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Abstract

This paper addresses the problem of wood wastes recycling automation. We pro-
pose variable selection methods based on near infrared spectroscopic data to se-
lect a set of wavebands that captures the main spectral peaks of wood materials
to improve the sorting performances. The spectra are first jointly modeled as lin-
ear combinations of explanatory variables drawn from a collection of Gaussian-
shaped functions. The aim is to select a common subset of wavebands shared
by several spectra. The variable selection is then formulated as an unconstrained
simultaneous sparse approximation problem in which the coefficients related to
different spectra are encouraged to be piecewise constant, i.e. the coefficients
associated to successive spectra should have comparable magnitudes. We also in-
vestigate the case where the coefficients are constrained to be nonnegative. These
problems are solved using the fast iterative shrinkage-thresholding algorithm. The
proposed approaches are illustrated on a dataset of 290 spectra of wood wastes;
each spectrum is composed of 1647 wavelengths. We show that the selected
variables lead to better classification performances as compared to standard ap-
proaches.
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spectroscopy; Classification

1. Introduction

Near infrared (NIR) spectroscopy is a vibrational spectroscopy which provides
information about the molecular composition and interactions within the studied
material sample [1, 2]. As the sample spectrum is a kind of signature characteriz-
ing the material, NIR spectroscopy is used in a wide range of applications, includ-
ing material identification, characterization and non destructive evaluation [3, 4].
In this work the targeted application is material (wood wastes) sorting, which is
envisaged as a supervised binary classification problem. The main issue in this
type of application is that existing optical recycling systems can only operate us-
ing a few spectral bands to ensure a good trade-off between sorting quality and
processing time which includes acquisition and classification times. To face the
curse of dimensionality and avoid overfitting problems, feature selection has been
recognized as a key step, especially when the variables are highly correlated. The
problem is to find a small subset of variables describing the main characteristics
of the different classes. Popular features selection approaches include random
forest [5], Bayesian variable selection (see [6] and references therein), best subset
selection [7, 8], forward and backward stepwise regression [9, 10], forward stage-
wise regression and sparse linear regression known as the Lasso (Least absolute
shrinkage and selection operator) [11, 12].

Sparse representations have been widely studied over the last decade, and ap-
plied to different problems such as data compression [13, 14], pattern recogni-
tion [15], classification and clustering [16, 17], and hyperspectral image unmix-
ing and classification [18, 19, 20]. It is based on the assumption that the essential
characteristics of the data can be approximated by a linear combination of a few
atoms drawn from an overcomplete dictionary of features. Feature selection may
also be viewed as dimensionality reduction problem that can be tackled using a
sparse approximation. The idea is simply to select the set of atoms corresponding
to nonzero coefficients resulting from the approximation. Yuan and Lin [21] intro-
duced a group sparsity criterion allowing the selection of grouped variables. An
important instance of group sparsity is the simultaneous sparsity in which we seek
to approximate several input signals at once using different linear combinations of
the same elementary signals [22]. As it involves a counting “norm”, achieving
the exact simultaneous sparse decomposition is an NP-hard problem for which
the greedy methods provide a good compromise between reconstruction accu-
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racy and computational cost [22, 23, 24]. Convex relaxations of the simultaneous
sparse approximation was also proposed by Tropp in [25].

As mentioned before, the critical point in industrial wood sorting is the selec-
tion of spectral bands (their number and their positions) to be used to guarantee a
good classification rate together with a sufficient throughput (in the order of tons
per hour). Nowadays, to achieve fast sorting, the number of spectral bands used
in industrial NIR sorting systems is around 16. This number is sufficient for most
of plastic materials but not for wood wastes. By exploiting the power of current
processors, it is possible to increase this number to 30 or even 40. In any case,
performing variable selection for wood waste sorting is of major importance. In
this paper, we propose a simultaneous variable selection strategy for NIR spectra
based on sparse decomposition. Given a set of training spectra, the core idea in
this work consists in finding a small subset of wavebands/variables that captures
the main spectral components shared by several measurements. The wavebands
are picked from a dictionary containing Gaussian features of various centers and
widths. The regression coefficients associated to the selected variables may then
be used to perform classification of candidate spectra. Some similar approaches
have been already proposed in the literature. For example, Turlach et al. [26]
presented a simultaneous variable selection algorithm and applied it to NIR spec-
tra. In contrast, the sparse decomposition problem considered in this work incor-
porates a regularization term enforcing the rows of the coefficient matrix to be
piecewise constant. The intuition behind the proposed approach is quite simple.
Consider the situation where the samples can be divided into classes which in turn
include different subclasses. Rather than randomly gathering the samples into the
data matrix, we propose to order them according of their subclass labels. Figure 1
illustrates this ordering for a two class problem with 11 subclasses. Consecutive
samples belong to the same subclass and are expected to share common features.
This will be captured by enforcing piecewise constant coefficients and group spar-
sity. Malli and Natschläger [12] also proposed a waveband selection algorithm
for spectroscopy based on fused Lasso [27]. The fused penalty encourages the
selection of connected wavelengths resulting in the so-called “wavebands”. On
the contrary, the method presented here consists in modeling the spectra with
Gaussian-shaped functions. By doing so, not only the algorithm is structurally
able to select wavebands rather than individual wavelengths but it also allows to
reduce the number of spectral features. These properties are particularly suitable
for high speed industrial classification because the computational cost of the re-
gression coefficients, associated to a small number of variables, is pretty low.

The paper is organized as follows. In Section 2, we present the regularized si-
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Y =

Class 0 Class 1

0.1 0.7 1.1 1.4

Figure 1: Illustration of spectra ordering in data matrix Y. The spectra are ordered according to
their class and subclass labels.

multaneous sparse approximation problem involving the mixed L2,0 pseudo-norm.
The details of the convex relaxation approaches are described in Section 3. Specif-
ically, we first propose the L1,1 relaxation and then the L2,1 surrogate of the L2,0

norm. Both relaxations lead to algorithms that enjoy a decomposition property al-
lowing one to compute an efficient solution even for large scale problems. We also
propose a nonnegative version of these algorithms. An application to wood wastes
sorting based on NIR measurements is provided in Section 4. Finally, conclusions
and drawn in Section 5.

Notation. Scalars are denoted by regular letters (N, s, λ), column vectors by
lower-case bold-face letters (x,φ), and matrices as bold-face capitals (X,Φ). xi is
i-th column of X and xi denotes the transpose of the i-th row. Notation (·)> stands
for matrix or vector transposition. ||A||p,q = (

∑
i ||xi||

q
p)1/q is the mixed Lp,q-norm

and ||A||F is the Frobenius (or L2,2) norm of matrix A. The symbols “⊗”, “∗”,
and “◦” denote the Kronecker product, the Hadamard (entrywise) product, and
the composition operator, respectively.

2. Problem formulation

Suppose that K response variables (spectra) are collected and stacked in the
columns of a data matrix Y ∈ RM×K where M is the number of observations in
each spectrum. The matrix Y is assumed to be ordered as illustrated in fig. 1. We
seek to decompose the matrix Y such that:

Y ≈ ΦX, (1)

where X ∈ RN×K is a sparse coefficient matrix meaning that only a small subset of
its rows is nonzero. The columns of the redundant dictionary Φ = [φ1, . . . ,φN] ∈
RM×N represents the explanatory variables (also called atoms). This dictionary is
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designed to concentrate the energy of the signals in Y over a set of a few atoms.
Its choice depends essentially on the application at hand. As in NIR spectra, the
observed peaks are typically very broad, we assume in the present work that the
φn’s are Gaussiand-shaped functions whose locations (central wavelengths) and
widths cover all the NIR range. In other words, each atom models a relevant
spectral band in the available data.

The simultaneous sparse approximation [28, 29] consists in finding a solution
X having a limited number of active rows. The problem can be formulated as

minimize
X

1
2 ||Y −ΦX||2F , (2a)

subject to ||X>||2,0 ≤ s, (2b)

where ||X>||2,0 is the mixed L2,0 pseudo-norm of X> (i.e. the number of rows with
nonzero `2-norm) and s � N is the sparsity parameter which is related to the
support of X: supp(X) = {1 ≤ n ≤ N | xn , 0}. The rationale behind simultaneous
reconstruction for variable selection is to find predictors for all input signals in Y
from a common subset of active variables [26] which are indexed by the support
of the solution X.

The regularized simultaneous sparse approximation aims at reconstruct-
ing piecewise constant rows. In that respect, as in the study by Malli and
Natschläger [12], we propose to include a regularization term leading to the fol-
lowing problem

minimize
X

1
2 ||Y −ΦX||2F + λ2||DX>||1,1, (3a)

subject to ||X>||2,0 ≤ s, (3b)

where D ∈ R(K−1)×K is a matrix of finite differences of order 1:

D =


−1 1 0

0
. . .

. . .

−1 1

 . (4)

Criterion (3) includes an additional total variation-like penalty enforcing sparsity
on the difference between successive columns of X: ||DX>||1,1 =

∑K−1
i=1 ||xi+1−xi||1.

This, in fact, promotes the reconstruction of piecewise constant rows. Again, it
is important to note that this penalty makes sense only if the signals in Y have a
meaningful ordering. This is for example the case when the signals are ordered
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according to their subclass labels in the training phase. In hyperspectral image
classification, the signals are naturally ordered according to their spatial position.
Due to the `1 penalty, consecutive columns of X tend to be similar which helps to
decrease intraclass variance. Following the terminology of the fused Lasso, this
term will be referred to as the fusion penalty. The formulation in (3) involving the
mixed L2,0 norm will lead to an NP-hard problem, thus making the resolution not
easy. In the next section, we propose a convex relaxation of the L2,0 norm and the
resulting problem is solved using fast and effective algorithms.

3. Convex relaxations

3.1. Fused Sparse Lasso
The first relaxation of the constrained problem (3) consists in minimizing the

following penalized criterion:

JFS L(X) = 1
2 ||Y −ΦX||2F + λ1||X>||1,1 + λ2||DX>||1,1 (5)

where ||X>||1,1 =
∑K

i=1 ||xi||1 =
∑N

n=1 ||xn||1. The parameters λ1, λ2 ≥ 0 are con-
trolling the tradeoff between data fitting, sparsity ||X>||1,1, and fusion penalty
||DX>||1,1. This criterion is in fact an extension to the multiple measurement vec-
tor setting of the sparse fused Lasso which was studied Tibshirani, Saunders et
al. [27]. Friedman et al. [30] proposed to solve the generalized sparse fused Lasso
problem (including both sparsity and fusion terms) in the special case where the
dictionaryΦ is an identity matrix. This work was then extended by Xin et al. [31]
to general dictionary. Here, we propose to solve this problem in the special case
where the fusion term only acts on the rows of X. According to this specific
structure it is possible to obtain a computationally efficient implementation of the
minimization problem. However, before going further, let us give a few comments
on criterion (5). In fact, the sparsity term ||X>||1,1 does not correspond to a proper
convex relaxation of ||X>||2,0. As will be explained in section 3.2, the mixed norm
||X>||2,1 is more appropriate. But combining ||X>||1,1 to ||DX>||1,1 yields to a kind
of simultaneous sparse approximation: the simultaneity is actually enforced by
the row regularization term ||DX>||1,1, but there is no direct control on the number
of active rows.

Let vec(·) be the vectorization operator that converts a matrix into a vector by
stacking the columns of the matrix on top of one another. We set x = vec(X>) and
y = vec(Y>). Then, criterion (5) can be rewritten as:

JFS L(x) = 1
2 ||y − Ax||22 + λ1||x||1 + λ2||Fx||1 (6)
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with A = Φ⊗ IK ∈ RNK×MK , F = IN ⊗ D ∈ RN(K−1)×NK , and IN denotes the N × N
identity matrix. Note that (6) is also a generalization to the multiple measurement
vector setting of the fused Lasso criterion already proposed for variable selection
in spectroscopy by Malli and Natschläger [12]. To minimize (6), we use FISTA
(Fast Iterative Shrinkage-Thresholding Algorithm) [32] designed to solve convex
optimization problems including both smooth and non-smooth terms. First, let

f (x) = 1
2 ||y − Ax||22, (7)

g(x) = λ1||x||1 + λ2||Fx||1. (8)

Then, following Xin et al. [31], the update of vector x at iteration k + 1 is:

x(k+1) = arg min
x∈RNK

(
g(x) + L

2 ||x − v(k)||
2
2

)
(9)

where
v(k) = x(k) −

1
L∇ f (x(k)) (10)

and ∇ f (x) = A>(Ax − y) is the gradient of f (x). L is the Lipschitz constant of
∇ f (x). Note that the update of v(k) according to (10) involves the calculation and
storage of A>A and A>y. Instead, to save on computational costs, we can update
the matrix V(k) according to:

V(k) = X(k) −
1
LΦ

>(ΦX(k) − Y), (11)

where V(k) is the matrix satisfying v(k) = vec(V>(k)). As a consequence, only lower
dimension matrices, Φ>Φ and Φ>Y, need to be computed and stored. Solving
(9) is similar to the 1D fused Lasso signal approximator (FLSA) [33]. Moreover,
due to the block diagonal structure of F, it is obvious that ||Fx||1 =

∑N
n=1 ||Dxn||1.

Therefore, problem (9) can be solved separately for each row xn of X:

xn
(k+1) = arg min

x∈RK

1
2 ||x − vn

(k)||
2
2 + λ1

L ||x||1 + λ2
L ||Dx||1. (12)

The solution to (12) is obtained by using subgradient technique. Indeed, any
solution corresponding to (λ1, λ2) is obtained by a soft thresholding of the solution
obtained for (λ1 = 0, λ2). This is stated by the following theorem.

Theorem 1 (Friedman et al. [30], Liu et al. [34]). Let

x(λ1, λ2) = arg min
x

1
2 ||x − v||22 + λ1||x||1 + λ2||Dx||1. (13)
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Algorithm 1: Fused Sparse Lasso (FSL)
Input : Y ∈ CM×K , Φ ∈ CM×N , λ1, λ2, maxiter

1 Initialization: X(0) = 0, Z(1) = 0, t(1) = 1;
2 for k ← 1 to maxiter do
3 V(k) ← Z(k) −

1
LΦ

>(ΦZ(k) − Y);
4 for n← 1 to N do
5 xn

(k) ← arg min
x

1
2 ||x − vi

(k)||
2
2 + λ1

L ||x||1 + λ2
L ||Dx||1;

6 end

7 t(k+1) ←
1+
√

1+4t2(k)

2 ;
8 Z(k+1) ← X(k) +

t(k)−1
t(k+1)

(X(k) − X(k−1));
9 end

Output: X ∈ RN×K

For all λ1, λ2 ≥ 0, we have:

x(λ1, λ2) = sign(x(0, λ2)) ∗max(|x(0, λ2)| − λ1, 0). (14)

where ∗ denotes the element-wise product operator. �

In this paper, each problem in (12) is solved using the FLSA routine implemented
in SLEP package1. Finally, the main steps of the Fused Sparse Lasso (FSL) al-
gorithm are presented in Algorithm 1, where Z is a linear combination of two
consecutive estimates of X; it is updated at each FISTA iteration.

3.2. Fused Sparse Group Lasso
The fused sparse Lasso is not a proper relaxation of the problem in (3). In-

deed, the term ||X>||1,1 does not allow to control the number of active rows. Here,
we propose to relax the L2,0 pseudo-norm into the L2,1 mixed norm defined by:
||X>||2,1 =

∑N
n=1 ||xn||2, which is a particular instance of the group Lasso penalty.

So we propose the following criterion:

JFS GL(x) = 1
2 ||y − Ax||22 + λ1||x||1 + λ2||Fx||1 + λ3

N∑
n=1

||xn||2, (15)

1http://yelab.net/software/SLEP/
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as a convex relaxation of problem (3). Note that the ||x||1 penalty is maintained
to eventually control the global sparsity of the solution. The proximal operator
associated with the composite of non-smooth penalties in the fused sparse group
Lasso (FSGL) is defined as:

proxFS GL(v) = arg min
x

1
2 ||x − v||22

+ λ1
L ||x||1 + λ2

L ||Fx||1 + λ3
L

N∑
n=1

||xn||2. (16)

Here again, it is clear that each row of X is decoupled in (16). So we only need to
solve the following optimization problem for each row n = 1, . . . ,N:

proxFS GL(vn) = arg min
xn

1
2 ||x

n − vn||22

+ λ1
L ||x

n||1 + λ2
L ||Dxn||1 + λ3

L ||x
n||2. (17)

Now, with the three non-smooth terms in the objective function, the proximal
operator may be computed as suggested in [35]. In fact, the proximal operator
in (17) has a decomposition property that allows to compute it in two steps based
on the following theorem.

Theorem 2 (Zhou et al. [35]). Define

proxFS L(v) = arg min
x

1
2 ||x − v||22 + λ1||x||1 + λ2||Dx||1 (18)

proxGL(v) = arg min
x

1
2 ||x − v||22 + λ3||xn||2. (19)

Then, the following holds for all λ1, λ2, λ3 ≥ 0:

proxFS GL(v) = (proxGL ◦ proxFS L)(v). (20)

where ◦ is the composition operator. �

This result implies that we can first compute the proximal operator associated to
the fused sparse Lasso as in the previous section. The solution is then plugged
in the proximal operator associated to the group Lasso. The latter is finally com-
puted using the ALTRA routine also available in the SLEP package. The resulting
algorithm (FSGL) is summarized in Algorithm 2.
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Algorithm 2: Fused Sparse Group Lasso (FSGL)
Input : Y ∈ CM×K , Φ ∈ CM×N , λ1, λ2, λ3, maxiter

1 Initialization: X(0) = 0, Z(1) = 0, t(1) = 1;
2 for k ← 1 to maxiter do
3 V(k) ← Z(k) −

1
LΦ

>(ΦZ(k) − Y);
4 for n← 1 to N do
5 wn

(k) ← arg min
x

1
2 ||x − vn

(k)||
2
2 + λ1

L ||x||1 + λ2
L ||Dx||1;

6 xn
(k) ← arg min

x
1
2 ||x − wn

(k)||
2
2 + λ3

L ||x||2;

7 end

8 t(k+1) ←
1+
√

1+4t2(k)

2 ;
9 Z(k+1) ← X(k) +

t(k)−1
t(k+1)

(X(k) − X(k−1));
10 end

Output: X ∈ RN×K

3.3. Nonnegative Fused Sparse Group Lasso
As we deal with positive data, it is suitable to impose a nonnegativity con-

straint on the solution. Indeed, the solution proposed above may induce artifacts
due to bad conditioning of matrices, causing the appearance of negative values.
From a physical point of view, such a solution is unacceptable and a rigorous
recovery process must take into account this additional constraint. So, we pro-
pose here to minimize the nonnegative version of the fused sparse group Lasso
algorithm. The constrained problem expresses as:

minimize
x

JFS GL(x), (21a)

subject to x ≥ 0. (21b)

First, we include a slack variable u ∈ RNK to the objective function which leads
to:

minimize
x

JFS GL(x), (22a)

subject to x − u = 0,u ≥ 0. (22b)
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The equality constraint in (22b) can be handled by using the quadratic penalty
method [36]. The new objective in then:

JNN−FS GL(x,u) = 1
2 ||y − Ax||22 +

ξ

2 ||x − u||22

+ λ1||x||1 + λ2||Fx||1 + λ3

N∑
n=1

||xn||2, u ≥ 0 (23)

where ξ is the parameter that penalizes the constraint violations in the sense that,
when ξ → ∞, the entries of the vector x tend toward those of the vector u making
the inequality constraint x ≥ 0 satisfied asymptotically. The surrogate problem
(23) is unconstrained with respect to x. Hence, by stacking the two quadratic
terms of the objective J3(·) we obtain:

JNN−FS GL(x,u) = 1
2 ||y

′(u) − Bx||22 + g′(x), u ≥ 0 (24)

where B = [A>,
√
ξI>]>, y′(u) = [y>,

√
ξu>]>, I is an identity matrix of the same

size as A, and g′(x) is defined by:

g′(x) = λ1||x||1 + λ2||Fx||1 + λ3

N∑
i=1

||xi||2. (25)

We should now minimize the cost function JNN−FS GL(x,u) with respect to x (with-
out constraint) and u (with the nonnegativity constraint). The minimization with
respect to x leads to an iteration similar to that of FSGL:v(k) = x(k) −

1
L′∇ f ′(x(k))

x(k+1) = arg min
x

1
2 ||x − v(k)||

2
2 + 1

L′g
′(x),

(26)

where f ′(x) = 1
2 ||y

′(u) − Bx||22, ∇ f ′(x) = B>(Bx − y′(u)) and L′ = L + ξ is the
Lipschitz constant of ∇ f ′(x). Once again, the optimization is separable for each
row xn. Define matrix U such that u = vec(U>). Replacing B and y′(u) by their
expressions yields:

V(k) = X(k) −
1
L′Φ

>(ΦX(k) − Y) − ξ

L′ (X(k) − U(`)),
xn

(k+1) = arg min
x∈RK

1
2 ||x − vn

(k)||
2
2 + λ1

L′ ||x||1 + λ2
L′ ||Dx||1 + λ3

L′ ||x||2,

for n = 1, . . . ,N.

(27)
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Algorithm 3: Nonnegative Fused Sparse Group Lasso (NN-FSGL)
Input : Y ∈ CM×K , Φ ∈ CM×N , λ1, λ2, λ3, β, maxiter, nniter

1 Initialization: X(0) = 0, Z(1) = 0, t(1) = 1, u = 0, ξ(1) = 1;
2 for ` ← 1 to nniter do
3 L′ ← L + ξ(`);
4 for k ← 1 to maxiter do
5 V(k) ← Z(k) −

1
L′Φ

>(ΦZ(k) − Y) − ξ(`)

L′ (Z − U(`));
6 for n← 1 to N do
7 wn

(k) ← arg min
x

1
2 ||x − vn

(k)||
2
2 + λ1

L′ ||x||1 + λ2
L′ ||Dx||1;

8 xn
(k) ← arg min

x
1
2 ||x − wn

(k)||
2
2 + λ3

L′ ||x||2;

9 end

10 t(k+1) ←
1+
√

1+4t2(k)

2 ;
11 Z(k+1) ← X(k) +

t(k)−1
t(k+1)

(X(k) − X(k−1));
12 end
13 u(`+1) ← max(0, x(maxiter));
14 ξ(`+1) ← βξ(`);
15 end

Output: X ∈ RN×K

Hence, an external loop (`) is added to update the variable u. The minimization of
JNN−FS GL(x,u) with respect to the slack variable u is simply a hard thresholding
operation:

u(`+1) = max(0, x∗), (28)

where x∗ is the value of x(k) when the final iteration on k is completed. The tuning
parameter ξ is updated in the loop with the classical linear rule: ξ(`+1) = βξ(`),
with β > 1 and ξ1 = 1. The complete NN-FSGL algorithm is summarized in
Algorithm 3.

3.4. Sofware
An open source Matlab implementation of FSL, FSGL and NN-FSGL

can be downloaded from http://w3.cran.univ-lorraine.fr/el-hadi.

djermoune/?q=content/publications. The software also contains a test pro-
gram and the experimental NIR data used in the next section.
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Table 1: Composition of the two classes of wood wastes
(a) Class 0: recyclable

Subclass Type Samples
0.1 raw wood 32
0.2 painted solid wood 36
0.3 varnished solid wood 35
0.4 raw plywood 16
0.5 varnished plywood 16
0.6 raw particle board 28
0.7 painted particle board 6

(b) Class 1: non-recyclable

Subclass Type Samples
1.1 raw wood metallic salts 35
1.2 MDF-HDF 28
1.3 painted MDF-HDF 50
1.4 raw fiber board 8

4. Wood wastes sorting

4.1. Motivations
We are interested in sorting wood wastes which have to be separated into two

broad classes: recyclable and non recyclable. Each class includes a number of
wood wastes types called “subclasses” as given in Table 1. The wood wastes
sorting is addressed as a binary classification of NIR spectra. A single spectrum
is acquired for each wood sample and the classifier has to decide whether it is
recyclable or not recyclable.

The goal of this section is to show the effectiveness of the algorithms presented
before in variable selection and classification. These algorithms are primarily in-
tended at selecting the explanatory variables used in classifiers. Here we restrict
our attention to the kernel SVM classifier which proved to be among the most
effective for the considered problem, and the question at hand is: is it possible
to improve the classification rates and decrease the computational burden by per-
forming a proper variable selection?
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4.2. Data acquisition and pre-processing
We collected several hundred samples of wood in a waste park amongst which

290 were gathered by experts into 11 labeled subclasses as shown in Table 1. The
data acquisition was carried in reflectance mode on a Nicolet 8700 FTIR spec-
trometer equipped with a MCT detector and a CaF2 beam splitter. Near infrared
reflectance spectra cover the spectral range [3562, 10000] cm−1 (corresponding to
[1000, 2800] nm). The spectral resolution is 16 cm−1. The spectral sampling step
is 4 cm−1 yielding 1647 spectral bands. Each spectrum is obtained by averaging
100 scans. The data pre-processing includes baseline removal using the method
proposed in [37], offset correction ensuring zero lower bound, and unit energy
normalization. Some spectra from these different subclasses are shown in Fig-
ure 2. It appears that the discriminant features cannot be determined by a simple
visual examination.

The data are then gathered in matrix Y ∈ R1647×290. Note that the spectra are
ordered according to the subclass they belong to. The spectra from class 0 are put
in the first columns of Y starting from subclass 0.1 through subclass 0.7. In the
same manner, the spectra from class 1 are put in the last columns. This is a very
important point since it is this ordering which enables the rows of the coefficient
matrix X to be piecewise constant when λ2 > 0.

4.3. Dictionary
The dictionary Φ is composed of normalized Gaussian-shaped functions

whose means mi, j ∈ [3660, 10000] cm−1 and widths σ j ∈ [30, 600] cm−1 are
covering uniformly their respective intervals. The discretization leads to 20 dif-
ferent values for σ j. For each σ j, the interval [3660, 10000] cm−1 is discretized
such that two adjacent mi, j’s corresponding to the same σ j are separated by σ j.
Specifically, for j = 1, . . . , 20:

σ j = 30 j, (29)

mi, j = 3660 + (i − 1)σ j, i = 1, . . . ,
⌊

10000−3660
σ j

⌋
(30)

where b·c is the floor function. As a consequence, the dictionary is composed of
773 atoms.

4.4. Variable selection
Here we compare FSL and FSGL to the simultaneous variable selection algo-

rithm (SVS) proposed by Turlach et al. [26]. This algorithm is an extension of
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Lasso strategy and corresponds to the following optimization problem:

min
X

1
2 ||Y −ΦX||2F s. t.

N∑
n=1

||xn||∞ ≤ t, (31)

where t is a user parameter controlling the sparsity of the solution. The problem is
solved using an interior point method and the C implementation is kindly provided
by the author (Berwin A. Turlach).

Figure 3 displays the selected variables obtained by SVS, FSL and FSGL for
some values of t, 1/λ1 and 1/λ3, respectively. Note that the number of active
variables returned by SVS increases when t increases whereas, for FSL and FSGL,
it decreases when λ1 or λ3 increases. The horizontal lines connect two adjacent
values of the parameters when the coefficient associated to a selected variable
does not vanish. For small values of t, 1/λ1 and 1/λ3, the variables are mainly
picked in the range [6600, 6700] cm−1 where broad and intense spectral peaks are
observed (see Fig. 2). By increasing the value of these parameters, more and more
variables are selected. In a given application, the practitioner can stop the selection
when the desired number of variables is reached. In our case, out of about fourty
variables (with t = 2, λ1 = 0.045 and λ3 = 0.35), SVS shares 28 common variables
with FSL and FSGL. The latter algorithms share 38 common variables. It can
also be seen that some wavenumbers actually have a chemical interpretation. For
instance, the variables located in the ranges 4000-4500 cm−1 and 5800-8200 cm−1

are related to the main components of wood including cellulose, hemicellulose
and and lignin [38, 39].

The computational time required by each algorithm to perform variable selec-
tion is reported in Table 2. The results are obtained using a 2.4 Ghz Intel Core i5
processor with 8 Gigabytes of RAM. We note that FSL is generally faster than all
other approaches. FSGL algorithm is a bit slower. The additional loop with hard
thresholding operator makes NN-FSGL about ten times time demanding than its
unconstrained version. For SVS we did not try all the configurations because we
found that this algorithm is much more slower and needs about four hours to select
32 variables. Finally, FSL and FSGL algorithms are not only numerically efficient
but also provide good classification rates as will be shown in the next paragraph.

4.5. Classification of wood wastes using NIR spectra
Here we perform classification of recyclable and non-recyclable wood sam-

ples using SVM with quadratic kernel function. The variable selection algorithms
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Table 2: Computational time (in seconds) of the different approaches for variable selection
# Variables FSL FSGL NN-FSGL G-SVM
25 9 17 110 27
32 9 17 101 27
40 10 15 112 29
50 9 12 105 31

SVS, FSL, FSGL and NN-FSGL are tuned to produce 32 spectral bands. Clas-
sification is then performed using matrix X corresponding to the unconstrained
least-squares solution of equation (2a) where dictionary Φ is restricted to the 32
active atoms. The results are compared to those obtained with the following algo-
rithms:

• SVM: the classification is performed on the original data in Y without vari-
able selection2.

• G-SVM [40]: it consists in solving an augmented SVM criterion where the
sparsity constraint is imposed on the support vectors. The sparsity of the
support vectors is controlled by parameter3 C which is set to C = 150 mak-
ing the decision rule made on 32 entries of the support vectors.

• Wavelet-based Bayesian variable selection (W-BVS) [6, 41]: the wavelet
transform is carried out using Daubechies wavelets with 4 vanishing mo-
ments. The Bayesian selection method4 requires the use of Markov chain
Monte Carlo (MCMC) algorithms that have to be tuned to select 32 vari-
ables. Following the notations in Sha et al. [41], these parameters include,
among others, h, c, and w.

• Random forest [5]: the algorithm is applied on the original data Y by setting
the number of decision splits to T = 289 and the number of predictors
(features) to select at random for each split to 32.

2As the number of variables (wavenumbers) in SVM is much greater than the number of spec-
tra, the results obtained on our database may not be generalizable. They are given here only as an
indicative basis.

3http://remi.flamary.com/soft/soft-gsvm.html
4The Matlab code for Bayesian variable selection is downloaded from http://www.stat.

rice.edu/~marina/matlab/bvsprob.tar
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The classification results for 10 cross validation runs are shown in Table 3. For
each method we report the overall rate of success, the true positive rate TPR (rate
of recyclable samples correctly identified), and the true negative rate TNR (rate
of non-recyclable samples correctly rejected). In terms of total accuracy, FSL,
FSGL ad NN-FSGL outperform their competitors. The best result is about 88%
obtained with FSGL. As in our application it is also important to reject the maxi-
mum number of polluted samples from the recycling process, the performances of
SVM, G-SVM and W-BVS are clearly not satisfactory. Here, the best parameters
for FSGL are λ1 = 0, λ2 = 0.5 and λ3 = 0.625 (see also section 4.6). We note
that, while NN-FSGL is slightly outperformed by FSGL in termes of classification
rate, the nonnegativity constraint is relevant if a further physical interpretation is
required. Figure 4 shows an example of error rates resulting in each subclass of
wood wastes when the spectra are randomly split into training samples (203 spec-
tra) and test ones (87 spectra). The results obtained using the variables selected by
FSGL are: TPR = 87.3%, TNR = 94.4%, and an overall rate of success of 89.7%.
One can see that the two pieces of painted particle boards are misclassified. This
is mainly due to (i) the small number of samples in the corresponding subclass:
only 4 samples are used for training and 2 for the test; (ii) the presence of painted
wood samples in both classes.

4.6. Parameter adjustment
The performances of all the algorithms considered here depend on the choice

of tuning parameters. For instance, the set of selected variables (and thus, the
overall classification performance) with FSGL depend on λ1, λ2 and λ3. Our aim
now is to evaluate the impact of each parameter on the number of selected vari-
ables and classification rates using 10-fold cross validation. For λ2 = 0.2 and
without the group penalty (λ3 = 0), the results in terms of total classification error
and cardinality of the support are reported in Figure 5(a), for several values of λ1.
We note that the classification error rate decreases from 35% (λ1 = 10−2) to 14%
(λ1 ∈ [0.18, 0.28]). Obviously, the performances degrade drastically for values of
λ1 beyond 0.3 which correspond to less than 20 variables. For λ2 = 0.5 and with-
out the sparsity term (λ1 = 0), the results are shown on Figure 5(b), for different
values of the grouping parameter λ3. We observe that the total classification error
rate is under 15% for λ3 ∈ [0.1, 1.5]. In particular the value of λ3 yielding the
lowest error rate (12.2%) is shown in Table 3 with 32 spectral bands. It is worth
to notice from these two experiments that both sparsity and grouping parameters
act directly on the number of selected variables but not with the same intensity:
the sparsity parameter has stronger influence than the grouping parameter. For
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instance, to obtain less than 80 variables, the grouping parameter should be set to
0.2 (and λ1 = 0) while the same number of variables is obtained for λ1 ≈ 0.06 (and
λ3 = 0). To analyse the effect of the fusion parameter on the general classification
performances, we set the sparsity parameter λ1 to 0 and vary both the grouping
and the fusion parameters such that 40 variables are retained. The results are re-
ported on Figure 5(c). The error rate is less than 15% in the range λ2 ∈ [0.1, 0.6].
The minimum value of the classification error rate is 11.6%; it corresponds to
λ2 = 0.55.

5. Discussion and perspectives

In this work we proposed a variable selection technique based on simultaneous
and regularized sparse approximation inspired by the fused Lasso methodology.
Given several NIR spectra properly ordered in a data matrix, variable selection is
formulated as an optimization problem allowing to achieve a trade-off between
data approximation and model parsimony including group (simultaneous) and
structural (fused) sparsities. The data are modeled as linear combinations of a
family of Gaussian functions and a sparse coefficient matrix in order to achieve
a good reconstruction of the NIR spectra using only a few elementary functions.
Thanks to the simultaneous sparsity, the selected functions are those that show
maximum correlation with all measurements. To properly account for data or-
dering, the fused penalty enforces successive regression coefficients associated to
the same selected variable and corresponding to consecutive spectra to be similar.
Overall, the goal is to achieve dimensionality reduction that takes into account the
global shape of the measurements in order to control the computational cost and
avoid overfitting.

Using a FISTA iteration, we have shown that the optimization problem may be
solved efficiently thanks to the fused Lasso signal approximator (FLSA) applied
on each row of the coefficient matrix. We also present a non-negative version
of the algorithm. Application to real NIR spectra has shown that the proposed
algorithms are able to select wavebands leading to better classification rates as
compared to competitors such as random forest [5], wavelet-based Bayesian vari-
able selection method [6], and simultaneous variable selection [26].

The proposed methodology provides a comprehensive way to encode feature
selection in the objective function. With the exception of non-negative FSGL,
the resulting algorithms have a low computational cost suitable for large-scale
problems. Using FSGL in practice requires the specification of three parameters,
namely λ1, λ2 and λ3. Parameters λ1 and λ3 almost play the same role. Both act
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directly on the sparsity of the regression matrix and thus on the number of se-
lected variables. According to our experience, if the objective is to select a fixed
number of variables, it is more convenient to set λ1 to 0 and tune λ3 because the
latter enforces row sparsity which implies the selection of only one additional
variable at a time when λ3 is decreased continuously. Our strategy here was to
choose λ1 = λ2 = 0 and to tune λ3 to reach 32 variables. Thereafter, the pa-
rameter λ2 is progressively increased while λ3 is decreased to maintain the same
number of variables. Through this trial and error approach, we selected the set of
parameters leading to the maximum accuracy with λ1 = 0. Using cross-validation
to tune λ2 and λ3 is obviously more efficient than the traditional trial and error.
To decrease the computational burden, one can define a grid for λ3 around the
value yielding the desired number of variables. It should be pointed out that the
proposed approaches remain relatively easy to parameterize as compared to other
Bayesian-based methods such as [6, 41], while ensuring great flexibility accord-
ing to application requirements (number of variables, reconstruction accuracy or
discrimination level).

This work can be extended in several directions. From an application point of
view, we are considering the implementation of an optical sorting system on in-
dustrial hyperspectral imagers. We also plan to conduct further analysis of FSGL
with comparisons to state-of-the-art methods using other datasets. To progress in
this direction, we just acquired a new NIR spectrometer to study the performances
of the algorithm as a function of noise level, spectral resolution, sorting speed, and
so on. From a methodological perspective, we plan to develop dictionary learning
techniques to avoid specifying a priori the Gaussian-shaped functions over a grid
of discrete values.
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Figure 2: Some (pre-processed) NIR spectra from the two classes of wood wastes.
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Figure 3: Selected variables versus tuning parameters.26
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Figure 4: An example of classification error rate in each subclass. The dataset is randomly split
into training samples (70%) and test samples (30%).
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(b) Grouping parameter (λ1 = 0, λ2 =

0.5)
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(c) Fusion parameter (λ1 = 0 and λ3 is
adjusted to yield 40 variables)

Figure 5: Evolution of the total classification error rate as a function of the regularization parame-
ters.
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