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Abstract

We present a parameter estimation method in Ordinary Di�erential Equation (ODE) models. Due
to complex relationships between parameters and states the use of standard techniques such as nonlinear
least squares can lead to the presence of poorly identi�able parameters. Moreover, ODEs are generally
approximations of the true process and the in�uence of misspeci�cation on inference is often neglected.
Here, we propose a method based on discrete optimal control theory to regularize the ill posed problem
of parameter estimation in this context. We describe how the estimation problem can be turned into a
control one and present the numerical methods used to solve it. We show convergence of our estimators
in the parametric and well-speci�ed case. We test and compare our method with existing approaches on
numerical experiments with models containing poorly identi�able parameters and with various sources
of model misspeci�cation. They illustrate the regularization brought by our approach to the problem
comparing to exact methods such as Non-linear least squares. Moreover, this discrete optimal control
based procedure is computationally less intensive and more accurate in sparse sample case than the one
based on continuous control techniques. We �nally test our approach on a real data example.

Keywords: Ordinary di�erential equation; discrete optimal control; parametric estimation;

semi parametric estimation; model uncertainty
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1 Introduction

We are interested by parameter estimation in Ordinary Di�erential Equation (ODE) models of the form ẋ(t) = f (t, x(t), θ, ϑ(t))

x(0) = x0

(1)

where the state x is in Rd, f is a vector �eld from [0, T ]×Rd×Θ×Θf to Rd, θ is a parameter that belongs

to a subset Θ of Rp, ϑ is a functional parameter from [0, T ] to Θf ⊆ Rdf and x0 is the initial condition that

belongs to a subset χ of Rd. ODEs are much used in practice as they provide an e�cient framework for

analyzing and predicting complex systems (see eg [Fall et al., 2002, Goldbeter, 1997, Mirsky et al., 2009,

Wu et al., 2014]). In particular, there has recently been focus on joint use of ODE models and control the-

ory methods for the purpose of optimal treatment design [Guo and Sun, 2012, Agusto and Adekunle, 2014,

Zhang and Xu, 2016].

Our aim is to estimate the true parameters, denoted θ∗ and ϑ∗, starting from data y1, . . . , yn, that are

realizations of an observation process for i = 1, . . . , n

Yi = CX∗(ti) + εi (2)

on the observation interval [0, T ] where X∗ := Xθ∗,ϑ∗,x∗0
is the solution of (1) for θ = θ∗, ϑ = ϑ∗ and

x0 = x∗0, C is a d
′ × d observation matrix and εi is centered observation noise. That is, we want

to estimate (θ∗, ϑ∗) starting from discrete, partial and noisy observations of X∗ at observation times

0 = t1 < t2 · · · < tn = T . In absence of ϑ∗, estimation of θ∗ is a standard parametric nonlinear re-

gression problem and can be solved by classical methods such as Nonlinear Least Squares (NLS), Max-

imum Likelihood Estimation (MLE), or Bayesian Inference [Esposito and Floudas, 2000, Li et al., 2005,

Rodriguez-Fernandez et al., 2006, Wu et al., 2010]. However, in the case of ODE models, there is a risk of

an ill-posed inverse problem [Engl et al., 2009, Stuart, 2010].

To explain why, let us denote as Xθ,x0 the solution to (1). The Fisher information matrix which con-

trols the Cramer-Rao bound is proportional to In (θ, x0) =
∑n

i=1

(
C
∂Xθ,x0 (ti)

∂(θ,x0)

)T
C
∂Xθ,x0 (ti)

∂(θ,x0) . Instabilities
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in estimation arise when the matrices C
∂Xθ,x0 (ti)

∂(θ,x0) are badly-conditioned because in this case the inverse

problem is very sensitive to any source of perturbations and the objective function (NLS or MLE criteria)

is nearly �at around its minimum. This practical identi�ability problem can be measured by computing

the spectrum µ1 ≥ · · · ≥ µp of In (θ, x0) and is associated to a weak condition number κ(In) = µ1
µp
. The

problem arises in part from the observation process, the sparsity and location of the observation times

and also from the need to estimate the nuisance parameter x∗0. Complication in ODEs also arises due to

the complex geometry of the manifold {CXθ,x0 , θ ∈ Θ, x0 ∈ χ} induced by the mapping (θ, x0) 7−→ CXθ,x0

where there can be a small number (in comparison with p) of important directions of variation very skewed

from the original parameter axes [Gutenkunst et al., 2007, Transtrum et al., 2011, Transtrum et al., 2015].

This situation is termed sloppiness and leads to a regular and widespread distribution of the eigenvalues

µ1, . . . , µp with no clear one to one correspondence between the eigenvectors of In (θ, x0) and the original

ODE parametrization. Numerous ODEs used for example in systems biology [Gutenkunst et al., 2007] and

neuroscience [Leary et al., 2015] have been identi�ed as sloppy. Sloppiness is a phenomenon arising from

interactions between intrinsic system properties and the experimental design, it is due to the sparse and

block structure of C
∂Xθ,x0 (ti)

∂(θ,x0) with highly correlated entries [Tonsing et al., 2014]. Since we cannot clearly

distinguish important parameters from the others, there is no clear mechanism to suppress irrelevant pa-

rameters in the model. Moreover, methods based on optimal experimental design to circumvent sloppiness

can lead to experiments which push the system in a state where the assumed model is no longer valid. This

can cause model error problems when trying to estimate parameters from the new data set and reduce

model predictive ability [White et al., 2016]. Despite that sloppiness and practical identi�ability are not

rigorously the same problem, the former often induces the latter by making some subset of parameters

unidenti�able. Thus, there is a need to improve estimation methods which use the existing data without

resorting to new experiments.

Another issue in ODE parameter estimation comes from the fact that the selected model can su�er

from model misspeci�cation issues. By resuming the terminology of [Kennedy and OHagan, 2001], we refer

to model misspeci�cation when the ODE model su�ers from 1/ Model inadequacy: discrepancy between
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the mean model response and real world process. ODEs are derived by approximations, simpli�cation of

interactions and omission of external factors in�uence can cause such discrepancy. 2/ Residual variability

issues: many biological processes are known to be stochastic and the justi�cation of deterministic modeling

comes from the approximation of stochastic processes by ODE solutions see [Kurtz, 1970, Kurtz, 1978,

Gillespie, 2000, Kampen, 1992]. Hence, inference of the parameters has to be done while recognizing that

the model is false [Kirk et al., 2016, Brynjarsdottir and O'Hagan, 2014].

In this work, we propose a new estimation procedure to address these challenges, based on an approx-

imate solution of the original ODE. The use of approximate solutions for statistical inference, such as the

two-step approaches [Varah, 1982, Gugushvili and Klaassen, 2011, Liang et al., 2010, Brunel and D'Alche-Buc, 2014,

Dattner, 2015], Generalized Pro�ling (GP) [G. Hooker and Earn, 2011, Ramsay et al., 2007] or in a Bayesian

framework [Chkrebtii et al., 2016, Jaeger and Lambert, 2011], has already proven to be useful for regular-

izing the inverse problem of parameter estimation. In presence of poorly identi�able parameters, the

appeal of such methods are their ability to bypass the Cramer-Rao bound which imposes to exact methods

a dramatic increase of estimator variance. In case of model misspeci�cation, they can improve estimation

accuracy for they relax the constraint imposed by the ODE model and then account for model discrepancy

in the criteria to optimize [Brynjarsdottir and O'Hagan, 2014].

Our proposed method presents similarities with the ones introduced in [Brunel and Clairon, 2015,

Clairon and Brunel, 2019, Clairon and Brunel, 2018], where an approximation Xθ,x0,u is a solution of the

perturbed ODE ẋ(t) = f (t, x(t), θ)+Bu(t) where the perturbation t 7→ Bu(t) captures di�erent sources of

model misspeci�cation. After a pre-smoothing step to obtain a nonparametric curve estimator Ŷ , the es-

timator
(
θ̂, x̂0

)
is de�ned as the minimizer of the cost Cλ(θ, x0, u) =

∥∥∥CXθ,x0,u − Ŷ
∥∥∥2

L2
+λ ‖u‖2L2 pro�led

on the possible perturbations u:
(
θ̂, x̂0

)
= arg min(θ,x0) S(θ, x0), where S(θ, x0) = minuCλ(θ, x0, u). This

estimator, called the Tracking Estimator (TE), is thus de�ned as the parameter which needs the smallest

perturbation u in order to track Ŷ , the balance between the two contrary objectives of data �delity (i.e.∥∥∥CXθ,x0,u − Ŷ
∥∥∥2

L2
) and original model �delity (i.e. ‖u‖2L2) is done through the choice of an hyperparameter

λ. For each value (θ, x0), the optimal control problem minuCλ(θ, x0, u) is solved by using the Pontryagin
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maximum principle [Pontryagin et al., 1962]. In comparison with GP and NLS, the TE generally has a

lower variance and mean square error with the di�erence in performance even more marked in the presence

of model misspeci�cation. In the parametric case and for well-speci�ed models, the TE is consistent with a
√
n- convergence rate under very mild model regularity conditions and provided λ > λ1, with λ1 a positive

model dependent bound. Another attractive feature of the tracking framework is the seamless estimation

of �nite-dimensional and time-varying parameters. The estimation of ϑ is turned into an optimal control

problem and estimator ϑ̂ is a by-product of θ∗ estimation which does not require the use of standard approxi-

mations such as sieves or basis expansions [Xue et al., 2010, G. Hooker and Earn, 2011, Wang et al., 2014].

However, there are two main limitations for the method presented in [Clairon and Brunel, 2018]. First,

the computational time: solving the optimal control problem by using the Pontryagin maximum principle

leads to a boundary value problem (BVP) for each new (θ, x0) value and x∗0 has to be estimated as nuisance

parameter. Second, the method requires a nonparametric estimator which can be biased in sparse data

case, this bias can then be spread to the parametric estimation. Here, while we still consider an optimal

control based approach, we change the cost function Cλ as well as the numerical procedure used to solve

the related optimal control problem. We rely on discrete control theory and a numerical method inspired

by [Cimen and Banks, 2004b]. This allows us to construct a method which:

1. replaces the BVP by a sequence of �nite di�erence equations which is numerically solved signi�cantly

faster,

2. does not require a pre-smoothing step, we can deal with sparse data cases which are consistent with

most real observation framework,

3. can be easily adapted to avoid estimation of x∗0 if it is not required.

In order to de�ne our estimators, we present in the next section the optimal control problem required to

introduce our functional criteria and describe our approach for semi-parametric estimation. In section 3,

we derive the numerical procedures. In section 4, we study the asymptotic behavior of our estimators. In

section 5, we use Monte Carlo experiments to compare the Tracking, NLS and GP estimators on ODE
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examples from chemistry and biology with both well-speci�ed and misspeci�ed models. The discrete control

theory based method allows us to obtain more accurate estimates than GP and NLS. We also investigate

di�erences between the method developed here and the one in [Clairon and Brunel, 2018]. We emphasize

the advantage of using this discrete based one in terms of computational time and estimation accuracy,

in particular for sparse sample cases. In Section 6, we consider parameter estimation with real data in a

model used to study microbiotal population evolution.

2 Model and methodology

We recall the aim of this work is to de�ne estimators of (θ∗, ϑ∗) as minimizers of functional criteria. First,

we derive them in the parametric case where there is no functional parameter ϑ∗.

2.1 Formal parametric estimator de�nition

We denote by Xθ,x0 the solution of the Initial Value Problem (IVP): ẋ(t) = f(t, x(t), θ)

x(0) = x0.
(3)

First, we introduce a pseudo-linear and perturbed version of model (3):

 ẋ(t) = Aθ(x(t), t)x(t) +Bu(t)

x(0) = x0

(4)

where the function t 7→ Bu(t) is a linear perturbation, B is a d × du matrix and u is in L2
(
[0, T ] ,Rdu

)
.

Here, the matrix Aθ is de�ned by the relation Aθ(x(t), t)x(t) = f(t, x(t), θ), this formulation is crucial

for solving in a computationally e�cient way the optimal control problem de�ning our estimators. Linear

models already �t in this formalism with Aθ(t) = Aθ(x(t), t). For nonlinear models, the pseudo-linear

representation is not unique but always exists [Cimen and Banks, 2004b]. We denote Xθ,x0,u the solution

of the perturbed ODE (4).
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Now, we introduce the cost function required to de�ne our estimators:

C(T,U)(Y ; θ, x0, u) =
n∑
i=0

‖CXθ,x0,u(ti)− yi‖22 +

∫ T

0
u(t)TUu(t)dt (5)

where U is a symmetric de�nite positive matrix used as a weighting parameter balancing the amount of

model and data �delity. For each (θ, x0) in Θ× χ, we de�ne the pro�led cost:

S(n,U)(Y ; θ, x0) := inf
u
C(T,U)(Y ; θ, x0, u) (6)

on the set of possible perturbations u, in the case we want to bypass x∗0 estimation, we also introduce

SCI(n,U)(Y ; θ) := min
x0

inf
u
C(T,U)(Y ; θ, x0, u) (7)

the pro�led cost function on x0 in addition to u. From these criteria, the estimators are de�ned as:(
θ̂TU , x̂0,U

T
)

:= arg min
(θ,x0)∈Θ×χ

S(n,U)(Y ; θ, x0), (8)

and

θ̂T,CIU := arg min
θ∈Θ

SCI(n,U)(Y ; θ) (9)

i.e. as the parameter values giving the trajectory Xd
θ,x0,u

needing the smallest perturbation in order to be

close to the observed data on [0, T ]. Our method relaxes the original inverse problem by allowing a small

divergence from the assumed model (1). The addition of u in the model followed by its norm penalization

corresponds to the addition of a Tikhonov regularization term. The regularization brought by it is ensured

in [Engl et al., 1996] theorem 10.12 which concludes to the smooth dependence of the regularized solution

with respect to uncertainty in observations. Moreover, as pointed out in [Engl et al., 1996] chapter 5, this

smooth dependence also works when the uncertainty is on the model. In the Bayesian paradigm the link

between optimizing C(T,U) and statistical inference in functional spaces has been made in [Stuart, 2010].

The minimizer of C(T,U) can be seen as a MAP estimator corresponding to a prior chosen to be a centered

Gaussian measure and with a covariance operator determined by U (according to theorem 3.5 and Corollary

3.10 in [Dashti et al., 2013]). That is, before having access to the observations, the original ODE is assumed
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to be the most likely model for the system. In this case, the regularization brought by
∫ T

0 u(t)TUu(t)dt

can be derived from the robustness of the posterior measure with respect to model misspeci�cation and

its smooth dependence with respect to data (respectively theorem 4.6 and theorem 4.2 in [Stuart, 2010]).

Remark 1. One pseudo-linear representation Aθ we can easily derive for ODE (3) is obtained by dividing

f componentwise by each state variable. It has to be noted that, by superposition principle, if A1,θ and

A2,θ are two acceptable representations, so is α1A1,θ + α2A2,θ with α1 + α2 = 1. In order to exploit this

nonuniqueness as an additional degree of freedom see [Cimen, 2008] section 6.

2.2 ϑ estimation

For this, let us introduce the state xe = (x, z1, z2) in Rd+2df , the matrices:

Aeθ(xe(t), t) =


Aθ(x(t), z1(t), t) 0 0

0 0 1

0 0 0

 , Bext =


Id 0d,df

0df ,d 0df

0df ,d Idf


and the perturbed solution Xe

θ,xe0,u
of the extended ODE: ẋe(t) = Aeθ(xe(t), t)xe(t) +Bextu(t)

xe(0) = xe0.
(10)

Here, u is split into two parts, u = (u1, u2) and Xe
θ,xe0,u

is solution of

ẋ = A(t, x, z1, θ)x+ u1

ż1 = z2

ż2 = u2

(11)

and z1 plays the role of ϑ and z2 of ϑ̇. Since we get a state variable estimator X̂e as a byproduct of θ∗

estimation, we can de�ne ϑ̂ = ẑ1. Let us introduce U =

 λ1Id 0d,df

0df ,d λ2Idf

 and the cost

C(T,U)(Y ; θ, xe0, u) =
n∑
i=0

∥∥∥CXd
θ,x0,u(ti)− yi

∥∥∥2

2
+ λ1

∫ T

0
‖u1(t)‖22dt+ λ2

∫ T

0
‖u2(t)‖22dt. (12)
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Here λ1

∫ T
0 ‖u1(t)‖22dt is used to quantify model discrepancy as in the parametric case and since u2 = z̈1,

the last term in C(T,U) is the standard penalty used for functional estimation. Thus, a good choice of

hyperparameters for cost (12) would be a large value for λ1 (in order to select a small u1), and λ2 tending

to 0 when the sample size n grows, as for standard nonparametric estimation.

Remark 2. The state extension required for semi-parametric estimation involves the addition of new initial

conditions
(
ϑ(0), ϑ̇(0)

)
. However, if we pro�le on x0 our approach does not add nuisance parameters.

3 Tractable form for S(n,U) and SCI(n,U)

In this subsection, we derive tractable expressions for S(n,U) and S
CI
(n,U). We start with linear ODEs then

we extend the derived methods to nonlinear models by following [Cimen and Banks, 2004b]. For this,

we need to specify the discrete optimal control problem we want to solve, that is the point of the next

subsection.

3.1 A discrete optimal control problem framework

To proceed to parametric estimation, we resort on discrete optimal control theory. For this, we need a

discrete version of the ODE (4) as well as of the cost (5). The discretization is made at m+ 1 time points{
tdj

}
0≤j≤m

with td0 = 0 and tdm = T . Letting ∆j = tdj+1− tdj being the mesh size between two discretization

time-points and u = (u0, . . . , um−1) the set of discrete values taken by the control at each time step, the

discretized model is:  x(tdj+1) =
(
Id + ∆jAθ(x(tdj ), t

d
j )
)
x(tdj ) +B∆juj

x(0) = x0.
(13)

The set of discretization times has to contain the observation times i.e. {ti}0≤i≤n ⊂
{
tdj

}
0≤j≤m

but can

be bigger, this is an important feature of the discretization scheme to accurately estimate Xθ,x0,u even

when the observations are sparse on [0, T ]. We denote Xd
θ,x0,u

(tdj ), the solution of (13) for the parameter

θ, initial condition x0 and the perturbation u at time tdj .
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The cost (5) is discretized by replacing the integral
∫ T

0 u(t)TUu(t)dt by the Riemann sum corresponding

to the discretization grid:

Cd(T,U)(Y ; θ, x0, u) =
∑n

i=0

∥∥∥CXd
θ,x0,u

(ti)− yi
∥∥∥2

2
+
∑m−1

j=0 4juj
TUuj

=
∥∥∥CXd

θ,x0,u
(tn)− yn

∥∥∥2

2
+
∑m−1

j=0 4j

(∥∥∥CXd
θ,x0,u

(tdj )− yj

∥∥∥2

2
wj + uj

TUuj

) (14)

where

� wj = 1{∃ti s.t ti=tdj}/4j i.e. wj = 1/4j if t
d
j is the observation time ti, otherwise wj = 0,

� yj is equal to yi if t
d
j = ti and 0 otherwise.

The weights wj and the set of extended data {yi} are introduced to have a vector of observation which has

the same length as the discretization grid
{
tdj

}
0≤j≤m

. This allows us to estimate the integral term in (5)

with an arbitrary precision while �tting in the framework of discrete optimal control theory. To compute

S(n,U) and S
CI
(n,U) in practice we need to solve the problem:

minuC
d
(T,U)(Y ; θ, x0, u)

such that x(tdj+1) =
(
Id + ∆jAθ(x(tdj ), t

d
j )
)
x(ti) +B∆juj and x(0) = x0.

(15)

The problem (15) is a tracking problem where the aim is to �nd the smallest control possible to apply to a

given dynamical system in order to track a signal. For linear models, these problems have been e�ciently

solved as they �t into the framework of discrete linear-quadratic problems, which ensures the existence

and uniqueness of the solution and gives a computationally e�cient way to �nd it. For non-linear models,

[Cimen and Banks, 2004b] proposes an iterative method to solve continuous time tracking problems, the

main idea being to replace the original problem by a sequence of linear-quadratic ones. We use the same

method adapted to discrete models.

Remark 3. Instead of an Euler scheme leading to (13), other integration methods can be chosen. As soon

as it is an explicit scheme giving rise to a state-space equation of the form z(t+ 1) = Q(t, z(t))z(t) +Bu(t)

([Hairer and Wanner, 1996, Hairer et al., 1993]), the presented procedure for solving the optimal control

is still applicable.
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3.2 Linear models

Here Aθ(t) = Aθ(x, t) in (3). For a given initial condition x0, linear-quadratic theory ensures the existence

and uniqueness of the optimal control udθ,x0 = arg minu∈La C
d
(T,U)(Y ; θ, x0, u) and that infu∈La C

d
(T,U)(Y ; θ, x0, u)

can be computed by solving a discrete �nal value problem, denoted the Riccati equation. Moreover,

infu∈La C
d
(T,U)(Y ; θ, x0, u) is a quadratic form with respect to x0, the pro�ling is straightforward. Interest-

ingly, the formal computation used to derive SCI(n,U)(Y ; θ) follows the same step as the deterministic Kalman

Filter state estimator derivation [Sontag, 1998]. The formal computational details are left in supplementary

materials.

Proposition 4. For (θ, x0) in Θ× χ, S(n,U)(Y ; θ, x0) and SCI(n,U)(Y ; θ) are equals to:

S(n,U)(Y ; θ, x0) = xT0 R
d
θ,0x0 + 2hdθ,0(Y )Tx0 + yTn yn +

∑m−1
j=0 4j

(
wjy

T
j yj − hdθ,j+1(Y )TBG(Rdθ,j+1)BThdθ,j+1(Y )

)
(16)

and

SCI(n,U)(Y ; θ) = −hdθ,0(Y )T
(
Rdθ,0

)−1
hdθ,0(Y ) + yTn yn +

∑m−1
j=0 4j

(
wjy

T
j yj − hdθ,j+1(Y )TBG(Rdθ,j+1)BThdθ,j+1(Y )

)
(17)

with G(Rdθ,j+1) :=
[
U +4jBTRdθ,j+1B

]−1
and (Rdθ,j , h

d
θ,j(Y )) for 1 ≤ j ≤ m, the solution of the discrete Riccati

equation:

Rdθ,j = Rdθ,j+1 +4jwjCTC + ∆j

(
Rdθ,j+1Aθ(t

d
j ) +Aθ(t

d
j )
TRdθ,j+1

)
+42

jAθ(t
d
j )
TRdθ,j+1Aθ(t

d
j )

− 4j(Id +4jAθ(tdj )T )Rdθ,j+1BG(Rdθ,j+1)BTRdθ,j+1(Id +4jAθ(tdj ))

hdθ,j(Y ) = hdθ,j+1(Y )−4jwjCTyj +4jAθ(tdj )Thdθ,j+1(Y )

− 4j(Id +4jAθ(tdj )T )Rdθ,j+1BG(Rdθ,j+1)BThdθ,j+1(Y )

(18)

with �nal condition (Rdθ,m, h
d
θ,m(Y )) = (CTC, −CT yn). The optimal control udθ,x0

minimizer of the cost (14) is

unique and equal to:

udθ,x0,j
= −G(Rdθ,j+1)BT

(
Rdθ,j+1

(
Id +4jAθ(tdj )

)
Xd
θ,x0

(tj) + hdθ,j+1(Y )
)

(19)
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where Xd
θ,x0

is the optimal trajectory, the solution of
Xd
θ,x0

(tdj+1) =
(
Id +4jAθ(tdj )

)
Xd
θ,x0

(tdj )

− 4jBG(Rdθ,j+1)BT
(
Rdθ,j+1

(
Id +4jAθ(tdj )

)
Xd
θ,x0

(tdj ) + hd,lθ,j+1(Y )
)

Xd
θ,x0

(0) = x0.

(20)

The optimal control udθ and optimal trajectory Xd
θ such that SCI(n,U)(Y ; θ) = minx0

infu∈La
Cd(T,U)(Y ; θ, x0, u) =

Cd(T,U)(Y ; θ,Xd
θ (0), udθ) are still given by equations (19) and (20) but with initial condition Xd

θ (0) = −
(
Rdθ,0

)−1
hθ,0.

3.3 Non-linear models

Here, we adapt the solving method proposed by [Cimen and Banks, 2004b] for discrete time models. Let us

detail the procedure for S(n,U) computation, we replace the original problem (15) by a recursive sequence

of linear-quadratic control problems, with iteration l de�ned by

minuC
d,l
(T,U)(Y ; θ, x0, u) :=

∥∥∥CX l
θ,x0,u

(tdm)− yn
∥∥∥2

2
+
∑m−1

j=0 4j

(∥∥∥CX l
θ,x0,u

(tdj )− yj

∥∥∥2

2
wj + uTj Uuj

)
such that x(tdj+1) = (Id +4jA

l
θ(t

d
j ))xj(t

d
j ) +4jBσuj and x(0) = x0

(21)

where Alθ(t
d
j ) := Aθ(X

l−1
θ,x0

(tdj ), t
d
j ) and A0

θ(t
d
j ) := Aθ(x0, t

d
j ). Here X l−1

θ,x0
is the optimal trajectory corre-

sponding the optimal control problem (21) at iteration l − 1. For each l, we use the previous proposi-

tion to compute the solution of the Riccati equation (Rd,lθ , h
d,l
θ (Y )), the optimal control ud,lθ,x0 , the tra-

jectory Xd,l
θ,x0

and the pro�led cost value Sl(n,U)(Y ; θ, x0). Moreover, the sequences
{
Rd,lθ , h

d,l
θ (Y )

}
l∈N

,{
ud,lθ,x0

}
l∈N

,
{
Xd,l
θ,x0

}
l∈N

and
{
Sl(n,U)(Y ; θ)

}
l∈N

are uniformly convergent in l [Cimen and Banks, 2004b,

Cimen and Banks, 2004a]. Thus, we can propose the following algorithm to compute (Rdθ , h
d
θ(Y )), udθ,x0 ,

Xd
θ,x0

and S(n,U)(Y ; θ, x0).

1. Initialization: Xd,0
θ,x0

(tdj ) = x0, A
0
θ(t

d
j ) = Aθ(x0, t

d
j ) for all j ∈ J0, mK.

2. At iteration l: use Proposition 4 to obtain (Rd,lθ , h
d,l
θ (Y )) , ud,lθ,x0 , X

d,l
θ,x0

, Sl(n,U)(Y ; θ, x0).

3. If
∣∣∣Sl(n,U)(Y ; θ, x0)− Sl−1

(n,U)(Y ; θ, x0)
∣∣∣ < ε1 and

∑m
j=1

∥∥∥Xd,l
θ,x0

(tdj )−X
d,l−1
θ,x0

(tdj )
∥∥∥2

2
< ε2 with (ε1, ε2) two

strictly positive constants, then step 4; otherwise return to step 2.

12



4. Set (Rdθ , h
d
θ(Y )) = (Rd,lθ , h

d,l
θ (Y )), udθ,x0 = ud,lθ,x0 , X

d
θ,x0

= Xd,l
θ,x0

, S(n,U)(Y ; θ, x0) = Sl(n,U)(Y ; θ, x0).

For SCI(n,U) the procedure is similar, only the initialization step has the be replaced: the initial state Xd,0
θ

has to be chosen and A0
θ(t

d
j ) = Aθ(X

d,0
θ (tdj ), t

d
j ). We see in Section 5 what choice we made in practice.

4 Asymptotic analysis

Here we assume the discretization grid is the set of observation time points i.e.
{
tdj

}
= {ti} which are regu-

larly spaced so4i = 4 = T
n , and i.i.d εi ∼ N(0, σ2Id′), we also consider U depends on n and can be written

U = U ′/4 with U ′ positive de�nite. Since arg min(θ,x0)4Sl(n,U ′/4)(Y ; θ, x0) = arg min(θ,x0) S
l
(n,U)(Y ; θ, x0)

and arg minθ

{
minx04Sl(n,U ′/4)(Y ; θ, x0)

}
= arg minθ

{
minx0 S

l
(n,U)(Y ; θ, x0)

}
, we focus on4Sl(n,U ′/4)(Y ; θ, x0)

instead of Sl(n,U)(Y ; θ, x0) for the purpose of asymptotic analysis of
(
θ̂TU , x̂0,U

T
)
and θT,CIU . The proofs are

given in supplementary materials.

4.1 Asymptotic analysis of
(
θ̂TU , x̂0,U

T
)
in parametric case

4.1.1 Required conditions

First, we introduce the asymptotic counterpart of 4Sl(n,U ′/4)(Y ; θ, x0) when n −→ ∞ and l −→ ∞. In

this asymptotic framework, we have access to the true continuous signal t −→ Y ∗(t) = CXθ∗,x∗0
(t) and so

we can de�ne the continuous cost:

C∞(T,U ′)(θ, x0, u) = d
′
σ2 +

∫ T
0

(∥∥∥CX∞θ,x0,u(t)− Y ∗(t)
∥∥∥2

2
+ u(t)TU ′u(t)

)
dt, (22)

its pro�led couterpart, S∞U ′(θ, x0) := infuC
∞
(T,U ′)(θ, x0, u), the associated ODE ˙X∞θ,x0,u = Aθ(X

∞
θ,x0

(t), t)X∞θ,x0,u +Bu(t)

X∞θ,x0,u(0) = x0

(23)

and Riccati equation ˙R∞θ (t) = −CTC −Aθ(X∞θ (t), t)TR∞θ (t)−R∞θ (t)Aθ(X
∞
θ (t), t) +R∞θ (t)BU ′−1BTR∞θ (t)

˙h∞θ (t) = CTY ∗(t)−Aθ(X∞θ (t), t)Th∞θ (t) +R∞θ (t)BU ′−1BTh∞θ (t)
(24)

13



with
(
Rlθ(T ), hlθ(T )

)
= (0d,d, 0d,1) . Now, we present the conditions required for asymptotic analysis.

Condition C1: For all t ∈ [0, T ] and for all θ ∈ Θ, x 7−→ Aθ(x, t) has a compact support Λ.

Condition C2: For all x ∈ Λ, θ 7−→ Aθ(x, .) is continuous on Θ and ∀θ ∈ Θ, (x, t) 7−→ Aθ(x, t) is

continuous on Λ× [0, T ].

Condition C3: Matrix B has independent columns.

Condition C4: The parameters (θ∗, x∗0) belong to the interior of Θ × χ.

Condition C5: The solution Xθ,x0 of (4) for u = 0 is such that if CXθ,x0(t) = CXθ∗,x0∗ (t) for all t ∈ [0, T ]

then (θ, x0) = (θ∗, x0∗).

Condition C6: For all x ∈ Λ, θ 7−→ Aθ(x, .) is twice di�erentiable on Θ and for all θ ∈ Θ, (x, t) 7−→
∂Aθ(x,t)

∂θ and (x, t) 7−→ ∂2Aθ(x,t)
∂2θ

are continuous on Λ× [0, T ].

Condition C7: The asymptotic hessian matrix
∂2S∞

U′ (θ
∗,x∗0)

∂2(θ,x0)
is nonsingular.

Conditions C1, C2, C3 are required for the uniform convergence of Rd,lθ , h
d,l
θ to R∞θ , h

∞
θ and Sl(U ′,n) to

S∞U ′ . Conditions C4 and C5 ensure (θ∗, x∗0) is a well-separated minimum of S∞U ′ and conditions C6 and C7

guarantee that the asymptotic variance-covariance of θ∗ is non singular.

4.1.2 Consistency

The estimator
(
θ̂TU , x̂0,U

T
)
is de�ned as an M-estimator, so for consistency we need to show S∞U ′(θ, x0)

has a global well-separated minimum at (θ, x0) = (θ∗, x∗0) and that Sl(n,U ′)(Y ; θ, x0) converges uniformly

to S∞U ′(θ, x0) on Θ× χ. This is the point of the next two propositions.

Proposition 5. Under conditions C1 to C5, (θ∗, x∗0) is the unique global minimizer of S∞U ′(θ, x0) on Θ×χ.

Proposition 6. Under conditions C1 to C5,

sup
(θ,x0)∈Θ×χ

∣∣∣S∞U ′(θ, x0)−4Sl(n,U ′/4)(Y ; θ, x0)
∣∣∣ = ol(1) + op,n(1).
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From this, we use Theorem 5.7 in [van der Vaart, 1998] to conclude about the consistency.

Theorem 7. Under conditions C1 to C5,
(
θ̂TU , x̂0,U

T
)
−→ (θ∗, x∗0) in probability when (l, n) −→∞.

Remark 8. Interestingly, in [Clairon and Brunel, 2018], for the weighting matrix under the form U ′ =

λ′Idu , consistency proof for θ̂TU requires the lower bound condition λ′ > λ1 with λ1 a positive model-

dependent bound. Here, we just need to have U ′ positive de�nite.

4.1.3 Asymptotic normality

We show the asymptotic normality with
√
n-convergence rate in two steps. First, we derive a linear

asymptotic representation of
(
θ̂TU , x̂0,U

T
)
−(θ∗, x∗0) through a second order Taylor expansion of (θ, x0) 7−→

4Sl(n,U ′/4)(Y ; θ, x0). Second, we approximate this linear asymptotic representation in order to make

explicit its dependence with respect to measurement noise.

Proposition 9. Under conditions C1 to C6, we have:

−∇(θ,x0)(4Sl(n,U ′/4)(Y ; θ∗, x∗0) = (
∂2S∞U ′(θ

∗, x∗0)

∂2 (θ, x0)
+ op,n(1) + ol(1))

(
θ̂TU − θ∗, x̂0,U

T − x∗0
)
.

Proposition 10. Under conditions C1 to C6, we have

−∇(θ,x0)(4Sl(n,U ′/4)(Y ; θ∗, x∗0) =

4 n∑
j=0

εTj

 (K∞(θ∗,x∗0)
+ol(1)+on(1))+L

4 n∑
j=0

εj

+op,n(
√

∆)+ol(1)

with K∞(θ,x0) = 2CBU ′−1BT
∫ T

0

∂h∞
θ∗ (t)

∂(θ,x0) dt and L =
(

0d′ ,p −2C
)T

.

From this, we use
∂2S∞

U′ (θ
∗,x∗0)

∂2(θ,x0)
nonsingularity and the central limit theorem to obtain the following.

Theorem 11. Under conditions C1 to C7 and if l = On(
√

∆),
(
θ̂TU , x̂0,U

T
)
is asymptotically normal and(

θ̂TU , x̂0,U
T
)
− (θ∗, x∗0) = op,n(n−

1
2 ).

The required conditions on l for consistency and
√
n-convergence rate are necessary only for non-linear

systems. For linear models, we use (18) to compute Sl(n,U ′)(Y ; θ) and we take ol(1) = 0.
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4.2 Asymptotic analysis of θ̂T,CIU for linear models in parametric case

For the asymptotic analysis of θ̂T,CIU , we restrict to the linear models. Since Aθ does not depend on x,

there is no need to consider asymptotics in l. The conditions are shown below.

Condition L1: For all θ ∈ Θ, t 7−→ Aθ(t) is continuous on [0, T ].

Condition L2: θ 7−→ Aθ is continuous on Θ.

Condition L3: For all θ ∈ Θ, R∞θ (0) is nonsingular.

Condition L4: The true parameter θ∗ belongs to the interior of Θ.

Condition L5: The solution Xθ,x0 of (4) for u = 0 is such that if CXθ,x0(t) = CXθ∗,x∗0
(t) for all t ∈ [0, T ]

then (θ, x0) = (θ∗, x∗0).

Condition L6: θ 7−→ Aθ is C
2 on Θ.

Condition L7: The asymptotic hessian matrix
∂2SCI

U′ (θ
∗)

∂2θ
is nonsingular.

The proofs follow the same steps as in the previous sections, hence we just present the theorems, they are

also detailed in supplementary materials.

Theorem 12. Under conditions LC1 to LC5, we have θ̂T,CIU −→ θ∗ in probability when n −→∞.

Theorem 13. Under conditions LC1 to LC7, θ̂T,CIU is asymptotically normal and θ̂T,CIU − θ∗ = op,n(n−
1
2 ).

Remark 14. The di�culty in deriving the asymptotic behavior of θ̂T,CIU in all generality comes from the

initialisation point xr0 required by the algorithm. So far, we have been unable to analyze the mapping

Qθ : xr0 7−→ Xθ(., x
r
0) where Xθ(., x

r
0) is the trajectory given by the algorithm in the limit case n = ∞

and l = ∞. If for θ = θ∗, the true trajectory X∗ is a global attractor of Qθ∗, the demonstrations will be

completed, but our attempts to prove it remain unfruitful.
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5 Experiments

We use Monte-Carlo simulations on di�erent models, for several numbers of measures n and corrupted

with measurement noise of di�erent magnitudes. We compare four estimators: θ̂TU and θ̂T,CIU , the nonlin-

ear least square (NLS) estimator θ̂NLS and the generalized pro�ling (GP) estimator θ̂GP introduced in

[Ramsay et al., 2007]. The latter is the regularization method of reference for the estimation problem in

ODEs. We compare θ̂TU , θ̂
T,CI
U , θ̂NLS , θ̂GP on models facing practical identi�ability problems in correctly

and misspeci�ed frameworks. For a given choice of (n, σ), we compute:

1. The variance V (θ̂i) for each element θi of θ to analyze how each estimator behaves speci�cally for

the components su�ering from identi�ability issues.

2. The estimator variance-covariance norm
∥∥∥V (θ̂)∥∥∥

2
to analyze how each estimator behaves for the

whole parameter set.

3. The componentwise mean square error MSE(θ̂i) =
∣∣∣θ∗i − Ê

[
θ̂i

]∣∣∣2 + V (θ̂i) and the global MSE(θ̂) =∑p
i=1

∣∣∣θ∗i − Ê
[
θ̂i

]∣∣∣2 +
∥∥∥V (θ̂)∥∥∥

2
to measure estimator accuracy, in particular its degradation when

facing misspeci�cation.

These quantities are obtained by Monte Carlo procedure based on a number of NMC trials speci�c to

each experimental design. We choose NMC large enough to have the Monte Carlo Error of MSE(θ̂i) lower

than 5% for each θi (see [Koehler et al., 2009] for details). For each run, the observations are obtained by

integrating the ODE with a Runge-Kutta algorithm (ode function in R), with added centered Gaussian

noise of variance σ2. Parameters have di�erent orders of magnitude, so results are given for normalized

estimated values θ̂./θ∗, ./ being the componentwise division.

The GP method uses an approximate solution X̃λ
θ of the ODE de�ned as the spline basis decomposition

minimizing
∑n

i=1

∥∥∥yi − CX̃λ
θ (ti)

∥∥∥2
+ λ

∥∥∥ ddtX̃λ
θ − f

(
·, X̃λ

θ , θ
)∥∥∥2

L2
. GP requires a selection method for the

knots location and the hyperparameter λ. The knots location is speci�c to each example and λ is selected by

using the method presented in [Qi and Zhao, 2010]: the value of λ is increased until
∥∥∥Xθ̂GPλ ,x̃0

− X̃θ̂GPλ

∥∥∥2

L2
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starts increasing, that is when X̃θ̂GPλ
starts to di�er signi�cantly from the exact solution Xθ̂GPλ ,x̃0

where

x̃0 = X̃λ
θ̂GPλ

(0).

For θ̂TU and θ̂T,CIU , we need to select the discretization grid
{
tdj

}
0≤j≤m

and U. For the grid, we take

m = knn points and we place uniformly kn discretization points between two observation times. We choose

kn large enough to correctly estimate the ODE solution. For U , we consider scalar matrices U = λId.

When λ tends to ∞, the criteria tends to the NLS one, if λ tends to 0, the criteria leads to interpolate the

observations without any e�ect of θ. Hence the need for an adaptive selection method. For our approach,

we use the forward cross-validation method presented in [G. Hooker and Earn, 2011]. We split [0, T ] into

H subintervals [th, th+1], such that t1 = 0 and tH = T and we denote Xθ(., th, xh) the solution of: ẋ(t) = f (t, x(t), θ)

x(th) = xh
(25)

de�ned on the interval [th, th+1]. The forward cross-validation uses the causal relation imposed to the data

by the ODE to quantify the prediction error for the estimator θ̂T,CIU (or equivalently θ̂TU ):

ERRPRED(λ) =

H∑
h=1

∑
{ti∈[th, th+1]}

∥∥∥∥yi − CXθ̂T,CIU
(ti, th, X

d
θ̂T,CIU

(th))

∥∥∥∥2

2

.

The rationale of this selection method is the following: if λ is too small, CXd
θ̂T,CIU

(th) will be close to

the observation yh but not to the actual ODE solution, and the solution of Eq. (25) will diverge from

the observations on [th, th+1]. If λ is too large, Xd
θ̂T,CIU

(th) will be close to the original ODE solution but

far from yh and it will lead again to a large value for ERRPRED(λ). Thus, a proper value for λ which

minimizes ERRPRED(λ) will be chosen between these two extreme cases. In the simulations, we use

H = 2 subintervals. We denote θ̂T and θ̂T,CI the values minimizing ERRPRED among the set of tested

weighing parameters.

Regarding the initial state Xd,0
θ required by the algorithm presented in Section 3.3 when we pro�le

on x0, we take the measured value for the observed state variables and made simple but model speci�c

choices for the unobserved ones; they will be detailed in the following examples. More re�ned choices may
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be possible for the unobserved state variables but these simple strategies worked well in practice (i.e. no

problem of convergence) for all examples given below.

5.1 α−Pinene model

We begin with a linear ODE considered in [Rodriguez-Fernandez et al., 2006] and used for modeling the

isomerization of α−Pinene: 

ẋ1 = −(θ1 + θ2)x1

ẋ2 = θ1x1

ẋ3 = θ2x1 − (θ3 + θ4)x3 + θ5x5

ẋ4 = θ3x3

ẋ5 = θ4x3 − θ5x5

(26)

on the observation interval [0, T ] = [0, 100]. Here the expression of Aθ is unique and straigthforward to

derive. We set x∗0 = (100, 0, 0, 0, 0) and θ∗ = (5.93 , 2.96, 2.05, 27.5, 4) × 10−2. We plot in Figure 1 the

solution of (26) corresponding to θ∗ and an example of simulated observations.

In [Rodriguez-Fernandez et al., 2006], model (26) is used as a benchmark estimation comparison as

many approaches fail to converge due to the di�culty of estimating θ∗4 and θ
∗
5 because of the high correlation

between them. We select kn = 50 and λ among the set
{

10i, 5× 10i
}

0≤i≤2
. For GP, we use 50 knots

uniformly reparted on [0, T ].

In�uence of measurement noise We consider one sample size n = 10. The level of noise is speci�c to

each state variable to take into account their di�erent order of magnitude. Each state Xi is corrupted by

a measurement noise of standard deviation σ
100 × ‖Xi‖L2 , three levels for σ are tested (σ = 5, σ = 10 and

σ = 15). We choose NMC = 200 for σ = 5 and σ = 10 but we need to take NMC = 500 for σ = 15. Results

are presented in Table 1. For θ4 and θ5, we observe that θ̂T and θ̂T,CI give the smallest variance. Our

approximate method regularizes the estimation of parameters facing a practical identi�ability problem

in comparison with NLS. Moreover, we notice the same pattern for ‖V (θ)‖2 which takes into account

covariance among parameters. However, TE and GP are methods based on approximated solutions and so
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Figure 1: Left: Solution of (26) (blue) and noisy observations for σ = 5 (circle). Right: Solution of (26)

(blue) and a realization of dX = AθXdt+ ct.Xdt (red) for σ
2
c = 0.004.

produce biased estimates. That is why we estimated the mean square error to verify that the price to pay

to decrease the variance is not too high in terms of bias. Our methods have lower global mean square error

than NLS which indicate a reasonable bias. GP on the other hand can have a very large mean square error.

The reason, already been discussed in [Clairon and Brunel, 2018, Brunel and Clairon, 2015], is linked to

the limited ability of X̃λ
θ to approach the true solution. In contrast, for our method the mesh size can be

arbitrarily small and thus Xd
θ,u can be arbitrarily close to the original ODE model.

In�uence of model misspeci�cation We set (n, σ) = (10, 5) and the observations are now generated

by using the stochastically perturbed model dX = AθXdt + ct.Xdt with ct a random vector of length 5

with independant components cj,t such that cj,t ∼ N(0, σ2
c ), the product ct.X is componentwise. We still

estimate θ∗ by using model (26), which is now a deterministic approximation of the true process. We plot

in Figure 1 the solution of (26) and one realization of its perturbed version for the sake of comparison.

This experimental design has been chosen to mimic a real case of data analysis for chemical processes

where the deterministic reaction rate equations are used as an approximation of stochastic di�erential

equations [Gillespie, 2000]. We study the e�ect of misspeci�cation by varying the value of σ2
c and results

are presented in Table 2, here setting NMC = 200 for every σ2
c values was enough to obtain accurate
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Table 1: MSE and Variance (in parenthesis) for α−Pinene model (26) and n = 10.

σ ×10−2 θ1 θ2 θ3 θ4 θ5 θ

5

θ̂T,CI 0.3 (0.2) 0.5 (0.4) 3.7 (0.5) 1.9 (1.2) 4.1 (2.4) 9.6 (3.8)

θ̂T 0.3 (0.2) 0.5 (0.4) 3.8 (3.7) 2.0 (1.4) 5.1 (3.0) 11.0 (4.6)

θ̂NLS 0.3 (0.2) 0.5 (0.5) 3.9 (3.6) 2.1 (1.6) 5.9 (3.5) 11.9 (5.3)

θ̂GP 0.3 (0.2) 0.9 (0.8) 6.2 (4.0) 10.6 (10.5) 21.5 (18.7) 34.1 (28.9)

10

θ̂T,CI 0.9 (0.8) 1.5 (1.4) 4.7 (1.6) 6.3 (6.3) 20.2 (13.5) 30.4 (20.4)

θ̂T 0.8 (0.7) 1.5 (1.4) 4.5 (1.1) 8.9 (8.6) 26.6 (18.2) 39.4 (27.3)

θ̂NLS 0.8 (0.7) 1.7 (1.6) 4.4 (1.1) 10.2 (10.0) 30.8 (21.1) 49.5 (31.6)

θ̂GP 0.6 (0.5) 3.8 (3.5) 8.4 (5.2) 15.9 (15.7) 29.4 (27.7) 48.3 (43.1)

15

θ̂T,CI 2.1 (1.8) 2.9 (2.8) 6.6 (3.3) 10.1 (9.0) 24.3 (20.1) 39.0 (31.5)

θ̂T 1.8 (1.7) 3.2 (3.2) 6.3 (2.7) 12.1 (12.0) 31.0 (26.2) 47.8 (38.9)

θ̂NLS 1.8 (1.7) 3.8 (3.8) 6.4 (2.6) 14.9 (14.9) 38.9 (32.8) 58.7 (48.6)

θ̂GP 1.4 (1.3) 3.9 (3.3) 14.5 (10.1) 28.1 (27.7) 62.1 (53.4) 94.4 (80.6)

Monte-Carlo estimate. In comparison to NLS, our estimators limit the drop in estimation accuracy due to

misspeci�cation e�ect. This illustrates the bene�ts of taking into account model discrepancy for estimation

in presence of model error.

In�uence of sample size The interest of considering discrete optimal control theory over a continuous

framework as in [Clairon and Brunel, 2019, Clairon and Brunel, 2018] is clear in terms of running time

and accuracy in small sample case. To illustrate that we plot in �gure 2, the evolution of θT (circle), θT,CI

(square) and θK , the estimator presented in [Clairon and Brunel, 2019] for linear ODEs with unknown x0,

when the sample size n increases from 10 to 50. For θT and θT,CI , kn is selected such that the discretization

grid is always made of 500 points. One see clearly the advantage brought in terms of computational time

by the discrete approach. Moreover, even though the bias and MSE are getting closer for every methods

when n increases, the bene�ts of using θT , θT,CI comparing to θK is clear when n is low. This drop in

accuracy for θK comes from the committed error during the required nonparametric estimation of the
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Table 2: MSE and Variance (in parenthesis) for misspeci�ed α−Pinene model and (n, σ) = (10, 5).

σ2
c ×10−2 θ1 θ2 θ3 θ4 θ5 θ

0.004

θ̂T,CI 0.3 (0.2) 0.7 (0.4) 7.3 (0.5) 2.6 (0.9) 2.0 (1.8) 12.2 (3.1)

θ̂T 0.3 (0.2) 0.7 (0.4) 0.7 (0.4) 2.9 (0.1) 2.1 (2.0) 12.7 (3.3)

θ̂NLS 0.2 (0.2) 0.7 (0.4) 7.5 (0.4) 3.1 (1.1) 2.3 (2.2) 13.2 (3.6)

θ̂GP 0.2 (0.2) 1.8 (1.3) 8.1 (3.6) 10.1 (9.9) 17.1 (15.8) 31.9 (25.6)

0.006

θ̂T,CI 0.8 (0.2) 0.6 (0.4) 0.7 (0.5) 1.4 (1.3) 9.4 (1.5) 13.2 (4.1)

θ̂T 0.6 (0.2) 1.2 (0.3) 0.7 (0.3) 2.0 (1.9) 12.5 (3.7) 16.4 (5.7)

θ̂NLS 0.5 (0.2) 1.9 (0.3) 0.9 (0.3) 2.5 (2.2) 14.2 (4.4) 19.0 (6.7)

θ̂GP 0.5 (0.3) 1.9 (1.2) 4.5 (3.9) 20.1 (19.6) 45.6 (37.6) 67.0 (56.7)

0.008

θ̂T,CI 0.9 (0.2) 0.7 (0.4) 16.3 (0.3) 6.2 (0.8) 3.4 (1.5) 27.0 (2.4)

θ̂T 1.1 (0.2) 0.4 (0.3) 17.8 (0.2) 9.4 (0.9) 6.7 (1.7) 34.9 (2.7)

θ̂NLS 1.1 (0.2) 0.4 (0.3) 18.1 (0.2) 11.3 (0.9) 8.9 (1.7) 39.0 (2.7)

θ̂GP 0.9 (0.4) 1.5 (1.09) 19.2 (4.7) 50.8 (48.6) 98.0 (86.2) 164 (135)

curve.

5.2 Repressilator model

We present the Repressilator model proposed in [Elowitz and Leibler, 2000] for the study of a genetic

regulation network. It is made of a feedback loop of 3 couples (mRNA, protein), denoted (ri, pi)1≤i≤3, in

which each protein inhibits the next gene transcription in the loop: ṙi =
vik

n
i,[i+1]

pn
[i+1]

+kn
i,[i+1]

− kgi ri

ṗi = kiri − kpi pi.
(27)

We aim to estimate θ∗ =
(
v∗1, v

∗
2, v

∗
3, k

∗
1,2, k

∗
2,3, k

g∗
1 , k

g
2 ,
∗ kg∗3 , k

p∗
1 , k

p∗
2 , k

p∗
3

)
= (50, 100, 80, 50, 30, 1, 1, 1, 1, 2, 3)

with initial conditions
(
r∗1,0, r

∗
2,0, r

∗
3,0

)
= (60, 20, 6) and

(
p∗1,0, p

∗
2,0, p

∗
3,0

)
= (18, 27, 1). We consider that

only the mRNA concentrations are measured on [0, T ] = [0, 20] and for structural identi�ability reasons we

set (k3,1, k1, k2, k3, n) = (40, 5, 6, 7, 3) and consider
(
p∗1,0, p

∗
2,0, p

∗
3,0

)
are known. We plot in Figure 3 the
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Figure 2: Average running time, bias and MSE for θT (circle), θT,CI (square) and θK (diamond).

solution of (27), for θ = θ∗. Here, we choose, Aθ(r, p, t) =



−kg1 0 0 0 0 0
v1k

n
1,2

pn2 +k
n
1,2

0 −kg2 0 0 0 0
v3k

n
2,3

pn3 +k
n
2,3

0 0 −kg3 0 0 0
v1k

n
3,1

pn1 +k
n
3,1

k1 0 0 −kp1 0 0 0

0 k2 0 0 −kp2 0 0

0 0 k3 0 0 −kp3 0

0 0 0 0 0 0 0


where a constant arti�cial state variable Z = 1 has been added. This model has been identi�ed as sloppy in

[Gutenkunst et al., 2007], the eigendecomposition of In (θ∗, x∗0) for n = 25 indicates the subset of parame-

ters θ∗1 =
(
v∗1, v

∗
2, v

∗
3, k

∗
1,2, k

∗
2,3

)
corresponds to the lowest eigenvalues. Henceforth, we separate θ∗ into θ∗1

and θ∗2 =
(
kg∗1 , k

g∗
2 , k

g∗
3 , k

p∗
1 , k

p∗
2 , k

p∗
3

)
for presenting the estimation results and in particular analyze how

the methods behave with θ∗1. The results presented for the variance (resp. mean square error) for θ1 and θ2

denote the sum of the variance (resp. mean square error) of θ1 and θ2 components. We take kn = 20 and

select λ among {10, 20, 50, 100, 200}. For the unobserved part of Xd,0
θ when pro�ling on initial condition,

we choose
(
p∗1,0, p

∗
2,0, p

∗
3,0

)
on the whole observation interval as initial guess.

In�uence of measurement noise We take n = 25 and consider three levels of measurement noise

(σ = 1, σ = 1.5 and σ = 2). Results are presented in Table 3 (left). We were unable to obtain results

for GP because of an important number of algorithmic failures during simulations (almost 80% of the

runs) due to practical identi�ability issues. Indeed, GP requires the introduction of nuisance parameters β
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Figure 3: Left: Solution of (27) with proteins in green, mRNAs in blue and noisy observations for σ = 1

(circle). Right: Solution of (27) (blue) and a realization of (28) (red) for σ2
c = 0.5.

needed for obtaining a smooth curve estimator X̃λ
θ which can lead to over�tting with diverging parameter

estimates. In a partially observed framework, even for a θ̂GP value far from θ∗, the observed part of the

smooth curve X̃λ

θ̂GP
can remain close to the observations because the parameters β̂λ can counteract the

e�ects of θ̂GP . Our method improves the estimation of the subset of sloppy parameters. Moreover, our

method globally improves the committed error when all parameters are simultaneously estimated, which

is the recommended procedure in sloppy models [Gutenkunst et al., 2007].

In�uence of model misspeci�cation We set (n, σ) = (25, 1) and the observations are now generated

by a stochastically perturbed version of the original ODE:
dri =

(
vik

n
i,[i+1]

pn
[i+1]

+kn
i,[i+1]

− kgi ri
)
dt+ ctridt

dpi = (kiri − kpi pi) dt+ ctpidt

(28)

with ct ∼ N(0, σ2
c ). We plot in Figure 3 the solution of (27) and one realization of (28) for the sake of

comparison. Results are presented in Table 3 (right), they con�rm the advantages of using an estimation

method based on a relaxation of the original model in the presence of model error.
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Table 3: MSE and Variance (in parenthesis) for Repressilator model (27). Left: Well-speci�ed model for

n = 25. Right: Misspeci�ed case for (n, σ) = (25, 1) .

σ ×10−2 θ1 θ2 θ

1

θ̂T,CI 1.22 (0.98) 0.75 (0.68) 1.17 (0.90)

θ̂T 0.90 (0.70) 0.60 (0.51) 0.92 (0.65)

θ̂NLS 1.61 (1.60) 1.15 (1.14) 1.61 (1.59)

1.5

θ̂T,CI 1.98 (1.73) 1.29 (1.23) 1.89 (1.63)

θ̂T 1.41 (1.26) 1.01 (0.91) 1.36 (1.09)

θ̂NLS 4.66 (4.59) 2.86 (2.84) 4.78 (4.70)

2

θ̂T,CI 3.19 (2.77) 2.42 (2.29) 3.15 (2.59)

θ̂T 2.62 (2.28) 1.92 (1.77) 2.74 (2.26)

θ̂NLS 6.11 (6.05) 4.39 (4.34) 5.97 (5.87)

σ2
c ×10−2 θ1 θ2 θ

0.5

θ̂T,CI 3.33 (2.94) 2.10 (2.02) 2.96 (2.48)

θ̂T 2.22 (1.98) 1.70 (1.60) 2.36 (2.01)

θ̂NLS 7.62 (7.52) 5.78 (5.57) 9.04 (8.78)

1

θ̂T,CI 2.33 (2.89) 2.16 (2.00) 3.20 (2.60)

θ̂T 2.50 (2.26) 1.87 (1.73) 2.30 (1.91)

θ̂NLS 8.20 (8.18) 6.51 (6.35) 10.03 (9.85)

1.5

θ̂T,CI 4.87 (4.68) 3.33 (3.29) 4.35 (4.12)

θ̂T 3.11 (2.87) 2.12 (1.99) 2.78 (2.41)

θ̂NLS 19.21 (18.53) 25.1 (22.2) 30.88 (27.31)
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Figure 4: Average running time, bias and MSE for θT (circle), θT,CI (square) and θP (diamond).

In�uence of sample size We compare the evolution of θT , θT,CI and θP , the estimator presented in

[Clairon and Brunel, 2018] for nonlinear ODEs, for a varying sample size n, the results are presented in

�gure 4. For θT and θT,CI , we selected a discretization grid of 300 points. We draw similar conclusions as

in the α-Pinene model case.
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5.3 FitzHugh-Nagumo with a functional parameter

We consider a modi�ed version of the FitzHugh-Nagumo model proposed by [FitzHugh, 1961] to study the

membrane potential evolution of neurons: V̇ = c
(
V − V 3

3 +R
)

Ṙ = −1
c (V − a(t) + bR) ,

(29)

V is the neuron membrane potential, R the synaptic conductance and we assume that only V is observed

on [0, T ] = [0, 20]. Here, the original parameter a∗ is replaced by the function a∗(t) = 0.2
(
1 + sin( t5)

)
and the other parameters are set to (b∗, c∗) = (0.2, 3) and x∗0 = (V ∗0 , R

∗
0) = (−1, 1). Our aim is to

compare the variational approach presented in Section 2.2 with a classic basis decomposition method for

the simultaneous estimation of θ∗ = (b∗, c∗) and ϑ∗ = a∗. For our semiparametric estimation method,

we need to modify the matrix Aeθ in the cost (10) comparing to the expression we derive in section

2.2: Aeθ(V,R, z1, z2, t) =


c
(
1− V 2/3

)
cR 0 0

− 1
c

−b 1
c

0

0 0 0 1

0 0 0 0

 for having z1 as the estimator of a∗ and z2 as its

second derivative. This modi�cation is required to absorb the exogenous term 1/c in ODE (29). We

take kn = 20 and select (λ1, λ2) among {(0.005, 0.005), (0.01, 0.01), (0.05, 0.05)}. For the unobserved

variables of Xd,0
θ when pro�ling on initial condition, we set their values to one on the whole observation

interval. For GP, we put one knot at each observation time. To estimate a∗ with NLS and GP, we

use the �nite basis approximation â(t) '
∑Kr

i=1 βr,Krpi(t), here {pi}i is a B-Spline basis with a uniform

knot sequence. The additional Kr parameters (βr,1, . . . , βr,Kr) are estimated by introducing the extended

set θext = (θ, βr,1, . . . , βr,Kr) and Kr is selected by minimizing the Akaike Information: AIC(θ̂ext) =

n log

(∑
i(yi−CXθ̂ext,x̂0 (ti))

2

n

)
+ 2Kr, where x̂0 is the standard initial condition estimator for NLS and x̂0 =

X̃λ
θ̂GPλ

(0) for GP. For an estimator â, we quantify its accuracy by computing Monte-Carlo estimator of the

integrated version of the variance: V (â) =
∫ T

0

(
E
[
â2(t)

]
− E [â(t)] 2

)
dt and mean square error: Mf (â) =∫ T

0 E
[
(â(t)− a∗(t))2

]
dt.
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Table 4: Results for FHN model (29) and n = 50.

σ ×10−2 b c θ a

0.03

θ̂T,CI 3.88 (2.74) 0.08 (0.08) 3.90 (2.76) 4.11 (3.93)

θ̂T 3.92 (2.76) 0.09 (0.08) 3.94 (2.77) 4.08 (3.91)

θ̂NLS 5.68 (5.25) 0.05 (0.04) 5.70 (5.53) 5.31 (4.98)

θ̂GP 3.17 (2.84) 0.20 (0.01) 3.36 (2.84) 6.86 (2.41)

0.05

θ̂T,CI 8.10 (6.87) 0.15 (0.12) 8.14 (6.88) 9.97 (9.21)

θ̂T 8.11 (6.96) 0.12 (0.10) 8.20 (6.98) 9.91 (9.16)

θ̂NLS 8.84 (7.98) 0.06 (0.05) 8.49 (7.89) 21.5 (16.1)

θ̂GP 13.9 (13.9) 0.17 (0.04) 14.0 (13.6) 18.6 (16.7)

In�uence of measurement noise We set n = 50 and consider two levels of measurement noise (σ = 0.03

and σ = 0.05). Results are presented in Table 4. Depending on the noise level, our estimators give better

or equivalent estimation than NLS for θ but always outperform NLS for functional estimation. The �nite

basis decomposition used to replace a leads to use an approximated version of the original model for

the estimation. This induced misspeci�cation can explain the drop in accuracy for the NLS and GP

estimators. Moreover, as pointed out in [Clairon and Brunel, 2018], the selection of a basis and knot

location for semiparametric estimation is complicated and model-speci�c. In our case, the extension of the

parametric estimation method to the semi parametric framework is straightforward for hyperparameters

selection.

In�uence of model misspeci�cation We set (n, σ) = (50, 0.03) and the observations are now a

realization of the hypoelliptic stochastic di�erential equation: dVt = c
(
Vt − V 3

3 +Rt

)
dt

dRt = −1
c (Vt − a(t) + bRt) dt+ σrdWt

(30)

with Wt a Wiener process and σr a di�usion parameter but θ∗ is still estimated by assuming the determin-

istic model (30) is true. This model has been proposed to include di�erent sources of noise acting on Rt see

[Lindner and Schimansky-Geier, 1999]. Results are presented in Table 5. Once again, our methods give
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Table 5: MSE and Variance (in parenthesis) for misspeci�ed FHN model (30) and (n, σ) = (50, 0.03).

σ2
r ×10−2 b c θ a

0.1

θ̂T,CI 4.32 (3.76) 0.11 (0.10) 4.33 (3.78) 5.04 (4.91)

θ̂T 4.34 (3.67) 0.11 (0.10) 4.37 (3.68) 5.64 (5.55)

θ̂NLS 7.43 (6.77) 0.09 (0.08) 7.49 (6.81) 10.22 (7.76)

θ̂GP 65.8 (65.4) 0.14 (0.11) 65.8 (65.4) 43.9 (42.8)

0.15

θ̂T,CI 4.74 (3.60) 0.11 (0.10) 4.68 (3.62) 4.95 (4.82)

θ̂T 4.54 (3.52) 0.11 (0.10) 4.55 (3.54) 6.99 (4.78)

θ̂NLS 7.75 (7.60) 0.14 (0.13) 7.81 (7.64) 10.34 (9.32)

θ̂GP 73.7 (73.7) 0.25 (0.15) 73.8 (73.7) 61.3 (58.7)

better results than NLS and GP. The di�erence is even more striking here, possibly due to the accumulated

e�ect of the di�erent source of misspeci�cations on GP and NLS. For our approaches, the cost (12) takes

into account a model discrepancy term expected to mitigate the e�ect of misspeci�cation on estimation.

6 Real data case analysis

We focus on a model discussed by [Stein et al., 2013] to study the impact on a microbiota ecosystem of

the interaction between an antibiotic treatment and a pathogen inoculation:

ẋi = µixi + xi

11∑
j=1

Mi,jxj + xisiv(t) (31)

for i = 1, . . . , 11. Each state variable xi quanti�es the presence of one microbial species and t 7→ v(t) de-

scribes the perturbation due to clindamycin administration. Regarding the parameter set (µi, Mi,j , si)1≤i,j≤11,

µi is the growth term for xi, Mi,j the interaction e�ect of xj on xi and si the susceptibility of xi to the

antibiotic treatment. The names of the microbial species as well as the values of (µi, Mi,j , si)1≤i,j≤11 are

provided by [Stein et al., 2013] (Figure 2). The acquired data are divided in three groups of three subjects.

Group 1 was exposed to the pathogen (here, C. di�cile), Group 2 received a single dose of clindamycin

and Group 3 received clindamycin and was exposed to C. di�cile the day after. We focus on Group 3
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Figure 5: Solutions of (31) (blue) and (32) (red) for di�erent initial conditions.

for which the perturbation is v(t) = 1{t=0}. In this group, some microbiotal species have limited impacts

on the whole ecosystem evolution, they correspond to x6, x7, x8 and x10. That is why for parameter

estimation we use the following simpli�ed model only composed of the 7 remaining state variables:

ẋsi = µsix
s
i + xsi

7∑
j=1

M s
i,jx

s
j + xsis

s
iv(t) (32)

where xsi = xi for 1 ≤ i ≤ 5, xs6 = x9 and xs7 = x11. The parameters
{
µsi , M

s
i,j , s

s
i

}
are de�ned and linked

to the previous parametrization accordingly. For comparison, we plot in Figure 5 the prediction made

for state variables x1, x2, x3, x4, x5, x9 and x11 respectively by the ODE (31) and (32) for three initial

condition values corresponding to subjects in Group 3.

Here, we estimate Mi,j for they give the nature of interaction between species. The di�erent (µi, si)

are known and we estimate the p = 31 parameters: θ = ({Mi,1}i∈{1,3,4,5} , {Mi,2}i∈{2,3,4,5} , {Mi,3}i∈{1,2,3} ,

{Mi,4}i∈{1,2,4} , {Mi,5}i∈{2,3,4,5} , {Mi,9}i∈{3,5} , {Mi,11}i∈{1,2,3,4,5} , {M11,i}i∈{1,2,3,5,9,11}). The other interac-

tion terms are unidenti�able in practice when we use only data coming from Group 3.

Before starting our real data analysis we have to specify our assumptions about the measurement noise

structure. As explained in [Stein et al., 2013], for the same concentration pro�l each time point corresponds

to a di�erent mouse but which are all biological replicates, uniformly treated but separately housed. Hence,

we assume independance of measurement noise between observations over time. Still, we have to take into

account the di�erence in magnitude over time which exists for a same concentration pro�le as exempli�ed
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in �gure 5. For this, we rely on a log-transform of the observation to have the measurement noise increasing

with state amplitude. For estimation, our method then uses the ODE:

˙̃
xsi = µsi +

7∑
j=1

M s
i,je

x̃sj + ssiv(t) (33)

followed by x̃si = log(xsi ), the log-transform of the original state-variables. Still, there is the possibility

that the noise have di�erent order of magnitude speci�c to each x̃si . To legimitate the use of our method

in this context, we perform in the next subsection simulation analysis to compare it with NLS and GP in

presence of such noise structure.

6.1 Preliminary results on simulated data

Estimation is based on the observation of three subjects with initial conditions x∗1,0, x
∗
2,0 and x∗3,0. Here,

θ̂T have 52 components so to save computational time, we restrict our approach to θ̂T,CI . We split θ into

two subgroups θ1 and θ2 according to the di�culty encountered by NLS to estimate them. To identify

θ1, the set of parameters poorly estimated by NLS, we rely once again on the eigendecomposition of

V ∗D∗(V ∗)−1 = In
(
θ∗, x∗1,0, x

∗
2,0, x

∗
3,0

)
for n = 25 where D∗ = diag(µ1, . . . , µ52) is the matrix composed

of the eigenvalues µi sorted in increasing order and each column V ∗.,i of V
∗ is the eigenvector related to

µi. The associated condition number is κ(In) ' 8 × 10−10 which indicates an ill-posed problem for NLS.

Moreover, we have µ25
µ52

= 2× 10−6, thus the �rst 25 eigenvectors correspond to directions of weak change

for the NLS criteria. For each parameter θj in θ, we compute F (θj) =
∑25
i=1(V ∗j,i)

2∑52
i=1(V ∗j,i)

2 to quantify the impact

of θj on NLS criteria. By doing so we identify 12 parameters such that F (θj) > 0.63 which will compose

θ1. The choice of threshold for the eigenvalue rank and F (θj) value is somewhat arbitrary, but we will

see in simulations the error for θ̂NLS comes mainly from estimation of θ1. The results presented for the

variance (resp. mean square error) for θ1 and θ2 will denote the sum of the variance (resp. mean square

error) of θ1 and θ2 components. We also compare the ability of the estimators to �nd the orientation of the

interaction graph, we estimate I(θ̂) = 1
pEθ∗

[∑p
i=1 1{sign(θ̂i)=sign(θ∗i )}

]
, the expected fraction of correctly

retrieved interaction. We select kn = 20 and λ among {1, 2, 5}.
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Table 6: MSE and Variance (in parenthesis) for Microbiota model (32) and n = 25.

σ θ1 θ2 θ I(θ̂1) I(θ̂2) I(θ̂)

0.01

θ̂T,CI 0.14 (0.10) 0.04 (0.03) 0.10 (0.06) 1 1 1

θ̂NLS 3.29 (2.23) 1.28 (1.23) 2.05 (1.94) 0.97 1 0.99

θ̂GP 0.15 (0.11) 0.20 (0.19) 0.18 (0.14) 1 1 1

0.02

θ̂T,CI 0.71 (0.62) 0.15 (0.15) 0.46 (0.36) 0.99 1 1

θ̂NLS 7.54 (7.39) 2.19 (2.15) 4.97 (4.75) 0.94 0.99 0.97

θ̂GP 1.40 (0.97) 0.80 (0.78) 1.22 (1.07) 1 0.98 1

0.03

θ̂T,CI 5.66 (1.98) 1.81 (1.41) 4.54 (1.43) 0.93 0.99 0.97

θ̂NLS 9.15 (8.66) 2.61 (2.46) 8.22 (4.40) 0.92 0.99 0.96

θ̂GP 7.67 (3.47) 2.50 (1.80) 6.21 (3.31) 0.93 0.98 0.95

In�uence of measurement noise We consider one sample size n = 25. To make the level of noise state

variable speci�c, each x̃si is corrupted by a measurement noise of standard deviation σ
n ×

∑n
j=0

∥∥x̃si (tj)∥∥,
three levels for σ are tested (σ = 0.03, σ = 0.06 and σ = 0.09). Results are presented in Table 6. For θ1

and θ2, both regularization methods outperform NLS. Still, we obtain more accurate estimation than GP.

In�uence of model misspeci�cation We choose n and σ as before but the observations are now

generated by using the log-transform of the model (31). We are interested in quantifying robustness of the

di�erent estimators with respect to misspeci�cation due to neglected interactions, a common feature in the

study of biological networks. In particular, we want to measure the ability of our estimator to retrieve the

true interactions between two state variables despite the presence of unmeasured coufounders. Results are

presented in Table 7. The situation is quite similar to the well-speci�ed case but with the additional feature

that the capacity of θ̂NLS to retrieve the true interaction graph is more a�ected by model misspeci�cation

than θ̂T,CI .
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Table 7: MSE and Variance (in parenthesis) for misspeci�ed Microbiota model for n = 25.

σ θ1 θ2 θ I(θ̂1) I(θ̂2) I(θ̂)

0.01

θ̂T,CI 5.84 (1.76) 1.15 (0.63) 5.67 (1.06) 0.88 0.99 0.96

θ̂NLS 11.95 (1.69) 3.19 (0.59) 14.01 (1.18) 0.87 0.98 0.94

θ̂GP 7.05 (2.69) 2.60 (0.32) 10.01 (1.02) 0.89 0.98 0.97

0.02

θ̂T,CI 7.79 (4.15) 1.55 (1.59) 7.77 (3.44) 0.87 0.98 0.96

θ̂NLS 13.23 (3.24) 3.88 (1.11) 14.99 (2.17) 0.81 0.94 0.89

θ̂GP 12.21 (3.04) 3.02 (1.31) 11.23 (2.37) 0.83 0.94 0.91

0.03

θ̂T,CI 9.73 (5.03) 2.21 (0.97) 8.69 (3.41) 0.87 0.98 0.94

θ̂NLS 20.00 (9.50) 5.75 (3.04) 20.35 (6.76) 0.81 0.94 0.89

θ̂GP 14.10 (8.60) 4.05 (2.78) 13.34 (5.53) 0.83 0.94 0.92

6.2 Real data analysis

In this section, we estimate θ in model (32) starting from the data available in [Stein et al., 2013] for

the Group 3 presented in Figure 6. The original observation interval was [0, 23] but here we restrict to

[0, 16] since no data are available on ]16, 23[ and a �rst estimation attempt with [0, 23] leads to poor

data �tting of the optimal trajectories Xd
θ̂
. We selected kn = 40 for it corresponds to a mesh size small

enough to accurately estimate the ODE perturbed model without being too computationally intensive. We

choose λ = 1, for it is small enough to account for model error presence and leads to accurate estimation

comparing to NLS when some interactions are neglected according to the previous section results.

Despite the use of a simpli�ed model and the presence of outliers which render di�cult a good data �t-

ting ofXd
θ̂T,CI

(see Figure 6), we obtained a graph orientation close to the one obtained in [Stein et al., 2013]

with only 7 out of the 31 estimated interaction parameters having a di�erent sign (see Table 8). This con-

�rms the bene�t of using the approximated methods for real data analysis, where model uncertainty

presence is the rule rather than the exception.

Our methodology copes with model misspeci�cation by limiting its e�ect on estimation. However,

our approach may also be useful for checking misspeci�cation presence by analyzing the optimal control
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Figure 6: Log transformed observations and reconstructed Xd
θ̂T,CI

for subject 1, 2, 3 in group 3 .

Table 8: Scaled values for [Stein et al., 2013] estimator θ̂Stein and θ̂T,CI

θ̂Stein -0.2 0.14 0.22 -0.18 -0.10 -0.19 0.14 -0.05 0.17 -0.04 -0.10 -0.16 -0.15 -0.83 -0.18 -0.16

θ̂T,CI -3.29 1.77 0.29 1.79 -0.43 0.41 0.54 0.45 0.02 -0.15 -0.51 -1.16 -0.04 0.47 -1.52 0.92

θ̂Stein -0.22 -0.71 0.30 0.16 -0.27 -0.20 -0.21 -0.40 0.11 -0.37 0.28 0.25 0.08 0.32 -0.38

θ̂T,CI -0.17 -0.57 1.56 0.85 -1.72 1.21 -0.78 -1.34 0.80 -0.34 1.02 -0.60 0.45 0.13 -0.64
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Figure 7: 1st, 2nd and 3rd component of ud
θ̂T,CI

for subject 1 (blue), 2 (red), 3 (black) in group 3.

ud
θ̂T,CI

values, which can be seen as residuals quantifying the discrepancy between the model and the actual

system dynamic. We present in Figure 7 for each subject the �rst three components of ud
θ̂T,CI

. One can see

there are shared patterns, for example in the �rst graph around t = 10 days, where the optimal controls

present the same behavior for all subjects. Such features indicate that some deterministic elements of the

actual system dynamic have been missed by the assumed model.

7 Conclusion

This work develops a method based on discrete optimal control theory to regularize the problem of param-

eter estimation in ODEs comparing to the use of classic methods such as NLS. This regularization method

is more computationally e�cient and su�ers from a lesser performance drop than the one presented in

[Clairon and Brunel, 2019, Clairon and Brunel, 2018] in sparse sample cases. We also expose how we can

easily pro�le on the initial conditions to avoid the estimation of additional nuisance parameters. The

experimental and real data analyses con�rm the good performance of our method in comparison with NLS

and GP for small sample case, where the asymptotic analysis results do not hold.

An under-exploited feature of the method so far is the obtained optimal control. Here, we only use it

for a qualitative based analysis in the real data case, but we suspect that a full analysis of ud
θ̂T,CI

maybe

be useful to construct a statistical test of misspeci�cation at the derivative level, which is more relevant

34



for such models than the test based on residuals [Hooker and Ellner, 2015]. This is a subject for further

work. A second point worth exploring in the future is the extension to mixed e�ect model in which several

subjects are observed and despite that they present di�erent trajectories it is assumed their dynamics

are ruled by the same evolution law. It means each subject i follows the equation Ẋ = f(t,X, θi) where

f is common to the whole population but θi is an individual parameter de�ned as the realization of a

random variable following a law p depending on a population parameter θ i.e. θi ∼ p(θ). For these

models, dedicated methods are necessary to incorporate inter-patient correlation in the estimation process

[Raftery and Bao, 2010, Donnet and Samson, 2006, M. Lavielle and Mentre., 2011, M.Prague et al., 2013,

Wang et al., 2014]. For our method, it would be interesting to consider mixed-e�ect on the estimated

optimal controls udi to take into account correlations on the committed model error among the individuals.
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