Quentin Clairon 
  
A regularization method for the parameter estimation problem in ordinary dierential equations via discrete optimal control theory

Keywords: Ordinary dierential equation, discrete optimal control, parametric estimation, semi parametric estimation, model uncertainty

We present a parameter estimation method in Ordinary Dierential Equation (ODE) models. Due to complex relationships between parameters and states the use of standard techniques such as nonlinear least squares can lead to the presence of poorly identiable parameters. Moreover, ODEs are generally approximations of the true process and the inuence of misspecication on inference is often neglected. Here, we propose a method based on discrete optimal control theory to regularize the ill posed problem of parameter estimation in this context. We describe how the estimation problem can be turned into a control one and present the numerical methods used to solve it. We show convergence of our estimators in the parametric and well-specied case. We test and compare our method with existing approaches on numerical experiments with models containing poorly identiable parameters and with various sources of model misspecication. They illustrate the regularization brought by our approach to the problem comparing to exact methods such as Non-linear least squares. Moreover, this discrete optimal control based procedure is computationally less intensive and more accurate in sparse sample case than the one based on continuous control techniques. We nally test our approach on a real data example.

Introduction

We are interested by parameter estimation in Ordinary Dierential Equation (ODE) models of the form

   ẋ(t) = f (t, x(t), θ, ϑ(t)) x(0) = x 0 (1)
where the state x is in R d , f is a vector eld from [0, T ] × R d × Θ × Θ f to R d , θ is a parameter that belongs to a subset Θ of R p , ϑ is a functional parameter from [0, T ] to Θ f ⊆ R d f and x 0 is the initial condition that belongs to a subset χ of R d . ODEs are much used in practice as they provide an ecient framework for analyzing and predicting complex systems (see eg [START_REF] Fall | Computational Cell Biology[END_REF], Goldbeter, 1997, Mirsky et al., 2009, Wu et al., 2014]). In particular, there has recently been focus on joint use of ODE models and control theory methods for the purpose of optimal treatment design [START_REF] Guo | Dynamic programming approach to the numerical solution of optimal control with paradigm by a mathematical model for drug therapies[END_REF], Agusto and Adekunle, 2014, Zhang and Xu, 2016].

Our aim is to estimate the true parameters, denoted θ * and ϑ * , starting from data y 1 , . . . , y n , that are realizations of an observation process for i = 1, . . . , n

Y i = CX * (t i ) + i (2)
on the observation interval [0, T ] where X * := X θ * ,ϑ * ,x * 0 is the solution of (1) for θ = θ * , ϑ = ϑ * and

x 0 = x * 0 , C is a d × d observation matrix and i is centered observation noise. That is, we want to estimate (θ * , ϑ * ) starting from discrete, partial and noisy observations of X * at observation times 0 = t 1 < t 2 • • • < t n = T . In absence of ϑ * , estimation of θ * is a standard parametric nonlinear regression problem and can be solved by classical methods such as Nonlinear Least Squares (NLS), Maximum Likelihood Estimation (MLE), or Bayesian Inference [START_REF] Esposito | Deterministic global optimization in nonlinear optimal control problems[END_REF], Li et al., 2005, Rodriguez-Fernandez et al., 2006, Wu et al., 2010]. However, in the case of ODE models, there is a risk of an ill-posed inverse problem [START_REF] Engl | Inverse problems in systems biology[END_REF], Stuart, 2010].

To explain why, let us denote as X θ,x 0 the solution to (1). The Fisher information matrix which controls the Cramer-Rao bound is proportional to

I n (θ, x 0 ) = n i=1 C ∂X θ,x 0 (t i ) ∂(θ,x 0 ) T C ∂X θ,x 0 (t i )
∂(θ,x 0 ) . Instabilities 2 in estimation arise when the matrices C ∂X θ,x 0 (t i )

∂(θ,x 0 ) are badly-conditioned because in this case the inverse problem is very sensitive to any source of perturbations and the objective function (NLS or MLE criteria) is nearly at around its minimum. This practical identiability problem can be measured by computing the spectrum µ 1 ≥ • • • ≥ µ p of I n (θ, x 0 ) and is associated to a weak condition number κ(I n ) = µ 1 µp . The problem arises in part from the observation process, the sparsity and location of the observation times and also from the need to estimate the nuisance parameter x * 0 . Complication in ODEs also arises due to the complex geometry of the manifold {CX θ,x 0 , θ ∈ Θ, x 0 ∈ χ} induced by the mapping (θ, x 0 ) -→ CX θ,x 0 where there can be a small number (in comparison with p) of important directions of variation very skewed from the original parameter axes [START_REF] Gutenkunst | Universally sloppy parameter sensitivities in systems biology models[END_REF], Transtrum et al., 2011, Transtrum et al., 2015].

This situation is termed sloppiness and leads to a regular and widespread distribution of the eigenvalues µ 1 , . . . , µ p with no clear one to one correspondence between the eigenvectors of I n (θ, x 0 ) and the original ODE parametrization. Numerous ODEs used for example in systems biology [START_REF] Gutenkunst | Universally sloppy parameter sensitivities in systems biology models[END_REF] and neuroscience [START_REF] Leary | Computational models in the age of large datasets[END_REF] have been identied as sloppy. Sloppiness is a phenomenon arising from interactions between intrinsic system properties and the experimental design, it is due to the sparse and block structure of C ∂X θ,x 0 (t i ) ∂(θ,x 0 ) with highly correlated entries [START_REF] Tonsing | Cause and cure of sloppiness in ordinary dierential equation models[END_REF]. Since we cannot clearly distinguish important parameters from the others, there is no clear mechanism to suppress irrelevant parameters in the model. Moreover, methods based on optimal experimental design to circumvent sloppiness can lead to experiments which push the system in a state where the assumed model is no longer valid. This can cause model error problems when trying to estimate parameters from the new data set and reduce model predictive ability [START_REF] White | The limitations of model-based experimental design and parameter estimation in sloppy systems[END_REF]. Despite that sloppiness and practical identiability are not rigorously the same problem, the former often induces the latter by making some subset of parameters unidentiable. Thus, there is a need to improve estimation methods which use the existing data without resorting to new experiments.

Another issue in ODE parameter estimation comes from the fact that the selected model can suer from model misspecication issues. By resuming the terminology of [START_REF] Kennedy | Bayesian calibration of computer models[END_REF], we refer to model misspecication when the ODE model suers from 1/ Model inadequacy: discrepancy between the mean model response and real world process. ODEs are derived by approximations, simplication of interactions and omission of external factors inuence can cause such discrepancy. 2/ Residual variability issues: many biological processes are known to be stochastic and the justication of deterministic modeling comes from the approximation of stochastic processes by ODE solutions see [Kurtz, 1970, Kurtz, 1978, Gillespie, 2000, Kampen, 1992]. Hence, inference of the parameters has to be done while recognizing that the model is false [Kirk et al., 2016, Brynjarsdottir and[START_REF] Brynjarsdottir | Learning about physical parameters: The importance of model discrepancy[END_REF].

In this work, we propose a new estimation procedure to address these challenges, based on an approximate solution of the original ODE. The use of approximate solutions for statistical inference, such as the two-step approaches [Varah, 1982, Gugushvili and Klaassen, 2011, Liang et al., 2010[START_REF] Brunel | Parameter estimation of ordinary dierential equations with orthogonality conditions[END_REF], Dattner, 2015], Generalized Proling (GP) [G. Hooker andEarn, 2011, Ramsay et al., 2007] or in a Bayesian framework [Chkrebtii et al., 2016, Jaeger andLambert, 2011], has already proven to be useful for regularizing the inverse problem of parameter estimation. In presence of poorly identiable parameters, the appeal of such methods are their ability to bypass the Cramer-Rao bound which imposes to exact methods a dramatic increase of estimator variance. In case of model misspecication, they can improve estimation accuracy for they relax the constraint imposed by the ODE model and then account for model discrepancy in the criteria to optimize [START_REF] Brynjarsdottir | Learning about physical parameters: The importance of model discrepancy[END_REF].

Our proposed method presents similarities with the ones introduced in [START_REF] Brunel | A tracking approach to parameter estimation in linear ordinary dierential equations[END_REF], Clairon and Brunel, 2019, Clairon and Brunel, 2018], where an approximation X θ,x 0 ,u is a solution of the perturbed ODE ẋ(t) = f (t, x(t), θ) + Bu(t) where the perturbation t → Bu(t) captures dierent sources of model misspecication. After a pre-smoothing step to obtain a nonparametric curve estimator Y , the estimator θ, x 0 is dened as the minimizer of the cost

C λ (θ, x 0 , u) = CX θ,x 0 ,u -Y 2 L 2 + λ u 2
L 2 proled on the possible perturbations u: θ, x 0 = arg min (θ,x 0 ) S(θ, x 0 ), where S(θ, x 0 ) = min u C λ (θ, x 0 , u). This estimator, called the Tracking Estimator (TE), is thus dened as the parameter which needs the smallest perturbation u in order to track Y , the balance between the two contrary objectives of data delity (i.e.

CX θ,x 0 ,u -Y 2 L 2 ) and original model delity (i.e. u 2
L 2 ) is done through the choice of an hyperparameter λ. For each value (θ, x 0 ), the optimal control problem min u C λ (θ, x 0 , u) is solved by using the Pontryagin maximum principle [START_REF] Pontryagin | The Mathematical Theory of Optimal Processes[END_REF]. In comparison with GP and NLS, the TE generally has a lower variance and mean square error with the dierence in performance even more marked in the presence of model misspecication. In the parametric case and for well-specied models, the TE is consistent with a √ n-convergence rate under very mild model regularity conditions and provided λ > λ 1 , with λ 1 a positive model dependent bound. Another attractive feature of the tracking framework is the seamless estimation of nite-dimensional and time-varying parameters. The estimation of ϑ is turned into an optimal control problem and estimator θ is a by-product of θ * estimation which does not require the use of standard approximations such as sieves or basis expansions [START_REF] Xue | Sieve estimation of constant and time-varying coecients in nonlinear ordinary dierential equation models by considering both numerical error and measurement error[END_REF], G. Hooker and Earn, 2011, Wang et al., 2014].

However, there are two main limitations for the method presented in [START_REF] Clairon | Optimal control and additive perturbations help in estimating ill-posed and uncertain dynamical systems[END_REF]. First, the computational time: solving the optimal control problem by using the Pontryagin maximum principle leads to a boundary value problem (BVP) for each new (θ, x 0 ) value and x * 0 has to be estimated as nuisance parameter. Second, the method requires a nonparametric estimator which can be biased in sparse data case, this bias can then be spread to the parametric estimation. Here, while we still consider an optimal control based approach, we change the cost function C λ as well as the numerical procedure used to solve the related optimal control problem. We rely on discrete control theory and a numerical method inspired by [START_REF] Banks ; Cimen | Nonlinear optimal tracking control with application to supertankers for autopilot design[END_REF]. This allows us to construct a method which:

1. replaces the BVP by a sequence of nite dierence equations which is numerically solved signicantly faster, 2. does not require a pre-smoothing step, we can deal with sparse data cases which are consistent with most real observation framework, 3. can be easily adapted to avoid estimation of x * 0 if it is not required.

In order to dene our estimators, we present in the next section the optimal control problem required to introduce our functional criteria and describe our approach for semi-parametric estimation. In section 3, we derive the numerical procedures. In section 4, we study the asymptotic behavior of our estimators. In section 5, we use Monte Carlo experiments to compare the Tracking, NLS and GP estimators on ODE examples from chemistry and biology with both well-specied and misspecied models. The discrete control theory based method allows us to obtain more accurate estimates than GP and NLS. We also investigate dierences between the method developed here and the one in [START_REF] Clairon | Optimal control and additive perturbations help in estimating ill-posed and uncertain dynamical systems[END_REF]. We emphasize the advantage of using this discrete based one in terms of computational time and estimation accuracy, in particular for sparse sample cases. In Section 6, we consider parameter estimation with real data in a model used to study microbiotal population evolution.

Model and methodology

We recall the aim of this work is to dene estimators of (θ * , ϑ * ) as minimizers of functional criteria. First, we derive them in the parametric case where there is no functional parameter ϑ * .

Formal parametric estimator denition

We denote by X θ,x 0 the solution of the Initial Value Problem (IVP):

   ẋ(t) = f (t, x(t), θ) x(0) = x 0 .
(3)

First, we introduce a pseudo-linear and perturbed version of model (3):

   ẋ(t) = A θ (x(t), t)x(t) + Bu(t) x(0) = x 0 (4)
where the function t → Bu(t) is a linear perturbation, B is a

d × d u matrix and u is in L 2 [0, T ] , R du .
Here, the matrix A θ is dened by the relation A θ (x(t), t)x(t) = f (t, x(t), θ), this formulation is crucial for solving in a computationally ecient way the optimal control problem dening our estimators. Linear models already t in this formalism with A θ (t) = A θ (x(t), t). For nonlinear models, the pseudo-linear representation is not unique but always exists [START_REF] Banks ; Cimen | Nonlinear optimal tracking control with application to supertankers for autopilot design[END_REF]. We denote X θ,x 0 ,u the solution of the perturbed ODE (4). Now, we introduce the cost function required to dene our estimators:

C (T,U ) (Y ; θ, x 0 , u) = n i=0 CX θ,x 0 ,u (t i ) -y i 2 2 + T 0 u(t) T U u(t)dt (5)
where U is a symmetric denite positive matrix used as a weighting parameter balancing the amount of model and data delity. For each (θ, x 0 ) in Θ × χ, we dene the proled cost:

S (n,U ) (Y ; θ, x 0 ) := inf u C (T,U ) (Y ; θ, x 0 , u) (6) 
on the set of possible perturbations u, in the case we want to bypass x * 0 estimation, we also introduce

S CI (n,U ) (Y ; θ) := min x 0 inf u C (T,U ) (Y ; θ, x 0 , u) (7) 
the proled cost function on x 0 in addition to u. From these criteria, the estimators are dened as:

θ T U , x 0,U T := arg min (θ,x 0 )∈Θ×χ S (n,U ) (Y ; θ, x 0 ), (8) 
and

θ T,CI U := arg min θ∈Θ S CI (n,U ) (Y ; θ) (9) 
i.e. as the parameter values giving the trajectory X d θ,x 0 ,u needing the smallest perturbation in order to be close to the observed data on [0, T ]. Our method relaxes the original inverse problem by allowing a small divergence from the assumed model (1). The addition of u in the model followed by its norm penalization corresponds to the addition of a Tikhonov regularization term. The regularization brought by it is ensured in [START_REF] Engl | Regularization of inverse problems[END_REF] theorem 10.12 which concludes to the smooth dependence of the regularized solution with respect to uncertainty in observations. Moreover, as pointed out in [START_REF] Engl | Regularization of inverse problems[END_REF] chapter 5, this smooth dependence also works when the uncertainty is on the model. In the Bayesian paradigm the link between optimizing C (T,U ) and statistical inference in functional spaces has been made in [Stuart, 2010].

The minimizer of C (T,U ) can be seen as a MAP estimator corresponding to a prior chosen to be a centered Gaussian measure and with a covariance operator determined by U (according to theorem 3.5 and Corollary 3.10 in [START_REF] Dashti | Map estimators and their consistency in bayesian nonparametric inverse problems[END_REF]). That is, before having access to the observations, the original ODE is assumed to be the most likely model for the system. In this case, the regularization brought by T 0 u(t) T U u(t)dt can be derived from the robustness of the posterior measure with respect to model misspecication and its smooth dependence with respect to data (respectively theorem 4.6 and theorem 4.2 in [Stuart, 2010]).

Remark 1. One pseudo-linear representation A θ we can easily derive for ODE (3) is obtained by dividing f componentwise by each state variable. It has to be noted that, by superposition principle, if A 1,θ and A 2,θ are two acceptable representations, so is α 1 A 1,θ + α 2 A 2,θ with α 1 + α 2 = 1. In order to exploit this nonuniqueness as an additional degree of freedom see [Cimen, 2008] section 6.

ϑ estimation

For this, let us introduce the state x e = (x, z 1 , z 2 ) in R d+2d f , the matrices:

A e θ (x e (t), t) =      A θ (x(t), z 1 (t), t) 0 0 0 0 1 0 0 0      , B ext =      I d 0 d,d f 0 d f ,d 0 d f 0 d f ,d I d f     
and the perturbed solution X e θ,x e 0 ,u of the extended ODE:

   ẋe (t) = A e θ (x e (t), t)x e (t) + B ext u(t) x e (0) = x e 0 . (10) 
Here, u is split into two parts, u = (u 1 , u 2 ) and X e θ,x e 0 ,u is solution of

ẋ = A(t, x, z 1 , θ)x + u 1 ż1 = z 2 ż2 = u 2 (11)
and z 1 plays the role of ϑ and z 2 of θ. Since we get a state variable estimator X e as a byproduct of θ * estimation, we can dene

ϑ = z 1 . Let us introduce U =   λ 1 I d 0 d,d f 0 d f ,d λ 2 I d f   and the cost C (T,U ) (Y ; θ, x e 0 , u) = n i=0 CX d θ,x 0 ,u (t i ) -y i 2 2 + λ 1 T 0 u 1 (t) 2 2 dt + λ 2 T 0 u 2 (t) 2 2 dt. ( 12 
)
Here

λ 1 T 0 u 1 (t) 2
2 dt is used to quantify model discrepancy as in the parametric case and since u 2 = z1 , the last term in C (T,U ) is the standard penalty used for functional estimation. Thus, a good choice of hyperparameters for cost (12) would be a large value for λ 1 (in order to select a small u 1 ), and λ 2 tending to 0 when the sample size n grows, as for standard nonparametric estimation.

Remark 2. The state extension required for semi-parametric estimation involves the addition of new initial conditions ϑ(0), θ(0) . However, if we prole on x 0 our approach does not add nuisance parameters.

3 Tractable form for S (n,U ) and S CI (n,U )

In this subsection, we derive tractable expressions for S (n,U ) and S CI (n,U ) . We start with linear ODEs then we extend the derived methods to nonlinear models by following [START_REF] Banks ; Cimen | Nonlinear optimal tracking control with application to supertankers for autopilot design[END_REF]. For this, we need to specify the discrete optimal control problem we want to solve, that is the point of the next subsection.

A discrete optimal control problem framework

To proceed to parametric estimation, we resort on discrete optimal control theory. For this, we need a discrete version of the ODE (4) as well as of the cost (5). The discretization is made at m + 1 time points

t d j 0≤j≤m
with t d 0 = 0 and t d m = T . Letting ∆ j = t d j+1 -t d j being the mesh size between two discretization time-points and u = (u 0 , . . . , u m-1 ) the set of discrete values taken by the control at each time step, the discretized model is:

   x(t d j+1 ) = I d + ∆ j A θ (x(t d j ), t d j ) x(t d j ) + B∆ j u j x(0) = x 0 . ( 13 
)
The set of discretization times has to contain the observation times i.e. {t i } 0≤i≤n ⊂ t d j 0≤j≤m but can be bigger, this is an important feature of the discretization scheme to accurately estimate X θ,x 0 ,u even when the observations are sparse on [0, T ]. We denote X d θ,x 0 ,u (t d j ), the solution of ( 13) for the parameter θ, initial condition x 0 and the perturbation u at time t d j .

The cost ( 5) is discretized by replacing the integral T 0 u(t) T U u(t)dt by the Riemann sum corresponding to the discretization grid:

C d (T,U ) (Y ; θ, x 0 , u) = n i=0 CX d θ,x 0 ,u (t i ) -y i 2 2 + m-1 j=0 j u j T U u j = CX d θ,x 0 ,u (t n ) -y n 2 2 + m-1 j=0 j CX d θ,x 0 ,u (t d j ) -y j 2 2 w j + u j T U u j (14) 
where

w j = 1 {∃ti s.t t i =t d j } / j i.e. w j = 1/ j if t d j is the observation time t i , otherwise w j = 0, y j is equal to y i if t d j = t i and 0 otherwise.
The weights w j and the set of extended data {y i } are introduced to have a vector of observation which has the same length as the discretization grid t d j 0≤j≤m

. This allows us to estimate the integral term in ( 5) with an arbitrary precision while tting in the framework of discrete optimal control theory. To compute S (n,U ) and S CI (n,U ) in practice we need to solve the problem:

min u C d (T,U ) (Y ; θ, x 0 , u) such that x(t d j+1 ) = I d + ∆ j A θ (x(t d j ), t d j ) x(t i ) + B∆ j u j and x(0) = x 0 . ( 15 
)
The problem ( 15) is a tracking problem where the aim is to nd the smallest control possible to apply to a

given dynamical system in order to track a signal. For linear models, these problems have been eciently solved as they t into the framework of discrete linear-quadratic problems, which ensures the existence and uniqueness of the solution and gives a computationally ecient way to nd it. For non-linear models, [START_REF] Banks ; Cimen | Nonlinear optimal tracking control with application to supertankers for autopilot design[END_REF] proposes an iterative method to solve continuous time tracking problems, the main idea being to replace the original problem by a sequence of linear-quadratic ones. We use the same method adapted to discrete models.

Remark 3. Instead of an Euler scheme leading to (13), other integration methods can be chosen. As soon as it is an explicit scheme giving rise to a state-space equation of the form Hairer andWanner, 1996, Hairer et al., 1993]), the presented procedure for solving the optimal control is still applicable.

z(t + 1) = Q(t, z(t))z(t) + Bu(t) ([

Linear models

Here A θ (t) = A θ (x, t) in (3). For a given initial condition x 0 , linear-quadratic theory ensures the existence and uniqueness of the optimal control u d

θ,x 0 = arg min u∈La C d (T,U ) (Y ; θ, x 0 , u) and that inf u∈La C d (T,U ) (Y ; θ, x 0 , u)
can be computed by solving a discrete nal value problem, denoted the Riccati equation. Moreover, u) is a quadratic form with respect to x 0 , the proling is straightforward. Interestingly, the formal computation used to derive S CI (n,U ) (Y ; θ) follows the same step as the deterministic Kalman Filter state estimator derivation [Sontag, 1998]. The formal computational details are left in supplementary materials.

inf u∈La C d (T,U ) (Y ; θ, x 0 ,
Proposition 4. For (θ, x 0 ) in Θ × χ, S (n,U ) (Y ; θ, x 0 ) and S CI (n,U ) (Y ; θ) are equals to:

S (n,U ) (Y ; θ, x 0 ) = x T 0 R d θ,0 x 0 + 2h d θ,0 (Y ) T x 0 + y T n y n + m-1 j=0 j w j y T j y j -h d θ,j+1 (Y ) T BG(R d θ,j+1 )B T h d θ,j+1 (Y ) (16) 
and

S CI (n,U ) (Y ; θ) = -h d θ,0 (Y ) T R d θ,0 -1 h d θ,0 (Y ) + y T n y n + m-1 j=0 j w j y T j y j -h d θ,j+1 (Y ) T BG(R d θ,j+1 )B T h d θ,j+1 (Y ) (17) with G(R d θ,j+1 ) := U + j B T R d θ,j+1 B -1 and (R d θ,j , h d θ,j (Y )) for 1 ≤ j ≤ m, the solution of the discrete Riccati equation: R d θ,j = R d θ,j+1 + j w j C T C + ∆ j R d θ,j+1 A θ (t d j ) + A θ (t d j ) T R d θ,j+1 + 2 j A θ (t d j ) T R d θ,j+1 A θ (t d j ) - j (I d + j A θ (t d j ) T )R d θ,j+1 BG(R d θ,j+1 )B T R d θ,j+1 (I d + j A θ (t d j )) h d θ,j (Y ) = h d θ,j+1 (Y ) -j w j C T y j + j A θ (t d j ) T h d θ,j+1 (Y ) - j (I d + j A θ (t d j ) T )R d θ,j+1 BG(R d θ,j+1 )B T h d θ,j+1 (Y ) (18) with nal condition (R d θ,m , h d θ,m (Y )) = (C T C, -C T y n ).
The optimal control u d θ,x0 minimizer of the cost ( 14) is unique and equal to:

u d θ,x0,j = -G(R d θ,j+1 )B T R d θ,j+1 I d + j A θ (t d j ) X d θ,x0 (t j ) + h d θ,j+1 (Y ) (19) 
where X d θ,x0 is the optimal trajectory, the solution of

         X d θ,x0 (t d j+1 ) = I d + j A θ (t d j ) X d θ,x0 (t d j ) - j BG(R d θ,j+1 )B T R d θ,j+1 I d + j A θ (t d j ) X d θ,x0 (t d j ) + h d,l θ,j+1 (Y ) X d θ,x0 (0) = x 0 .
(20)

The optimal control u d θ and optimal trajectory X d θ such that S CI

(n,U ) (Y ; θ) = min x0 inf u∈La C d (T,U ) (Y ; θ, x 0 , u) = C d (T,U ) (Y ; θ, X d θ (0), u d θ )
are still given by equations ( 19) and ( 20) but with initial condition

X d θ (0) = -R d θ,0 -1 h θ,0 .

Non-linear models

Here, we adapt the solving method proposed by [START_REF] Banks ; Cimen | Nonlinear optimal tracking control with application to supertankers for autopilot design[END_REF] for discrete time models. Let us detail the procedure for S (n,U ) computation, we replace the original problem ( 15) by a recursive sequence of linear-quadratic control problems, with iteration l dened by

min u C d,l (T,U ) (Y ; θ, x 0 , u) := CX l θ,x 0 ,u (t d m ) -y n 2 2 + m-1 j=0 j CX l θ,x 0 ,u (t d j ) -y j 2 2 w j + u T j U u j such that x(t d j+1 ) = (I d + j A l θ (t d j ))x j (t d j ) + j B σ u j and x(0) = x 0 (21)
where

A l θ (t d j ) := A θ (X l-1 θ,x 0 (t d j ), t d j ) and A 0 θ (t d j ) := A θ (x 0 , t d j ).
Here X l-1 θ,x 0 is the optimal trajectory corresponding the optimal control problem ( 21) at iteration l -1. For each l, we use the previous proposition to compute the solution of the Riccati equation (R d,l θ , h d,l θ (Y )), the optimal control u d,l θ,x 0 , the trajectory X d,l θ,x 0 and the proled cost value S l (n,U ) (Y ; θ, x 0 ). Moreover, the sequences

R d,l θ , h d,l θ (Y ) l∈N , u d,l θ,x 0 l∈N , X d,l θ,x 0 l∈N and S l (n,U ) (Y ; θ)
l∈N are uniformly convergent in l [Cimen and[START_REF] Banks ; Cimen | Nonlinear optimal tracking control with application to supertankers for autopilot design[END_REF]Banks, 2004a]. Thus, we can propose the following algorithm to compute

(R d θ , h d θ (Y )), u d θ,x 0 , X d θ,x 0 and S (n,U ) (Y ; θ, x 0 ). 1. Initialization: X d,0 θ,x 0 (t d j ) = x 0 , A 0 θ (t d j ) = A θ (x 0 , t d j )
for all j ∈ J0, mK.

At iteration

l: use Proposition 4 to obtain (R d,l θ , h d,l θ (Y )) , u d,l θ,x 0 , X d,l θ,x 0 , S l (n,U ) (Y ; θ, x 0 ). 3. If S l (n,U ) (Y ; θ, x 0 ) -S l-1 (n,U ) (Y ; θ, x 0 ) < ε 1 and m j=1 X d,l θ,x 0 (t d j ) -X d,l-1 θ,x 0 (t d j ) 2 2
< ε 2 with ( 1 , 2 ) two strictly positive constants, then step 4; otherwise return to step 2.

Set

(R d θ , h d θ (Y )) = (R d,l θ , h d,l θ (Y )), u d θ,x 0 = u d,l θ,x 0 , X d θ,x 0 = X d,l θ,x 0 , S (n,U ) (Y ; θ, x 0 ) = S l (n,U ) (Y ; θ, x 0 ).
For S CI (n,U ) the procedure is similar, only the initialization step has the be replaced: the initial state X d,0 θ has to be chosen and A 0

θ (t d j ) = A θ (X d,0 θ (t d j ), t d j ).
We see in Section 5 what choice we made in practice.

Asymptotic analysis

Here we assume the discretization grid is the set of observation time points i.e. t d j = {t i } which are regularly spaced so i = = T n , and i.i.d i ∼ N (0, σ 2 I d ), we also consider U depends on n and can be written

U = U / with U positive denite. Since arg min (θ,x 0 ) S l (n,U / ) (Y ; θ, x 0 ) = arg min (θ,x 0 ) S l (n,U ) (Y ; θ, x 0 )
and arg min θ min First, we introduce the asymptotic counterpart of S l (n,U / ) (Y ; θ, x 0 ) when n -→ ∞ and l -→ ∞. In this asymptotic framework, we have access to the true continuous signal t -→ Y * (t) = CX θ * ,x * 0 (t) and so we can dene the continuous cost:

x 0 S l (n,U / ) (Y ; θ, x 0 ) = arg min θ min x 0 S l (n,U ) (Y ; θ, x 0 ) , we focus on S l (n,U / ) (Y ; θ, x 0 ) instead of S l (n,U ) (Y ; θ, x 0 ) for
C ∞ (T,U ) (θ, x 0 , u) = d σ 2 + T 0 CX ∞ θ,x 0 ,u (t) -Y * (t) 2 2 + u(t) T U u(t) dt, ( 22 
) its proled couterpart, S ∞ U (θ, x 0 ) := inf u C ∞ (T,U ) (θ, x 0 , u), the associated ODE    Ẋ∞ θ,x 0 ,u = A θ (X ∞ θ,x 0 (t), t)X ∞ θ,x 0 ,u + Bu(t) X ∞ θ,x 0 ,u (0) = x 0 (23) 
and Riccati equation

  with R l θ (T ), h l θ (T ) = (0 d,d , 0 d,1
) . Now, we present the conditions required for asymptotic analysis.

Condition C1: For all t ∈ [0, T ] and for all θ ∈ Θ, x -→ A θ (x, t) has a compact support Λ.

Condition C2: For all x ∈ Λ, θ -→ A θ (x, .) is continuous on Θ and ∀θ ∈ Θ, (x, t) -→ A θ (x, t) is continuous on Λ × [0, T ].
Condition C3: Matrix B has independent columns.

Condition C4: The parameters (θ * , x * 0 ) belong to the interior of Θ × χ.

Condition C5: The solution X θ,x 0 of (4) for

u = 0 is such that if CX θ,x 0 (t) = CX θ * ,x 0 * (t) for all t ∈ [0, T ] then (θ, x 0 ) = (θ * , x 0 * ).
Condition C6: For all x ∈ Λ, θ -→ A θ (x, .) is twice dierentiable on Θ and for all θ ∈ Θ, (x, t) -→

∂A θ (x,t) ∂θ and (x, t) -→ ∂ 2 A θ (x,t) ∂ 2 θ are continuous on Λ × [0, T ].
Condition C7: The asymptotic hessian matrix

∂ 2 S ∞ U (θ * ,x * 0 ) ∂ 2 (θ,x 0 ) is nonsingular. Conditions C1, C2, C3 are required for the uniform convergence of R d,l θ , h d,l θ to R ∞ θ , h ∞ θ and S l (U ,n) to S ∞ U . Conditions C4 and C5 ensure (θ * , x * 0 ) is a well-separated minimum of S ∞
U and conditions C6 and C7 guarantee that the asymptotic variance-covariance of θ * is non singular.

Consistency

The estimator θ T U , x 0,U T is dened as an M-estimator, so for consistency we need to show S ∞ U (θ, x 0 ) has a global well-separated minimum at (θ, x 0 ) = (θ * , x * 0 ) and that S l (n,U ) (Y ; θ, x 0 ) converges uniformly to S ∞ U (θ, x 0 ) on Θ × χ. This is the point of the next two propositions.

Proposition 5. Under conditions C1 to C5, (θ * , x * 0 ) is the unique global minimizer of S ∞ U (θ, x 0 ) on Θ×χ.

Proposition 6. Under conditions C1 to C5,

sup (θ,x 0 )∈Θ×χ S ∞ U (θ, x 0 ) -S l (n,U / ) (Y ; θ, x 0 ) = o l (1) + o p,n (1) 
.

From this, we use Theorem 5.7 in [van der Vaart, 1998] to conclude about the consistency.

Theorem 7. Under conditions C1 to C5,

θ T U , x 0,U T -→ (θ * , x * 0 ) in probability when (l, n) -→ ∞.
Remark 8. Interestingly, in [START_REF] Clairon | Optimal control and additive perturbations help in estimating ill-posed and uncertain dynamical systems[END_REF], for the weighting matrix under the form U = λ I du , consistency proof for θ T U requires the lower bound condition λ > λ 1 with λ 1 a positive modeldependent bound. Here, we just need to have U positive denite.

Asymptotic normality

We show the asymptotic normality with (n,U / ) (Y ; θ, x 0 ). Second, we approximate this linear asymptotic representation in order to make explicit its dependence with respect to measurement noise. Proposition 9. Under conditions C1 to C6, we have:

-∇ (θ,x 0 ) ( S l (n,U / ) (Y ; θ * , x * 0 ) = ( ∂ 2 S ∞ U (θ * , x * 0 ) ∂ 2 (θ, x 0 ) + o p,n (1) + o l (1)) θ T U -θ * , x 0,U T -x * 0 .
Proposition 10. Under conditions C1 to C6, we have

-∇ (θ,x 0 ) ( S l (n,U / ) (Y ; θ * , x * 0 ) =   n j=0 T j   (K ∞ (θ * ,x * 0 ) + o l (1) + o n (1)) + L   n j=0 j   + o p,n ( √ ∆) + o l (1) with K ∞ (θ,x 0 ) = 2CBU -1 B T T 0 ∂h ∞ θ * (t) ∂(θ,x 0 ) dt and L = 0 d ,p -2C T .
From this, we use

∂ 2 S ∞ U (θ * ,x * 0 ) ∂ 2 (θ,x 0 )
nonsingularity and the central limit theorem to obtain the following.

Theorem 11. Under conditions C1 to C7 and if

l = O n ( √ ∆), θ T U , x 0,U
T is asymptotically normal and

θ T U , x 0,U T -(θ * , x * 0 ) = o p,n (n -1 2 ).
The required conditions on l for consistency and √ n-convergence rate are necessary only for non-linear systems. For linear models, we use (18) to compute S l (n,U ) (Y ; θ) and we take o l (1) = 0.

4.2 Asymptotic analysis of θ T,CI U for linear models in parametric case

For the asymptotic analysis of θ T,CI U , we restrict to the linear models. Since A θ does not depend on x, there is no need to consider asymptotics in l. The conditions are shown below.

Condition L1: For all θ ∈ Θ, t -→ A θ (t) is continuous on [0, T ]. Condition L2: θ -→ A θ is continuous on Θ. Condition L3: For all θ ∈ Θ, R ∞ θ (0) is nonsingular.
Condition L4: The true parameter θ * belongs to the interior of Θ.

Condition L5: The solution X θ,x 0 of (4) for

u = 0 is such that if CX θ,x 0 (t) = CX θ * ,x * 0 (t) for all t ∈ [0, T ] then (θ, x 0 ) = (θ * , x * 0 ). Condition L6: θ -→ A θ is C 2 on Θ.
Condition L7: The asymptotic hessian matrix

∂ 2 S CI U (θ * ) ∂ 2 θ is nonsingular.
The proofs follow the same steps as in the previous sections, hence we just present the theorems, they are also detailed in supplementary materials.

Theorem 12. Under conditions LC1 to LC5, we have θ T,CI U -→ θ * in probability when n -→ ∞.

Theorem 13. Under conditions LC1 to LC7, θ T,CI U is asymptotically normal and θ T,CI U -θ * = o p,n (n -1 2 ).

Remark 14. The diculty in deriving the asymptotic behavior of θ T,CI U in all generality comes from the initialisation point x r 0 required by the algorithm. So far, we have been unable to analyze the mapping

Q θ : x r 0 -→ X θ (., x r 0 )
where X θ (., x r 0 ) is the trajectory given by the algorithm in the limit case n = ∞ and l = ∞. If for θ = θ * , the true trajectory X * is a global attractor of Q θ * , the demonstrations will be completed, but our attempts to prove it remain unfruitful.

Experiments

We use Monte-Carlo simulations on dierent models, for several numbers of measures n and corrupted with measurement noise of dierent magnitudes. We compare four estimators: θT U and θT,CI U , the nonlinear least square (NLS) estimator θ N LS and the generalized proling (GP) estimator θ GP introduced in [START_REF] Ramsay | Parameter estimation for dierential equations: A generalized smoothing approach[END_REF]. The latter is the regularization method of reference for the estimation problem in ODEs. We compare θT U , θT,CI U , θ N LS , θ GP on models facing practical identiability problems in correctly and misspecied frameworks. For a given choice of (n, σ), we compute:

1. The variance V ( θ i ) for each element θ i of θ to analyze how each estimator behaves specically for the components suering from identiability issues.

2. The estimator variance-covariance norm V θ

2
to analyze how each estimator behaves for the whole parameter set.

3. The componentwise mean square error MSE(

θ i ) = θ * i -E θ i 2 + V ( θ i ) and the global MSE( θ) = p i=1 θ * i -E θ i 2 + V θ 2
to measure estimator accuracy, in particular its degradation when facing misspecication.

These quantities are obtained by Monte Carlo procedure based on a number of N M C trials specic to each experimental design. We choose N M C large enough to have the Monte Carlo Error of MSE( θ i ) lower than 5% for each θ i (see [START_REF] Koehler | On the assessment of monte carlo error in simulationbased statistical analyses[END_REF] for details). For each run, the observations are obtained by integrating the ODE with a Runge-Kutta algorithm (ode function in R), with added centered Gaussian noise of variance σ 2 . Parameters have dierent orders of magnitude, so results are given for normalized estimated values θ./θ * , ./ being the componentwise division.

The GP method uses an approximate solution Xλ θ of the ODE dened as the spline basis decomposition minimizing n

i=1 y i -C Xλ θ (t i ) 2 + λ d dt Xλ θ -f •, Xλ θ , θ 2 L 2 .
GP requires a selection method for the knots location and the hyperparameter λ. The knots location is specic to each example and λ is selected by using the method presented in [START_REF] Qi | Asymptotic eciency and nite-sample properties of the generalized proling estimation of parameters in ordinary dierential equations[END_REF]

: the value of λ is increased until X θGP λ , x 0 -XθGP λ 2 L 2
starts increasing, that is when XθGP λ starts to dier signicantly from the exact solution X θGP λ , x 0 where

x 0 = Xλ θGP λ (0).
For θ T U and θ T,CI U , we need to select the discretization grid t d j 0≤j≤m

and U. For the grid, we take m = k n n points and we place uniformly k n discretization points between two observation times. We choose k n large enough to correctly estimate the ODE solution. For U , we consider scalar matrices U = λI d . When λ tends to ∞, the criteria tends to the NLS one, if λ tends to 0, the criteria leads to interpolate the observations without any eect of θ. Hence the need for an adaptive selection method. For our approach, we use the forward cross-validation method presented in [G. Hooker and Earn, 2011]. We split [0, T ] into

H subintervals [t h , t h+1 ], such that t 1 = 0 and t H = T and we denote X θ (., t h , x h ) the solution of: 

   ẋ(t) = f (t, x(t), θ) x(t h ) = x h ( 
ERRPRED(λ) = H h=1 {t i ∈[t h , t h+1 ]} y i -CX θT,CI U (t i , t h , X d θT,CI U (t h )) 2 2 .
The rationale of this selection method is the following: if λ is too small, CX d θT,CI U (t h ) will be close to the observation y h but not to the actual ODE solution, and the solution of Eq. ( 25) will diverge from the observations on [t h , t h+1 ]. If λ is too large, X d θT,CI U (t h ) will be close to the original ODE solution but far from y h and it will lead again to a large value for ERRPRED(λ). Thus, a proper value for λ which minimizes ERRPRED(λ) will be chosen between these two extreme cases. In the simulations, we use H = 2 subintervals. We denote θT and θT,CI the values minimizing ERRPRED among the set of tested weighing parameters.

Regarding the initial state X d,0 θ required by the algorithm presented in Section 3.3 when we prole on x 0 , we take the measured value for the observed state variables and made simple but model specic choices for the unobserved ones; they will be detailed in the following examples. More rened choices may be possible for the unobserved state variables but these simple strategies worked well in practice (i.e. no problem of convergence) for all examples given below.

α-Pinene model

We begin with a linear ODE considered in [START_REF] Rodriguez-Fernandez | Novel metaheuristic for parameter estimation in nonlinear dynamic biological systems[END_REF] and used for modeling the isomerization of α-Pinene:

                     ẋ1 = -(θ 1 + θ 2 )x 1 ẋ2 = θ 1 x 1 ẋ3 = θ 2 x 1 -(θ 3 + θ 4 )x 3 + θ 5 x 5 ẋ4 = θ 3 x 3 ẋ5 = θ 4 x 3 -θ 5 x 5 (26) on the observation interval [0, T ] = [0, 100].
Here the expression of A θ is unique and straigthforward to derive. We set x * 0 = (100, 0, 0, 0, 0) and θ * = (5.93 , 2.96, 2.05, 27.5, 4) × 10 -2 . We plot in Figure 1 the solution of (26) corresponding to θ * and an example of simulated observations.

In [START_REF] Rodriguez-Fernandez | Novel metaheuristic for parameter estimation in nonlinear dynamic biological systems[END_REF], model ( 26) is used as a benchmark estimation comparison as many approaches fail to converge due to the diculty of estimating θ * 4 and θ * 5 because of the high correlation between them. We select k n = 50 and λ among the set 10 i , 5 × 10 i 0≤i≤2 . For GP, we use 50 knots uniformly reparted on [0, T ].

Inuence of measurement noise

We consider one sample size n = 10. The level of noise is specic to each state variable to take into account their dierent order of magnitude. Each state X i is corrupted by a measurement noise of standard deviation σ 100 × X i L 2 , three levels for σ are tested (σ = 5, σ = 10 and σ = 15). We choose N M C = 200 for σ = 5 and σ = 10 but we need to take N M C = 500 for σ = 15. Results are presented in Table 1. For θ 4 and θ 5 , we observe that θ T and θ T,CI give the smallest variance. Our approximate method regularizes the estimation of parameters facing a practical identiability problem in comparison with NLS. Moreover, we notice the same pattern for V (θ) 2 which takes into account covariance among parameters. However, TE and GP are methods based on approximated solutions and so produce biased estimates. That is why we estimated the mean square error to verify that the price to pay to decrease the variance is not too high in terms of bias. Our methods have lower global mean square error than NLS which indicate a reasonable bias. GP on the other hand can have a very large mean square error.

The reason, already been discussed in [Clairon andBrunel, 2018, Brunel andClairon, 2015], is linked to the limited ability of Xλ θ to approach the true solution. In contrast, for our method the mesh size can be arbitrarily small and thus X d θ,u can be arbitrarily close to the original ODE model.

Inuence of model misspecication We set (n, σ) = (10, 5) and the observations are now generated by using the stochastically perturbed model dX = A θ Xdt + c t .Xdt with c t a random vector of length 5

with independant components c j,t such that c j,t ∼ N (0, σ 2 c ), the product c t .X is componentwise. We still estimate θ * by using model (26), which is now a deterministic approximation of the true process. We plot in Figure 1 the solution of (26) and one realization of its perturbed version for the sake of comparison. This experimental design has been chosen to mimic a real case of data analysis for chemical processes where the deterministic reaction rate equations are used as an approximation of stochastic dierential equations [Gillespie, 2000]. We study the eect of misspecication by varying the value of σ 2 c and results are presented in Monte-Carlo estimate. In comparison to NLS, our estimators limit the drop in estimation accuracy due to misspecication eect. This illustrates the benets of taking into account model discrepancy for estimation in presence of model error.

Inuence of sample size The interest of considering discrete optimal control theory over a continuous framework as in [Clairon andBrunel, 2019, Clairon andBrunel, 2018] is clear in terms of running time and accuracy in small sample case. To illustrate that we plot in gure 2, the evolution of θ T (circle), θ T,CI (square) and θ K , the estimator presented in [START_REF] Clairon | Tracking for parameter and state estimation in possibly misspecied partially observed linear ordinary dierential equations[END_REF] for linear ODEs with unknown x 0 , when the sample size n increases from 10 to 50. For θ T and θ T,CI , k n is selected such that the discretization grid is always made of 500 points. One see clearly the advantage brought in terms of computational time by the discrete approach. Moreover, even though the bias and MSE are getting closer for every methods when n increases, the benets of using θ T , θ T,CI comparing to θ K is clear when n is low. This drop in accuracy for θ K comes from the committed error during the required nonparametric estimation of the 

Repressilator model

We present the Repressilator model proposed in [START_REF] Elowitz | A synthetic oscillatory network of transcriptional regulators[END_REF] for the study of a genetic regulation network. It is made of a feedback loop of 3 couples (mRNA, protein), denoted (r i , p i ) 1≤i≤3 , in which each protein inhibits the next gene transcription in the loop:

   ṙi = v i k n i,[i+1] p n [i+1] +k n i,[i+1] -k g i r i ṗi = k i r i -k p i p i . ( 27 
)
We aim to estimate (50,100,80,50,30,1,1,1,1,2,3) with initial conditions r * 1,0 , r * 2,0 , r * 3,0 = (60, 20, 6) and p * 1,0 , p * 2,0 , p * 3,0 = (18, 27, 1). We consider that only the mRNA concentrations are measured on [0, T ] = [0, 20] and for structural identiability reasons we 40,5,6,7,3) and consider p * 1,0 , p * 2,0 , p * 3,0 are known. We plot in Figure 3 solution of ( 27), for θ = θ * . Here, we choose,

θ * = v * 1 , v * 2 , v * 3 , k * 1,2 , k * 2,3 , k g * 1 , k g 2 , * k g * 3 , k p * 1 , k p * 2 , k p * 3 =
set (k 3,1 , k 1 , k 2 , k 3 , n) = (
A θ (r, p, t) =                -k g 1 0 0 0 0 0 v1k n 1,2 p n 2 +k n 1,2 0 -k g 2 0 0 0 0 v3k n 2,3 p n 3 +k n 2,3 0 0 -k g 3 0 0 0 v1k n 3,1 p n 1 +k n 3,1 k 1 0 0 -k p 1 0 0 0 0 k 2 0 0 -k p 2 0 0 0 0 k 3 0 0 -k p 3 0 0 0 0 0 0 0 0               
where a constant articial state variable Z = 1 has been added. This model has been identied as sloppy in [START_REF] Gutenkunst | Universally sloppy parameter sensitivities in systems biology models[END_REF], the eigendecomposition of

I n (θ * , x * 0 ) for n = 25 indicates the subset of parame- ters θ * 1 = v * 1 , v * 2 , v * 3 , k * 1,2 , k * 2,3 corresponds to the lowest eigenvalues. Henceforth, we separate θ * into θ * 1 and θ * 2 = k g * 1 , k g * 2 , k g * 3 , k p * 1 , k p * 2 , k p * 3
for presenting the estimation results and in particular analyze how the methods behave with θ * 1 . The results presented for the variance (resp. mean square error) for θ 1 and θ 2 denote the sum of the variance (resp. mean square error) of θ 1 and θ 2 components. We take k n = 20 and select λ among {10, 20, 50, 100, 200}. For the unobserved part of X d,0 θ when proling on initial condition, we choose p * 1,0 , p * 2,0 , p * 3,0 on the whole observation interval as initial guess.

Inuence of measurement noise We take n = 25 and consider three levels of measurement noise (σ = 1, σ = 1.5 and σ = 2). Results are presented in Table 3 (left). We were unable to obtain results

for GP because of an important number of algorithmic failures during simulations (almost 80% of the runs) due to practical identiability issues. Indeed, GP requires the introduction of nuisance parameters β needed for obtaining a smooth curve estimator Xλ θ which can lead to overtting with diverging parameter estimates. In a partially observed framework, even for a θ GP value far from θ * , the observed part of the smooth curve Xλ θ GP can remain close to the observations because the parameters β λ can counteract the eects of θ GP . Our method improves the estimation of the subset of sloppy parameters. Moreover, our method globally improves the committed error when all parameters are simultaneously estimated, which is the recommended procedure in sloppy models [START_REF] Gutenkunst | Universally sloppy parameter sensitivities in systems biology models[END_REF].

Inuence of model misspecication We set (n, σ) = (25, 1) and the observations are now generated by a stochastically perturbed version of the original ODE:

     dr i = v i k n i,[i+1] p n [i+1] +k n i,[i+1] -k g i r i dt + c t r i dt dp i = (k i r i -k p i p i ) dt + c t p i dt (28) 
with c t ∼ N (0, σ 2 c ). We plot in Figure 3 the solution of ( 27) and one realization of (28) for the sake of comparison. Results are presented in Table 3 (right), they conrm the advantages of using an estimation method based on a relaxation of the original model in the presence of model error. Inuence of sample size We compare the evolution of θ T , θ T,CI and θ P , the estimator presented in [START_REF] Clairon | Optimal control and additive perturbations help in estimating ill-posed and uncertain dynamical systems[END_REF] for nonlinear ODEs, for a varying sample size n, the results are presented in gure 4. For θ T and θ T,CI , we selected a discretization grid of 300 points. We draw similar conclusions as in the α-Pinene model case.

FitzHugh-Nagumo with a functional parameter

We consider a modied version of the FitzHugh-Nagumo model proposed by [FitzHugh, 1961] to study the membrane potential evolution of neurons:

   V = c V -V 3 3 + R Ṙ = -1 c (V -a(t) + bR) , (29) 
V is the neuron membrane potential, R the synaptic conductance and we assume that only V is observed on

[0, T ] = [0, 20].
Here, the original parameter a * is replaced by the function a * (t) = 0.2 1 + sin( t 5 )

and the other parameters are set to (b * , c * ) = (0.2, 3) and

x * 0 = (V * 0 , R * 0 ) = (-1, 1).
Our aim is to compare the variational approach presented in Section 2.2 with a classic basis decomposition method for the simultaneous estimation of θ * = (b * , c * ) and ϑ * = a * . For our semiparametric estimation method, we need to modify the matrix A e θ in the cost (10) comparing to the expression we derive in section 2.2:

A e θ (V, R, z 1 , z 2 , t) =       c 1 -V 2 /3 cR 0 0 -1 c -b 1 c 0 0 0 0 1 0 0 0 0      
for having z 1 as the estimator of a * and z 2 as its second derivative. This modication is required to absorb the exogenous term 1/c in ODE (29). We take k n = 20 and select (λ 1 , λ 2 ) among {(0.005, 0.005), (0.01, 0.01), (0.05, 0.05)}. For the unobserved variables of X d,0 θ when proling on initial condition, we set their values to one on the whole observation interval. For GP, we put one knot at each observation time. To estimate a * with NLS and GP, we use the nite basis approximation a(t) Kr i=1 β r,Kr p i (t), here {p i } i is a B-Spline basis with a uniform knot sequence. The additional K r parameters (β r,1 , . . . , β r,Kr ) are estimated by introducing the extended set θ ext = (θ, β r,1 , . . . , β r,Kr ) and K r is selected by minimizing the Akaike Information: AIC(

θ ext ) = n log i (y i -CX θ ext , x 0 (t i )) 2 n + 2K r
, where x 0 is the standard initial condition estimator for NLS and x 0 = Xλ θGP λ (0) for GP. For an estimator a, we quantify its accuracy by computing Monte-Carlo estimator of the integrated version of the variance: [START_REF] Clairon | Optimal control and additive perturbations help in estimating ill-posed and uncertain dynamical systems[END_REF], the selection of a basis and knot location for semiparametric estimation is complicated and model-specic. In our case, the extension of the parametric estimation method to the semi parametric framework is straightforward for hyperparameters selection.

V ( a) = T 0 E a 2 (t) -E [ a(t)] 2 dt and mean square error: M f ( a) = T 0 E ( a(t) -a * (t)) 2 dt.
Inuence of model misspecication We set (n, σ) = (50, 0.03) and the observations are now a realization of the hypoelliptic stochastic dierential equation:

   dV t = c V t -V 3 3 + R t dt dR t = -1 c (V t -a(t) + bR t ) dt + σ r dW t (30) 
with W t a Wiener process and σ r a diusion parameter but θ * is still estimated by assuming the deterministic model ( 30) is true. This model has been proposed to include dierent sources of noise acting on R t see [START_REF] Lindner | Analytical approach to the stochastic tzhugh-nagumo system and coherence resonance[END_REF]. Results are presented in Table 5. Once again, our methods give better results than NLS and GP. The dierence is even more striking here, possibly due to the accumulated eect of the dierent source of misspecications on GP and NLS. For our approaches, the cost ( 12) takes into account a model discrepancy term expected to mitigate the eect of misspecication on estimation.

Real data case analysis

We focus on a model discussed by [START_REF] Stein | Ecological modeling from time-series inference: Insight into dynamics and stability of intestinal microbiota[END_REF] to study the impact on a microbiota ecosystem of the interaction between an antibiotic treatment and a pathogen inoculation:

ẋi = µ i x i + x i 11 j=1 M i,j x j + x i s i v(t) (31) 
for i = 1, . . . , 11. Each state variable x i quanties the presence of one microbial species and t → v(t) describes the perturbation due to clindamycin administration. Regarding the parameter set (µ i , M i,j , s i ) 1≤i,j≤11 , µ i is the growth term for x i , M i,j the interaction eect of x j on x i and s i the susceptibility of x i to the antibiotic treatment. The names of the microbial species as well as the values of (µ i , M i,j , s i ) 1≤i,j≤11 are provided by [START_REF] Stein | Ecological modeling from time-series inference: Insight into dynamics and stability of intestinal microbiota[END_REF] (Figure 2). The acquired data are divided in three groups of three subjects.

Group 1 was exposed to the pathogen (here, C. dicile), Group 2 received a single dose of clindamycin and Group 3 received clindamycin and was exposed to C. dicile the day after. We focus on Group 3 for which the perturbation is v(t) = 1 {t=0} . In this group, some microbiotal species have limited impacts on the whole ecosystem evolution, they correspond to x 6 , x 7 , x 8 and x 10 . That is why for parameter estimation we use the following simplied model only composed of the 7 remaining state variables:

ẋs i = µ s i x s i + x s i 7 j=1 M s i,j x s j + x s i s s i v(t) (32) 
where x s i = x i for 1 ≤ i ≤ 5, x s 6 = x 9 and x s 7 = x 11 . The parameters µ s i , M s i,j , s s i are dened and linked to the previous parametrization accordingly. For comparison, we plot in Figure 5 the prediction made for state variables x 1 , x 2 , x 3 , x 4 , x 5 , x 9 and x 11 respectively by the ODE ( 31) and ( 32) for three initial condition values corresponding to subjects in Group 3.

Here, we estimate M i,j for they give the nature of interaction between species. The dierent (µ i , s i )

are known and we estimate the p = 31 parameters: θ = ({M i,1 } i∈{1,3,4,5} , {M i,2 } i∈{2,3,4,5} , {M i,3 } i∈{1,2,3} , {M i,4 } i∈{1,2,4} , {M i,5 } i∈{2,3,4,5} , {M i,9 } i∈{3,5} , {M i,11 } i∈{1,2,3,4,5} , {M 11,i } i∈{1,2,3,5,9,11} ). The other interaction terms are unidentiable in practice when we use only data coming from Group 3.

Before starting our real data analysis we have to specify our assumptions about the measurement noise structure. As explained in [START_REF] Stein | Ecological modeling from time-series inference: Insight into dynamics and stability of intestinal microbiota[END_REF], for the same concentration prol each time point corresponds to a dierent mouse but which are all biological replicates, uniformly treated but separately housed. Hence, we assume independance of measurement noise between observations over time. Still, we have to take into account the dierence in magnitude over time which exists for a same concentration prole as exemplied in gure 5. For this, we rely on a log-transform of the observation to have the measurement noise increasing with state amplitude. For estimation, our method then uses the ODE:

ẋs i = µ s i + 7 j=1 M s i,j e xs j + s s i v(t) (33) 
followed by xs i = log(x s i ), the log-transform of the original state-variables. Still, there is the possibility that the noise have dierent order of magnitude specic to each xs i . To legimitate the use of our method in this context, we perform in the next subsection simulation analysis to compare it with NLS and GP in presence of such noise structure.

Preliminary results on simulated data

Estimation is based on the observation of three subjects with initial conditions x * 1,0 , x * 2,0 and x * 3,0 . Here, θ T have 52 components so to save computational time, we restrict our approach to θ T,CI . We split θ into two subgroups θ 1 and θ 2 according to the diculty encountered by NLS to estimate them. To identify θ 1 , the set of parameters poorly estimated by NLS, we rely once again on the eigendecomposition of

V * D * (V * ) -1 = I n θ * , x * 1,0 , x * 2,0 , x *
3,0 for n = 25 where D * = diag(µ 1 , . . . , µ 52 ) is the matrix composed of the eigenvalues µ i sorted in increasing order and each column V * .,i of V * is the eigenvector related to µ i . The associated condition number is κ(I n ) 8 × 10 -10 which indicates an ill-posed problem for NLS. Moreover, we have µ 25 µ 52 = 2 × 10 -6 , thus the rst 25 eigenvectors correspond to directions of weak change for the NLS criteria. For each parameter θ j in θ, we compute

F (θ j ) = 25 i=1 (V * j,i ) 2 52 i=1 (V * j,i )
2 to quantify the impact of θ j on NLS criteria. By doing so we identify 12 parameters such that F (θ j ) > 0.63 which will compose θ 1 . The choice of threshold for the eigenvalue rank and F (θ j ) value is somewhat arbitrary, but we will see in simulations the error for θ N LS comes mainly from estimation of θ 1 . The results presented for the variance (resp. mean square error) for θ 1 and θ 2 will denote the sum of the variance (resp. mean square error) of θ 1 and θ 2 components. We also compare the ability of the estimators to nd the orientation of the interaction graph, we estimate I

( θ) = 1 p E θ * p i=1 1 {sign( θ i )=sign(θ * i )}
, the expected fraction of correctly retrieved interaction. We select k n = 20 and λ among {1, 2, 5}. Inuence of model misspecication We choose n and σ as before but the observations are now generated by using the log-transform of the model (31). We are interested in quantifying robustness of the dierent estimators with respect to misspecication due to neglected interactions, a common feature in the study of biological networks. In particular, we want to measure the ability of our estimator to retrieve the true interactions between two state variables despite the presence of unmeasured coufounders. Results are presented in Table 7. The situation is quite similar to the well-specied case but with the additional feature that the capacity of θ N LS to retrieve the true interaction graph is more aected by model misspecication than θ T,CI . 

Real data analysis

In this section, we estimate θ in model ( 32) starting from the data available in [START_REF] Stein | Ecological modeling from time-series inference: Insight into dynamics and stability of intestinal microbiota[END_REF] for the Group 3 presented in Figure 6. The original observation interval was [0, 23] but here we restrict to [0,16] since no data are available on ]16, 23[ and a rst estimation attempt with [0,23] leads to poor data tting of the optimal trajectories X d θ . We selected k n = 40 for it corresponds to a mesh size small enough to accurately estimate the ODE perturbed model without being too computationally intensive. We choose λ = 1, for it is small enough to account for model error presence and leads to accurate estimation comparing to NLS when some interactions are neglected according to the previous section results.

Despite the use of a simplied model and the presence of outliers which render dicult a good data tting of X d θ T,CI (see Figure 6), we obtained a graph orientation close to the one obtained in [START_REF] Stein | Ecological modeling from time-series inference: Insight into dynamics and stability of intestinal microbiota[END_REF]] with only 7 out of the 31 estimated interaction parameters having a dierent sign (see Table 8). This conrms the benet of using the approximated methods for real data analysis, where model uncertainty presence is the rule rather than the exception.

Our methodology copes with model misspecication by limiting its eect on estimation. However, our approach may also be useful for checking misspecication presence by analyzing the optimal control u d θ T,CI values, which can be seen as residuals quantifying the discrepancy between the model and the actual system dynamic. We present in Figure 7 for each subject the rst three components of u d θ T,CI . One can see there are shared patterns, for example in the rst graph around t = 10 days, where the optimal controls present the same behavior for all subjects. Such features indicate that some deterministic elements of the actual system dynamic have been missed by the assumed model.

Conclusion

This work develops a method based on discrete optimal control theory to regularize the problem of parameter estimation in ODEs comparing to the use of classic methods such as NLS. This regularization method is more computationally ecient and suers from a lesser performance drop than the one presented in [Clairon andBrunel, 2019, Clairon andBrunel, 2018] in sparse sample cases. We also expose how we can easily prole on the initial conditions to avoid the estimation of additional nuisance parameters. The experimental and real data analyses conrm the good performance of our method in comparison with NLS and GP for small sample case, where the asymptotic analysis results do not hold.

An under-exploited feature of the method so far is the obtained optimal control. Here, we only use it for a qualitative based analysis in the real data case, but we suspect that a full analysis of u d θ T,CI maybe be useful to construct a statistical test of misspecication at the derivative level, which is more relevant for such models than the test based on residuals [START_REF] Hooker | Goodness of t in nonlinear dynamics: Mis-specied rates or mis-specied states? Technical report[END_REF]. This is a subject for further work. A second point worth exploring in the future is the extension to mixed eect model in which several subjects are observed and despite that they present dierent trajectories it is assumed their dynamics are ruled by the same evolution law. It means each subject i follows the equation Ẋ = f (t, X, θ i ) where f is common to the whole population but θ i is an individual parameter dened as the realization of a random variable following a law p depending on a population parameter θ i.e. θ i ∼ p(θ). For these models, dedicated methods are necessary to incorporate inter-patient correlation in the estimation process [START_REF] Raftery | Estimating and projecting trends in hiv/aids generalized epidemics using incremental mixture importance sampling[END_REF], Donnet and Samson, 2006, M. Lavielle and Mentre., 2011, M.Prague et al., 2013, Wang et al., 2014]. For our method, it would be interesting to consider mixed-eect on the estimated optimal controls u d i to take into account correlations on the committed model error among the individuals.

  the purpose of asymptotic analysis of θ T U , x 0,U T and θ T,CI U . The proofs are given in supplementary materials. 4.1 Asymptotic analysis of θ T U , x 0,U T in parametric case 4.1.1 Required conditions

  √ n-convergence rate in two steps. First, we derive a linear asymptotic representation of θ T U , x 0,U T -(θ * , x * 0 ) through a second order Taylor expansion of (θ, x 0 ) -→ S l

Figure 1 :

 1 Figure 1: Left: Solution of (26) (blue) and noisy observations for σ = 5 (circle). Right: Solution of (26) (blue) and a realization of dX = A θ Xdt + c t .Xdt (red) for σ 2 c = 0.004.

Figure 2 :

 2 Figure 2: Average running time, bias and MSE for θ T (circle), θ T,CI (square) and θ K (diamond).

Figure 3 :

 3 Figure 3: Left: Solution of (27) with proteins in green, mRNAs in blue and noisy observations for σ = 1 (circle). Right: Solution of (27) (blue) and a realization of (28) (red) for σ 2 c = 0.5.

Figure 4 :

 4 Figure 4: Average running time, bias and MSE for θ T (circle), θ T,CI (square) and θ P (diamond).

Figure 5 :

 5 Figure 5: Solutions of (31) (blue) and (32) (red) for dierent initial conditions.

Figure 6 :

 6 Figure 6: Log transformed observations and reconstructed X d θ T,CI for subject 1, 2, 3 in group 3 .

Figure 7 :

 7 Figure 7: 1st, 2nd and 3rd component of u d θ T,CI for subject 1 (blue), 2 (red), 3 (black) in group 3.

  25) dened on the interval [t h , t h+1 ]. The forward cross-validation uses the causal relation imposed to the data by the ODE to quantify the prediction error for the estimator θT,CI

U

(or equivalently θT U ):

Table 2 ,

 2 here setting N M C = 200 for every σ 2 c values was enough to obtain accurate

Table 1 :

 1 MSE and Variance (in parenthesis) for α-Pinene model (26) and n = 10.

	σ	×10 -2	θ1	θ2	θ3	θ4	θ5	θ
		θ T,CI	0.3 (0.2) 0.5 (0.4)	3.7 (0.5)	1.9 (1.2)	4.1 (2.4)	9.6 (3.8)
	5	θ T θ N LS	0.3 (0.2) 0.5 (0.4) 0.3 (0.2) 0.5 (0.5)	3.8 (3.7) 3.9 (3.6)	2.0 (1.4) 2.1 (1.6)	5.1 (3.0) 5.9 (3.5)	11.0 (4.6) 11.9 (5.3)
		θ GP	0.3 (0.2) 0.9 (0.8)	6.2 (4.0)	10.6 (10.5) 21.5 (18.7) 34.1 (28.9)
		θ T,CI	0.9 (0.8) 1.5 (1.4)	4.7 (1.6)	6.3 (6.3)	20.2 (13.5) 30.4 (20.4)
	10	θ T θ N LS	0.8 (0.7) 1.5 (1.4) 0.8 (0.7) 1.7 (1.6)	4.5 (1.1) 4.4 (1.1)	8.9 (8.6) 10.2 (10.0) 30.8 (21.1) 49.5 (31.6) 26.6 (18.2) 39.4 (27.3)
		θ GP	0.6 (0.5) 3.8 (3.5)	8.4 (5.2)	15.9 (15.7) 29.4 (27.7) 48.3 (43.1)
		θ T,CI	2.1 (1.8) 2.9 (2.8)	6.6 (3.3)	10.1 (9.0)	24.3 (20.1) 39.0 (31.5)
	15	θ T θ N LS	1.8 (1.7) 3.2 (3.2) 1.8 (1.7) 3.8 (3.8)	6.3 (2.7) 6.4 (2.6)	12.1 (12.0) 31.0 (26.2) 47.8 (38.9) 14.9 (14.9) 38.9 (32.8) 58.7 (48.6)
		θ GP	1.4 (1.3) 3.9 (3.3) 14.5 (10.1) 28.1 (27.7) 62.1 (53.4) 94.4 (80.6)

Table 2 :

 2 MSE and Variance (in parenthesis) for misspecied α-Pinene model and (n, σ) = (10, 5).

	σ 2 c	×10 -2	θ1	θ2	θ3	θ4	θ5	θ
		θ T,CI	0.3 (0.2)	0.7 (0.4)	7.3 (0.5)	2.6 (0.9)	2.0 (1.8)	12.2 (3.1)
	0.004	θ T θ N LS	0.3 (0.2) 0.2 (0.2)	0.7 (0.4) 0.7 (0.4)	0.7 (0.4) 7.5 (0.4)	2.9 (0.1) 3.1 (1.1)	2.1 (2.0) 2.3 (2.2)	12.7 (3.3) 13.2 (3.6)
		θ GP	0.2 (0.2)	1.8 (1.3)	8.1 (3.6)	10.1 (9.9)	17.1 (15.8) 31.9 (25.6)
		θ T,CI	0.8 (0.2)	0.6 (0.4)	0.7 (0.5)	1.4 (1.3)	9.4 (1.5)	13.2 (4.1)
	0.006	θ T θ N LS	0.6 (0.2) 0.5 (0.2)	1.2 (0.3) 1.9 (0.3)	0.7 (0.3) 0.9 (0.3)	2.0 (1.9) 2.5 (2.2)	12.5 (3.7) 14.2 (4.4)	16.4 (5.7) 19.0 (6.7)
		θ GP	0.5 (0.3)	1.9 (1.2)	4.5 (3.9)	20.1 (19.6) 45.6 (37.6) 67.0 (56.7)
		θ T,CI	0.9 (0.2)	0.7 (0.4)	16.3 (0.3)	6.2 (0.8)	3.4 (1.5)	27.0 (2.4)
	0.008	θ T θ N LS	1.1 (0.2) 1.1 (0.2)	0.4 (0.3) 0.4 (0.3)	17.8 (0.2) 18.1 (0.2)	9.4 (0.9) 11.3 (0.9)	6.7 (1.7) 8.9 (1.7)	34.9 (2.7) 39.0 (2.7)
		θ GP	0.9 (0.4) 1.5 (1.09) 19.2 (4.7) 50.8 (48.6) 98.0 (86.2)	164 (135)
	curve.							

Table 3 :

 3 MSE and Variance (in parenthesis) for Repressilator model (27). Left: Well-specied model for n = 25. Right: Misspecied case for (n, σ) = (25, 1) .

	σ	×10 -2	θ1	θ2	θ	σ 2 c	×10 -2	θ1	θ2	θ
		θ T,CI	1.22 (0.98) 0.75 (0.68) 1.17 (0.90)		θ T,CI	3.33 (2.94)	2.10 (2.02)	2.96 (2.48)
	1	θ T	0.90 (0.70) 0.60 (0.51) 0.92 (0.65)	0.5	θ T	2.22 (1.98)	1.70 (1.60)	2.36 (2.01)
		θ N LS	1.61 (1.60) 1.15 (1.14) 1.61 (1.59)		θ N LS	7.62 (7.52)	5.78 (5.57)	9.04 (8.78)
		θ T,CI	1.98 (1.73) 1.29 (1.23) 1.89 (1.63)		θ T,CI	2.33 (2.89)	2.16 (2.00)	3.20 (2.60)
	1.5	θ T	1.41 (1.26) 1.01 (0.91) 1.36 (1.09)	1	θ T	2.50 (2.26)	1.87 (1.73)	2.30 (1.91)
		θ N LS	4.66 (4.59) 2.86 (2.84) 4.78 (4.70)		θ N LS	8.20 (8.18)	6.51 (6.35)	10.03 (9.85)
		θ T,CI	3.19 (2.77) 2.42 (2.29) 3.15 (2.59)		θ T,CI	4.87 (4.68)	3.33 (3.29)	4.35 (4.12)
	2	θ T	2.62 (2.28) 1.92 (1.77) 2.74 (2.26)	1.5	θ T	3.11 (2.87)	2.12 (1.99)	2.78 (2.41)
		θ N LS	6.11 (6.05) 4.39 (4.34) 5.97 (5.87)		θ N LS	19.21 (18.53) 25.1 (22.2) 30.88 (27.31)

Table 4 :

 4 Results for FHN model (29) and n = 50.Inuence of measurement noise We set n = 50 and consider two levels of measurement noise (σ = 0.03 and σ = 0.05). Results are presented in Table4. Depending on the noise level, our estimators give better or equivalent estimation than NLS for θ but always outperform NLS for functional estimation. The nite basis decomposition used to replace a leads to use an approximated version of the original model for the estimation. This induced misspecication can explain the drop in accuracy for the NLS and GP estimators. Moreover, as pointed out in

	σ	×10 -2	b	c	θ	a
		θ T,CI	3.88 (2.74) 0.08 (0.08) 3.90 (2.76) 4.11 (3.93)
	0.03	θ T θ N LS	3.92 (2.76) 0.09 (0.08) 3.94 (2.77) 4.08 (3.91) 5.68 (5.25) 0.05 (0.04) 5.70 (5.53) 5.31 (4.98)
		θ GP	3.17 (2.84) 0.20 (0.01) 3.36 (2.84) 6.86 (2.41)
		θ T,CI	8.10 (6.87) 0.15 (0.12) 8.14 (6.88) 9.97 (9.21)
	0.05	θ T θ N LS	8.11 (6.96) 0.12 (0.10) 8.20 (6.98) 9.91 (9.16) 8.84 (7.98) 0.06 (0.05) 8.49 (7.89) 21.5 (16.1)
		θ GP	13.9 (13.9) 0.17 (0.04) 14.0 (13.6) 18.6 (16.7)

Table 5 :

 5 MSE and Variance (in parenthesis) for misspecied FHN model (30) and (n, σ) = (50, 0.03).

	σ 2 r	×10 -2	b	c	θ	a
		θ T,CI	4.32 (3.76) 0.11 (0.10) 4.33 (3.78)	5.04 (4.91)
	0.1	θ T θ N LS	4.34 (3.67) 0.11 (0.10) 4.37 (3.68) 7.43 (6.77) 0.09 (0.08) 7.49 (6.81) 10.22 (7.76) 5.64 (5.55)
		θ GP	65.8 (65.4) 0.14 (0.11) 65.8 (65.4)	43.9 (42.8)
		θ T,CI	4.74 (3.60) 0.11 (0.10) 4.68 (3.62)	4.95 (4.82)
	0.15	θ T θ N LS	4.54 (3.52) 0.11 (0.10) 4.55 (3.54) 7.75 (7.60) 0.14 (0.13) 7.81 (7.64) 10.34 (9.32) 6.99 (4.78)
		θ GP	73.7 (73.7) 0.25 (0.15) 73.8 (73.7)	61.3 (58.7)

Table 6 :

 6 MSE and Variance (in parenthesis) for Microbiota model (32) and n = 25.Inuence of measurement noiseWe consider one sample size n = 25. To make the level of noise state variable specic, each xs i is corrupted by a measurement noise of standard deviation σ , three levels for σ are tested (σ = 0.03, σ = 0.06 and σ = 0.09). Results are presented in Table6. For θ 1 and θ 2 , both regularization methods outperform NLS. Still, we obtain more accurate estimation than GP.

	σ		θ1	θ2	θ	I( θ1) I( θ2) I( θ)
		θ T,CI 0.14 (0.10) 0.04 (0.03) 0.10 (0.06)	1	1	1
	0.01	θ N LS 3.29 (2.23) 1.28 (1.23) 2.05 (1.94)	0.97	1	0.99
		θ GP	0.15 (0.11) 0.20 (0.19) 0.18 (0.14)	1	1	1
		θ T,CI 0.71 (0.62) 0.15 (0.15) 0.46 (0.36)	0.99	1	1
	0.02	θ N LS 7.54 (7.39) 2.19 (2.15) 4.97 (4.75)	0.94	0.99	0.97
		θ GP	1.40 (0.97) 0.80 (0.78) 1.22 (1.07)	1	0.98	1
		θ T,CI 5.66 (1.98) 1.81 (1.41) 4.54 (1.43)	0.93	0.99	0.97
	0.03	θ N LS 9.15 (8.66) 2.61 (2.46) 8.22 (4.40)	0.92	0.99	0.96
		θ GP	7.67 (3.47) 2.50 (1.80) 6.21 (3.31)	0.93	0.98	0.95
						n × n j=0	xs i (t j )

Table 7 :

 7 MSE and Variance (in parenthesis) for misspecied Microbiota model for n = 25.

	σ		θ1	θ2	θ	I( θ1) I( θ2) I( θ)
		θ T,CI	5.84 (1.76)	1.15 (0.63)	5.67 (1.06)	0.88	0.99	0.96
	0.01	θ N LS 11.95 (1.69) 3.19 (0.59) 14.01 (1.18)	0.87	0.98	0.94
		θ GP	7.05 (2.69)	2.60 (0.32) 10.01 (1.02)	0.89	0.98	0.97
		θ T,CI	7.79 (4.15)	1.55 (1.59)	7.77 (3.44)	0.87	0.98	0.96
	0.02	θ N LS 13.23 (3.24) 3.88 (1.11) 14.99 (2.17)	0.81	0.94	0.89
		θ GP	12.21 (3.04) 3.02 (1.31) 11.23 (2.37)	0.83	0.94	0.91
		θ T,CI	9.73 (5.03)	2.21 (0.97)	8.69 (3.41)	0.87	0.98	0.94
	0.03	θ N LS 20.00 (9.50) 5.75 (3.04) 20.35 (6.76)	0.81	0.94	0.89
		θ GP	14.10 (8.60) 4.05 (2.78) 13.34 (5.53)	0.83	0.94	0.92

Table 8 :

 8 Scaled values for[START_REF] Stein | Ecological modeling from time-series inference: Insight into dynamics and stability of intestinal microbiota[END_REF] estimator θ Stein and θ T,CI

	θ Stein	-0.2	0.14	0.22 -0.18 -0.10 -0.19	0.14	-0.05 0.17 -0.04 -0.10 -0.16 -0.15 -0.83 -0.18 -0.16
	θ T,CI	-3.29	1.77	0.29	1.79	-0.43	0.41	0.54	0.45	0.02 -0.15 -0.51 -1.16 -0.04	0.47	-1.52	0.92
	θ Stein -0.22 -0.71 0.30	0.16	-0.27 -0.20 -0.21 -0.40 0.11 -0.37	0.28	0.25	0.08	0.32	-0.38
	θ T,CI	-0.17 -0.57 1.56	0.85	-1.72	1.21	-0.78 -1.34 0.80 -0.34	1.02	-0.60	0.45	0.13	-0.64
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