be
homogeneous in time with rate λb,k = λb(tk − tk−1) between
time-steps k−1 and time-step k at time tk, and that the spatial
distribution is a mixture of Gaussians, so that

Λb,k(dx) = λb,k

Nb∑
j=1

w
(j)
b N (dx; x̂(j),Σ(j)).

Then the cost function is computed with

E

[∑
x∈ϕb

Jx(t)

]
=

Nb∑
j=1

w
(j)
b

K∑
k=1

λb,k

∫ T

tk

J̃
(j)
b (t)dt,

where J̃ (j)
b (t) is of the sum form in section II.G.

VI. THE UNKNOWN MANY-TO-ONE STOCHASTIC
RENDEZVOUS PROBLEM WITH INTERCEPTOR DEATH

In this section, we deal with the problem of interceptors that
expire before the end of the time window. This is a common
modelling scenario in multi-target tracking. More explicitly,
these are controllable interceptors that existed at some point
in the time window [t, T ) but it is not guaranteed that they
will be available to the controller at time T . The cost function
is modified to account for this attrition.

A. The cost function and optimal control

Consider the deterministic cost function

1

2
exᵀ(T )Mex(T )1ᵀ≤r +

1

2

∫ min(r,T )

t

ux(τ)ᵀR(τ)ux(τ)dτ,

which indicates that the interceptor is controlled from time t
to the expiry time r if r < T , or up to time T is it does
not expire in the window [t, T ], i.e. r ≥ T . For simplicity,
let us assume that the probability of interceptor survival is
independent of its state in space and is distributed according
to an exponential distribution. Then, we can compute a cost
function marginalising the cost with respect to the probability
of object survival. For instance, suppose that the expected time
to target expiration is exponential distribution with expected
time 1/α, then

Jx,c(t) =
1

2
exᵀ(T )Mex(T )(1− e−α(T−t))

+
1

2

∫ T

t

αe−ατux(τ)ᵀR(τ)ux(τ)dτ.

Theorem VI.1. Assume that we have a finite set of inter-
ceptors described with random finite set ϕ = {x1, . . . , xN},
where ϕ is described with a point process. The overall cost
functional J̃ϕ(t) is given by

E

[∑
x∈ϕ

Jx,c(t)

]
=

∫
J̃x,c(t)Λ(dx),

where Λ(dx) is the first-order moment measure of the point
process describing the set of interceptors.

Proof. The proof follows from Theorem IV.1.

Corollary VI.2 (Mixture of Gaussian intensity function).
Suppose that Λ(dx) has a density function Λ(x) that can be
described with a mixture of Gaussian processes of the form

Λ(x) =

N∑
j=1

w(j)N (x(j), x̂(j),Π(j)),

evolving from time t to time T . Then the cost function is
determined with

λ(T − t)
N∑
j=1

w(j)E
[
J (j)
c (t)

]
.

Proof. This follows directly by considering each term in the
summation and its control trajectory.
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VII. THE UNKNOWN MANY-TO-ONE STOCHASTIC
RENDEZVOUS PROBLEM WITH INTERCEPTOR BIRTH AND

DEATH

This section combines the results of the previous two
sections to develop a guidance approach with Poisson in-
terceptor arrivals and exponential interceptor death. This is
analogous to the M/M/∞ queueing model [41], [42], which
models Poisson arrivals into an infinite number of servers
(interceptors), each of which has an exponential service time
(lifetime).

A. The cost function

Theorem VII.1 (Cost function for the process). Let us
suppose that interceptors appear in the time interval [t, T ]
according to a spatio-temporal point process with intensity
measure Λb(dx, dr), where dx ⊂ X describes the spatial
distribution of and dr ⊂ [t, T ] describes the time window of
interceptor appearance.

J̃ϕ(t) =

∫
X×[t,T ]

J̃x,c(r)Λb(dx, dr) +

∫
X
J̃x,c(t)Λ(dx).

Proof. The proof is an application of Theorem V.1 and The-
orem VI.1. Since the birth process is independent of the
surviving process, the result is just the summation of these
two processes.

B. Application to multi-target tracking algorithms

The method can be applied directly to the multi-target
tracking models to control a population of interceptors to a
target. For example, we can use the Gaussian mixture model
of Vo and Ma [43] as follows.

Corollary VII.2 (Discrete-time Gaussian mixture model).
Consider the combination of models in sections V and VI,
with Gaussian mixtures

Λb(dx, dt) = λbdt

Nb∑
j=1

w
(j)
b N (dx; x̂

(j)
b ,Σ

(j)
b ),

and

Λ(x) = λ

N∑
j=1

w(j)N (x(j), x̂(j),Π(j)).

Then the cost function is computed with

E

[∑
x∈ϕb

Jx(t)

]
= λ(T − t)

N∑
j=1

w(j)

∫ T

t

J̃ (j)
c (t)dt

+

Nb∑
j=1

w
(j)
b

K∑
k=1

λb,k

∫ T

tk

J̃
(j)
b,c (t)dt.

Proof. This is a direct application of Corollary V.2 and Corol-
lary VI.2.

The same approach can be applied to any multi-target
tracking algorithm where the target population is described
with the intensity function, eg. in section IV.B.

VIII. THE UNKNOWN MANY-TO-UNKNOWN MANY
STOCHASTIC RENDEZVOUS PROBLEM

Athans posed three challenges for the many-to-many inter-
ception problem where the number of targets and interceptors
are known and the same: 1) How to decide which interceptor to
intercept which target?; 2) How to find the optimal allocation
of interceptors to targets?; 3) How to guide the interceptors
to minimize the cost functional?. To solve this problem, he
proposed to minimise the following cost function

Jϕx,ϕz(t) = min
π∈SN

N∑
i=1

Jxi,zπ(i)
(t),

where SN is the set of permutations of order N , and ϕx =
{x1, . . . ,xN}, and ϕz = {z1, . . . , zN} are the sets of inter-
ceptors and targets. In the unknown many-to-unknown many
problem, ϕx and ϕz become random sets and the cardinalities
of ϕx and ϕz may be different.

Strategies for resolving this problem could include:
1) Make a hard decision about the number of targets

and interceptors and assign interceptors to targets. In the case
where the number of interceptors is greater than the number
of targets, the choice could be to determine the minimum cost
for the available interceptors and proceed as in the known
case. In the case where the number of interceptors is less than
the number of targets, then the cost function could involve
a penalty for not intercepting targets. The OSPA metric is a
multi-target miss distance metric that was designed to account
for penalities in mismatched cardinalities and could be adapted
for this purpose.

Let two sets of points be denoted ϕx = {x1, . . . ,xm} and
ϕz = {z1, . . . , zn} with m,n ∈ N, Sk denotes the set of
permutations on {1, . . . , k}, k ∈ N. The order parameter is
constrained as 0 < p < ∞, and the cut-off parameter is
constrained as c > 0. For m ≤ n, the OSPA distance is given
by considering a combination of localisation and cardinality
error [44]. Note that Jxi,yπ(i)

is a quadratic distance function,
so that we can determine an OSPA distance with

Jϕx,ϕz(t) =

[
1

n

(
min
π∈Sn

m∑
i=1

Jxi,zπ(i)
(t) + c2(n−m)

)] 1
2

,

where Jx,z(t) denotes the distance between the points x and
z, subject to the maximum cut-off c

2) Design a fully stochastic solution. To determine a fully
stochastic solution to the problem, the obvious cost function
would be the evaluation of the expected cost function, i.e.

Ĵϕx,ϕz(t) = E [Jϕx,ϕz (t)] .

However, this is likely to be costly to evaluate in practice. We
leave the determination of a stochastic solution to this problem
to future study.

3) Design an information-theoretic solution. The final
suggestion would be to develop a solution based on informa-
tion divergences, eg. [25], [26], Cauchy-Schwartz divergence
[27], [28], and Kullback-Leibler divergence [29]. One recent
approach was developed by Doerr and Lineres [24] for guiding
a swarm of interceptors to a fixed number of targets.
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IX. CONCLUSION

A stochastic multi-object guidance law for simulaneous ren-
dezvous and interception of a dynamic target by an unknown
and time-varying number of targets is proposed based on
Athans’ linear-quadratic Gaussian guidance laws for intercep-
tion and rendezvous. The optimal control is determined by
applying Campbell’s theorem from point process theory.
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