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Abstract
Simulation of genomic data is a key tool in population genetics, yet, to date, there isno forward-in-time simulator of bacterial populations that is both computationally effi-cient and adaptable to a wide range of scenarios. Here we demonstrate how to simulatebacterial populations with SLiM, a forward-in-time simulator built for eukaryotes. SLiMhas gained many users in recent years, due to its speed and power, and has extensivedocumentation showcasing various scenarios that it can simulate. This paper focuseson a simple demographic scenario, to explore unique aspects of modeling bacteria inSLiM’s scripting language. In addition, we illustrate the flexibility of SLiM by simulatingthe growth of bacteria on a Petri dish with antibiotic. To foster the development of bac-terial simulations based upon this recipe, we explain the inner workings of its code. Wealso validate the simulator, by extensively testing the results of simulations against ex-isting simulators, and against theoretical expectations for some summary statistics. Thisprotocol, with the flexibility and power of SLiM, will enable the community to simulatebacterial populations efficiently under a wide range of evolutionary scenarios.
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1. Introduction
Bacterial population genomics aims to reconstruct past evolutionary events and better under-stand the ongoing evolutionary dynamics operating in present-day populations. Demographicchanges, selection, and migration are examples of processes whose genotypic signals remain inpresent-day populations. Trying to recover these signals from ever-growing sequencing data isa major goal of population genomics. In the context of epidemiological surveillance the infer-ence of these types of events can be useful, since pathogens are known to undergo frequentdemographic changes (Martiny et al., 2006). Similarly, a better understanding of the evolution-ary forces operating in pathogen populations can help to inform public health policy (Grad andLipsitch, 2014). For instance, one can assess the impact of a vaccination campaign or the efficacyof a new antibiotic on a given pathogen population (Croucher et al., 2013, 2014). Beyond theseclinical settings, bacterial population genomics can also be useful to describe natural populationdiversity (Robinson et al., 2010).Simulations are essential to population genetics (Hoban, 2014). They are useful for testingand validating population genetics methods (whether based on simulations or not), since theyprovide data generated by known evolutionary forces (unlike, typically, empirical sequence data).Notably, they can be used to assess the performance of statistical methods when assumptionsare violated (Chikhi et al., 2010; Lapierre et al., 2016). They are also helpful for predicting the im-pact of an environmental change on a population, or the expected response to intervention (Bru-ford et al., 2010; Jay et al., 2012).Many methods inferring past evolutionary events also rely on simulated data. In Approxi-mate Bayesian Computation (ABC), probably the most famous likelihood-free inference frame-work in our field, simulations enable estimation of the posterior distribution of parameters ofinterest (Csilléry et al., 2010). Other methods, based on machine learning, also require simu-lations to train a model to learn the mapping between input sequence data and evolutionaryprocesses (Schrider and Kern, 2018). Increasingly, machine learningmethods involve "deep learn-ing" algorithms that hold great promise but require a large volume of simulated data (Battey etal., 2020; Flagel et al., 2019; Kern and Schrider, 2018; Sanchez et al., 2021; Sheehan and Song,2016). Despite thesemany applications of simulations in population genetics, there are very fewbacterial population genetics simulators, and those that exist do not cover many possible scenar-ios. In particular, existing bacterial simulators are coalescent-based simulators (msPro (Akita et al.,
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2018), SimBac (Brown et al., 2016), FastSimBac (DeMaio andWilson, 2017)), which means theyare very fast andmemory-efficient, but can model only a narrow range of evolutionary dynamics.For instance, these simulators do not allow selection, and in the case of SimBac, demographicchanges cannot be simulated either. Simulation of complex selective forces together with de-mographic processes remains a difficult problem for coalescence-based simulators (Brown etal., 2016); other coalescent-based simulators that are not specific to bacteria (e.g., ms (Hudson,2004), msprime (Kelleher et al., 2016)) suffer from the same constraints, and additionally mostcannot simulate bacterial recombination (similar to gene conversion). On the other hand for-ward simulators such as SFS_CODE (Hernandez, 2008) enable complex models including varyingdemography and multiple types of selection; however, this software suffers from poor perfor-mance (Haller andMesser, 2017). Yet computational efficiency is crucial for supervised methodstrained on large simulated datasets, such as ABC, machine learning, and deep learning. Using for-ward simulation instead of coalescent-based methods can therefore be problematic, given thatforward simulation has traditionally been several orders of magnitude slower than the coales-cent. CoreSimul, a forward-in-time bacterial simulator with bacterial recombination and selec-tion, was recently published (Bobay, 2020); however, it is designed for a different problem spacethan we are interested in here (simulation of different models of molecular evolution on a fixedgenealogical tree of sampled individuals).Here we present a method for simulating bacterial populations in a flexible and fast way, us-ing a forward simulator called SLiM (Haller and Messer, 2019b). The SLiM forward simulationframework is becoming quite widely used due to its speed, power, and flexibility (Bradburd andRalph, 2019; Kelleher et al., 2019; Sackman et al., 2019). SLiM includes a scriptable interfacewithits own language, Eidos, which allows simulation of a wide range of evolutionary dynamics. Thedetailed instruction manual, combined with its helpful graphical user interface and its versatility,enable users to build simulation models tailored to their research. Simulation of bacterial popula-tions, and haploids in general, is not supported intrinsically by SLiM, because every individual hastwo chromosomes. But because of its scriptability, it is possible to extend SLiM into this area.In this protocol, we will show the key techniques necessary to perform bacterial simulations.Following the SLiM manual’s convention, we will introduce the model implementation step bystep together with the related concepts. Then we will show that the simulator behaves correctlyaccording to the expected values of certain summary statistics under the Wright-Fisher modelor by validating against other simulators, and that the model’s performance is good enough toallow numerous simulations to be run in a reasonable amount of time and memory. Finally, wewill showcase a more complex model, based upon our method, in which we simulate bacteriagrowing on a Petri dish. This model is spatially explicit, representing the bacteria actually colo-nizing the dish, half of which contains an antibiotic that decreases their survival rate. Resistancemutations may emerge, substantially increasing the fitness of bacteria growing in the presenceof antibiotic, while slightly decreasing fitness otherwise. This model illustrates the open-endedflexibility of SLiM.We believe this work will open new avenues in bacterial population genetics by allowingresearchers to go beyond the limitations of the coalescent, broadening the potential applicationsof simulation to a much wider range of evolutionary dynamics.
2. Methods, simulator and data

The bacterial simulator proposed here is based on SLiM, a powerful and efficient forwardgenetic simulator (Haller and Messer, 2019a). Thanks to its flexible scripting interface using theEidos language, we were able to adapt SLiM to the simulation of bacterial populations.SLiM provides two types of simulations: Wright-Fisher (WF) models, and models that go be-yond the Wright-Fisher framework (non-Wright-Fisher or nonWF models). The Wright-Fishermodel is based on many simplifying assumptions that are often not compatible with realistic sce-narios such as structured populations, overlapping generations, etc. (Haller and Messer, 2019b).However, it is mathematically simple, allowing expectations for certain quantities to be esti-mated. This is particularly useful to validate the created simulator against the expectations under
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this model. The nonWF framework, on the other hand, is more individual-based, emergent, andrealistic. It allows a greater breadth of possible scenarios to be simulated, but we cannot deriveexpectations of the same quantities. Thus, we will provide results for the same scenario underboth models to confirm that they behave similarly (according to the WF expectations).In the main text we will present the protocol for simulating bacterial populations with thenonWF framework, since it is a more powerful framework on which other users can build morecomplex scenarios. The underlying simulation, however, corresponds to aWright-Fisher popula-tion, so we can compare to the theoretical expectations. The corresponding annotatedWF scriptis available in a public repository (https://github.com/jeanrjc/BacterialSlimulations),along with the nonWF script detailed below. The different simulators used in this article aresummarized in the table 1 below. To highlight the modeling steps that are specific to bacterialpopulations, we kept the underlying population history simple, with a single constant-size pop-ulation and no selection, but those assumptions are trivial to relax in SLiM.
Table 1 – Summary table of the simulators used in this paper. Phases 1 and 2 representsimulation steps in the order that they are performed. The third column gives brief com-ments regarding each simulator, while the last column gives an example of the degree ofscenario complexity that can be simulated with each.

Phase 1 Phase 2 Comments Example

ms / msprime /
FastSimBac

Coalescentsimulation None Ideal for simplesimulations ofbasic scenarios

Migrationbetweenpopulationswithdemographicchanges

SLiM withWright-Fisher(WF) framework Burn-in with ms
Forwardsimulation with
SLiM, startingfrom burn-inoutput

Ease ofimplementationof slightlycomplexscenarios;fitness affectsfecundity

Demographicchanges andbackgroundselection

SLiM withnonWFframework

Forwardsimulation with
SLiM and treesequencerecording

Recapitation ofthe treesequence using
msprime

Wide range ofpossiblescenarios;fitness affectsmortality; fasterand moreaccurate burn-in

Spatial modelwithenvironment-associatedfitness forcertainmutations

2.1. Key concepts and definitions.
2.1.1. Horizontal gene transfer, recombination, and circularity. In bacteria, pieces of DNA can beexchanged between different organisms in a process called horizontal gene transfer (Ochman etal., 2000). When received, such a DNA fragment can be inserted in the host chromosome withthe help of integrases, at a specific site if the fragment is not homologous to an existing chromo-somal region. Alternatively, if the incoming DNA fragment is homologous, it will integrate intothe host chromosome by a mechanism similar to gene conversion in eukaryotes (Rocha, 2018).This latter process is the bacterial recombinationmechanism that wewant to implement.Wewilluse the term "gene conversion" to refer to gene conversion specifically in eukaryotes, and theterm "bacterial recombination" to refer to the mechanistically similar process in bacteria. Note
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that bacterial recombination differs from simple recombination in eukaryotes (often called cross-over), in that mutations are not exchanged between two fragments of DNA; instead, the muta-tions are copied from one fragment to the other. Some coalescent simulators do implement geneconversion or bacterial recombination, such as ms (Hudson, 2004) or FastSimBac (De Maio andWilson, 2017), but they are otherwise quite limited, as discussed above. Our implementation ofbacterial recombination also provides a slightly closer fit with reality, since we model the bacte-rial chromosome as circular. It has been shown that circularity can lead to different patterns, suchas linkage disequilibrium decaying faster in linear genomes than in circular genomes (Robinsonet al., 2010; Wiuf, 2001). Although circularity is likely not important for the metrics and param-eters shown in this study, including it is one less incorrect assumption when modeling bacteria.

2.1.2. Burn-in. It is often desirable to start a simulation with a population which is at mutation-drift equilibrium. After 5×Ne generations in our simple scenario, the heterozygosity has reachedmore than 99% of the heterozygosity expected undermutation-drift equilibrium (see for demon-stration). In forward simulations, the time spent to reach this equilibrium (5×Ne) is called "burn-in". Because the effective size of bacterial populations is usually large, conducting this burn-inwith a forward simulator would often require much more time than simulating the actual timeperiod of interest, and this problem can make forward simulation of bacteria difficult or eveninfeasible.To solve this issue, faster backward-in-time simulators can be used to simulate a populationat equilibrium that serves to initialize the forward simulation. The nonWF model allows an el-egant and efficient approach to this: we can combine SLiM’s tree-sequence recording featurewith the recapitation feature of msprime (Haller and Messer, 2019b) to manage burn-in. Withthis strategy, we can begin with forward simulation in SLiM, leaving the burn-in for later. At theend of the forward simulation, there is often no single common ancestor for the population; inother words, the ancestry tree of the underlying population has not yet coalesced. Recapitationwill then simulate, backward in time, the addition of ancestral branches to produce coalescence,providing the needed burn-in ancestry after the fact. However, because msprime does not yet im-plement gene conversion, we cannot use bacterial recombination during burn-in for our nonWFmodel.The WF model requires a different approach, because tree-sequence recording cannot beused; in the WF model SLiM cannot record HGT events in the tree sequence. In this case, wetherefore have to simulate the entire population backward in time with ms, and load the gener-ated diversity into SLiM to initialize its forward simulation. Because we simulate the entire pop-ulation, it is not possible to use gene conversion at a significant rate, otherwise ms crashes; thusthere is no bacterial recombination during burn-in for our WF model, either. As of now, for longsimulations, it is thus not possible to have bacterial recombination during a coalescent-basedburn-in; we analyse the impact of this limitation on simulations in the results section. For smallpopulations, however, the burn-in can be simulated directly in SLiM. Finally, in certain situationsa burn-in is not desirable (as in our Petri dish model).
2.1.3. Simulation rescaling. Forward simulators remain computationally intensive, and bacterialpopulations can be very large. The effective population size of most bacterial species is on theorder of 108 − 109 (Bobay and Ochman, 2018). Depending on the task one wants to address,many thousands or even millions of simulations may be required. One way to reduce the com-putation time is to parallelize the simulations on a cluster, but it can remain costly. Another wayis to rescale the model parameters such that θ = 2 × Ne × µ and related quantities remain con-stant (Haller and Messer, 2016). For instance, we can decrease the size of the population bya factor of 10 while increasing the mutation and recombination rates by the same factor. Thechoice of the rescaling factor is at the discretion of the user, but one should keep in mind thatexcessive rescaling might lead to spurious results (Haller andMesser, 2016). For instance, rescal-ing increases the rate of double mutation at a site, although it should remain rare (Hoggart et al.,2007). Also, if the simulation involves a bottleneck, the user should make sure that the number
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of individuals remaining in the population after the bottleneck is not so small as to cause arti-facts. A model of a bottleneck that reduces a population of 1000 individuals to 100 would leadto very different results if we were to rescale the model down to only 10 individuals before thebottleneck and one individual after! The rescaling factor must also be applied to the duration ofthe simulation (and the duration of different events that might occur), so that the effects of driftremain similar. For instance, with a rescaling factor of 10, the length of the simulation should beshortened by a factor of 10, as should the duration of events such as bottlenecks or expansions.Thus, rescaled simulations not only run faster per generation (because there are fewer individu-als to process), but also run for a smaller number of generations. In the results section, we willshow the effect of the rescaling factor on two summary statistics, along with the increase in thespeed of the model. Because there are many complexities involved in rescaling, we recommendchoosing this factor with great care, and cross-validating the results of downstream analyses bydoing a small number of runs that are unscaled (or less rescaled, at least).
2.2. Simulation protocol.
2.2.1. Forward simulation. We now describe the protocol step by step. A schema in supplemen-tary Figure S1 may help to understand the following section by giving an overview of the ap-proach taken.SLiM scripts can be called from the command line or run within the SLiMgui graphical mod-eling environment. Here we will define constant variables directly in the script, so that one canrun the code in SLiMgui. When running the model at the command line, those constants couldinstead be passed to SLiM as -d constant=value command-line arguments; this is convenientto run a whole set of simulations with different parameters. In this example, we simulate 1000generations of a population of 100 000 individuals, which have a chromosome of 2Mb, and arecombination rate of 10−9 bacterial recombination events per generation per base pair, witha mean recombination tract length of 10kb. The script begins with a block of code called an
initialize() callback:

1 initialize()
2 {
3 // Definition of constant variables
4 defineConstant("Ne", 1e5);
5 defineConstant("N_generations", 1000);
6 defineConstant("Rho", 1e-7);
7 defineConstant("tractlen", 1e4);
8 defineConstant("genomeSize", 2e6);
9 defineConstant("HGTrate", Rho * genomeSize); // HGT probability
10
11 // Initialization
12 initializeSLiMModelType("nonWF");
13 initializeTreeSeq(); // record trees for recapitation and/or adding neutral mutations later
14 initializeMutationRate(0); // no neutral mutations in the forward simulation
15 initializeMutationType("m1", 1.0, "f", 0.0); // neutral (unused)
16 initializeGenomicElementType("g1", m1, 1.0);
17 initializeGenomicElement(g1, 0, genomeSize - 1);
18 initializeRecombinationRate(0); // In SLiM recombination is between sister chromatids
19 }

Initialization of a bacterial simulation with SLiM
Here we initialize the simulation using the nonWF model with tree-sequence recording, asexplained in the SLiM manual. We set the mutation rate to zero because we will add neutralmutations later with msprime, after recapitation; we do not want to forward-simulate neutralmutations, for efficiency. Importantly for bacteria, the (generic) recombination process imple-mented in SLiM should not happen, otherwise, because individuals in SLiM are diploids, ourhaploid bacterial chromosomes will recombine with the empty second chromosomes. Thus, therecombination rate should always be set to zero when simulating bacterial populations. Instead,we define a constant, HGTrate, that represents the probability of a given bacterium undergoing(homologous) HGT.
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The population is created at the beginning of the first generation, as shown in the next snip-pet; other populations could be created here too:
20 1 early()
21 {
22 sim.addSubpop("p1", Ne);
23 sim.rescheduleScriptBlock(s1, start=N_generations, end=N_generations);
24 }

Creation of a population
In line 22, we add a subpopulation named p1 of size Ne. The next line is not specific to bac-teria, but allows us to define the end of the simulation dynamically, governed by a parameter(N_generations). This is useful when comparing different rescaling factors, or when the end-point of the simulation depends on other parameters or events.

25 reproduction()
26 {
27 // each parental individual reproduces twice, with independent probabilities of HGT
28 parents = p1.individuals;
29
30 for (rep in 0:1)
31 {
32
33 if (HGTrate > 0)
34 {
35 // for all daughter cells, which ones are going to undergo a HGT?
36 is_HGT = rbinom(size(parents), 1, HGTrate);
37 }
38 else
39 {
40 is_HGT = integer(size(parents)); // vector of 0s
41 }
42 for (i in seqAlong(parents))
43 {
44 if (is_HGT[i])
45 {
46 // Pick another individual to receive a piece of DNA from
47 HGTsource = p1.sampleIndividuals(1, exclude=parents[i]).genome1;
48 // Choose which fragment
49 pos_beg = rdunif(1, 0, genomeSize - 1);
50 tractLength = rgeom(1, 1.0 / tractlen);
51 pos_end = pos_beg + tractLength - 1;
52
53 // Prevent an edge case when both
54 // pos_beg and tractLength are equal to 0
55
56 if (pos_end == -1) {
57 pos_end = 1;
58 }
59 else
60 {
61 pos_end = integerMod(pos_beg + tractLength - 1, genomeSize);
62 }
63
64 // HGT from pos_beg forward to pos_end on a circular chromosome
65 if (pos_beg > pos_end)
66 breaks = c(0, pos_end, pos_beg);
67 else
68 breaks = c(pos_beg, pos_end);
69 subpop.addRecombinant(parents[i].genome1, HGTsource, breaks, NULL, NULL, NULL);
70 }
71 else
72 {
73 // no horizontal gene transfer; clonal replication
74 subpop.addRecombinant(parents[i].genome1, NULL, NULL, NULL, NULL, NULL);
75 }
76 }
77 }
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78 // deactivate the reproduction() callback for this generation
79 self.active = 0;
80 }

Bacterial reproduction
In each generation, SLiM calls reproduction() callbacks for each individual and the callbackhandles how that focal individual reproduces and generates offspring. Since we want to repro-duce the whole population in one big bang (for efficiency, mostly), we override that default be-havior by setting self.active = 0; at the end of the callback. As a result, this callback is calledonly once per generation and manages the reproduction of all individuals. We make each parentreproduce twice (rep in 0:1) to circumvent SLiM’s constraint that individuals cannot undergoa horizontal gene transfer event in the middle of their lifespan. By creating two clonal offspring,each can be part of a horizontal gene transfer event; had we implemented a single clonal repro-duction, only one of the two daughter cells (the one that is not the parent) could have undergoneHGT. Later in the script the parents are removed from the population (by setting their fitness to0), such that in each generation, a bacterium reproduces, generating two daughter cells.We thendecide which clones (see line 36 above) will undergo an HGT event by drawing from a binomialdistribution, with the probability of HGT defined by the constant HGTrate, line 9. If an individ-ual was chosen as a recipient for HGT, then the donor is picked randomly from the population(excluding the recipient); note that newly generated individuals are merged into the populationsby SLiM at the end of reproduction, so a new daughter cell will never be an HGT source foranother daughter cell. The DNA fragment that is going to be transferred is now defined by astarting position, drawn uniformly along the chromosome, and a length, whose value is drawnfrom a geometric distribution with mean equal to the tract length parameter (tractlen). Then,the addRecombinant() call creates a new daughter cell that is a clone of the parent, but withthe recombination tract copied from the donor to the recipient. If the individual was not an HGTrecipient, it is simply defined as a clone of its parent. Finally, as explained above, we deactivatethis callback for the rest of the generation since it has just reproduced every parent.

81 early()
82 {
83 inds = p1.individuals;
84 ages = inds.age;
85
86 // kill off parental individuals; biologically they don’t even exist,
87 // since they split by mitosis to generate their offspring
88 inds[ages > 0].fitnessScaling = 0.0;
89
90 // density-dependent population regulation on juveniles, toward Ne
91 juvenileCount = sum(ages == 0);
92 inds[ages == 0].fitnessScaling = Ne / juvenileCount;
93 }

Regulating the population size
Aswe saw earlier, we had to clone each individual (parent) twice, to produce two new individ-uals (daughter cells/juveniles). To simulate mitotic cell division, we now remove the parents bysetting their fitness to 0. In order to simulate a demographic scenario of constant population size,and because we are under the nonWF model where the size of the population is an emergentproperty (not a parameter as in WF models), we rescale the fitness of all juveniles so that theaverage number of individuals at each generation remains Ne. Before the next generation, SLiMwill kill individuals based on their absolute fitness, which acts as a survival probability. Thus, atthe start of the next generation we will have, on average, Ne individuals (with some stochasticfluctuation around that average).

94 s1 10000late()
95 {
96 sim.treeSeqOutput("mySimulation.trees");
97 sim.simulationFinished();
98 }
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Ending the simulation
This script block, named s1, was rescheduled by rescheduleScriptBlock() in line 23, but ascheduled time for the block to execute – here 10 000 – has to be specified even though it will beoverridden with N_generations. The value just needs to be high enough to avoid unintendedexecution of the block before it gets rescheduled; the time at which the unscaled simulationwould end is typically a good choice, since it will never be too early. When the simulation is over,we output the tree sequence to a .trees file that we can work with in Python. In the next partwe will show how to generate a burn-in period and genetic diversity with msprime.

2.2.2. Recapitating and adding neutral mutations. When simulating with the nonWF framework,we efficiently obtain an initial population at mutation-drift equilibrium by performing a recap-itation of the tree sequence, as explained earlier. So far, we have only forward-simulated thepopulation while recording the tree sequence. Most likely, the simulation has not coalesced yet,because we did not run the simulation for at least 5Ne generations. We now recapitate the treesequence, which runs backward in time, from the beginning of the forward simulation, to finishthe coalescence process for our recorded tree sequence. Then, to obtain amatrix of neutral SNPsfor the population at mutation-drift equilibrium – to compute summary statistics, for instance –the tree sequence can be manipulated in msprime with the help of pyslim, a Python interfacebetween SLiM and msprime.
1 ts = pyslim.load("mySimulation.trees")
2 ts_recap = ts.recapitate(recombination_rate=1e-20, # Crossing over recombination set to 0.
3 Ne=Ne)
4
5 # simplify to a subset of the population that is still alive
6 sample_inds = np.random.choice(ts_recap.individuals_alive_at(0),
7 size=20, # the sample size
8 replace=False)
9 # get the first node of the sampled individuals to make them haploid
10 sample_nodes = [ts_recap.individual(i).nodes[0] for i in sample_inds]
11 ts_sampled_haploid = ts_recap.simplify(samples=sample_nodes)
12
13 # Add neutral mutations
14 ts_mutated = pyslim.SlimTreeSequence(
15 msprime.mutate(ts_sampled_haploid,
16 rate=1.53e-9/2 # mutation_rate/2 : to have 2.Ne.mu and not 4.Ne.mu
17 keep=True) # keep existing mutations
18 )
19
20
21 # Get the matrix of SNP, individuals in rows and SNP in columns.
22 snp_mat = ts_mutated.genotype_matrix().T
23
24 # get positions of the SNPs
25 pos = np.round(ts_mutated.tables.asdict()["sites"]["position"]).astype(int)

Recapitation and generation of SNPs with pyslim and msprime, in Python
First we load the tree sequence with pyslim, which returns a tree-sequence object. We thenrecapitate the branches that have not coalesced yet, with a very low recombination rate since

msprime does not yet implement gene conversion. Since, for this protocol, we want to gener-ate a matrix of SNPs for a sample of individuals, not for the whole population, we subsequentlysample a random subset of extant individuals.We keep only the first node of each individual, cor-responding to the first chromosome in SLiM where our haploid genetic material resides. Finally,we overlay neutral mutations on the resulting tree sequence. We have to divide the mutationrate by two to obtain the desired θ = 2×Ne ×µ, instead of θ = 4×Ne ×µ that msprime expectsfor diploids. At the end, we get a matrix of SNPs and a vector of corresponding positions, oftenused as input for inference methods (Jay et al., 2019; Sanchez et al., 2021; Sheehan and Song,2016). This could easily be saved as an MS or VCF file if needed.
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2.3. Simulations performed.
To test the simulator, we ran simulations with parameters fitting the bacteria Streptoccocusagalactiae Clonal Complex 17, which is a major neonatal pathogen (Bellais et al., 2012; Da Cunhaet al., 2014). We used a chromosome size of 2Mb, and we estimated the following parametersbased upon data we found in the literature. The simulation spans 20,000 generations, whichrepresents about 55 years of evolution for such bacteria in the wild, when using a generationtime of 1 generation per day (as estimated for E. coli (Savageau, 1983)). The mutation rate isset to 1.53 × 10−9 mutations per base-pair per generation (Da Cunha et al., 2014). The recom-bination rate was set equal to the mutation rate, and the mean recombination tract length wasestimated as 122 kb (Brochet et al., 2008). Note that the true recombination rate for S. agalac-tiae is probably lower (Lefébure and Stanhope, 2007), but in order to assess the correctness ofthe implementation of bacterial recombination, we chose to set it equal to the mutation rate andstudy the effects of varying it. The effective population size of this clonal complex was estimatedto be around 140,000 individuals (Da Cunha et al., 2014). At the end of simulation, we sampled20 individuals and built a matrix of SNPs, from which we computed summary statistics.Simulations were run on a Dell R640 server rack with Intel Xeon Silver 4112 2.6GHz proces-sors.

2.4. Simulating Bacteria on a Petri dish with antibiotic.
To demonstrate the flexibility and scriptability of our SLiM bacterial model, we also presentthe results of a more complex and very different simulation scenario based upon our methods.It models bacteria growing on a Petri dish, seeded by 50 clones distributed randomly on theplate. Half of the plate contains an antibiotic that decreases a bacterium’s fitness, before density-dependent selection, from 1.0 to 0.47. However, a resistance allele can emerge through randommutation (at a rate of 10−5 per generation), and carrying this allele increases fitness back to 0.906in the presence of antibiotic. In all cases there is a small cost for having the resistance allele,which leads to a reduced fitness of 0.98 for carriers of the resistance allele when antibiotic isnot present.Because this is a spatially explicit model the bacteria interact with their neighbors. In this typeof model each bacterium has a given position in 2D space. Offspring appear near their parents,horizontal gene transfer occurs only between neighboring bacteria, and bacteria compete withtheir neighbors (which decreases the probability that a bacterium will divide under crowdedconditions). More details can be found in the SLiM manual (Haller and Messer, 2016) in thesection "Continuous-space models and interactions". In this simulation with ongoing selection,neutral mutations are not tracked during forward simulation; they would be added during therecapitation phase. Only the resistance (beneficial) mutations are tracked here, since they arenon-neutral and therefore influence the shape of the tree sequence.At equilibrium, the probability that a given bacterium will divide is about 0.5, so half of thebacteria produce two offspring and die, while the other half produce no offspring and die, sothe population size is then (stochastically) constant. The neutral mutation rate was set to 10−9,and the recombination rate was 10−7 with a mean recombination tract length of 500bp. Thefigures were generated using the random number seed 2049327378235, and snapshots weretaken in SLiMgui. The code to reproduce this simulation can be found in the same repository:

https://github.com/jeanrjc/BacterialSlimulations.
3. Results

We performed two sets of experiments to assess the performance and accuracy of our sim-ulator. In the first experiment, we assessed the impact of rescaling the effective population size,
Ne, in order to speed up the computation time. In the second experiment, we analysed the impactof varying the recombination rate and the mean recombination tract length, to better grasp theireffects on the simulations. For both experiments, wemonitored the running time and peak mem-ory usage of SLiM, and assessed the quality of the simulations by comparing the site frequencyspectrum (SFS) and the linkage disequilibrium (LD) with simulations obtained using ms (Hudson,
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2004) and FastSimBac (De Maio and Wilson, 2017), which are backward simulators implement-ing bacterial recombination (or gene conversion, in ms). For reference, we report runtime andmemory footprint data for the backward simulators as well.
3.1. Impact of rescaling.

Wecompared 9 different rescaling factors (RFs): 1 (no rescaling), 2, 3, 4, 5, 10, 25, 50, and 100.For RFs above 2, we generated 100 replicates for each RF and each SLiM model (WF, nonWF);for RF 1, 30 replicates were used, and for RF 2, 50 replicates. We generated 300 replicates whenrunning FastSimBac and ms for comparison. Rescaling was not applied to backward simulators,since they do not simulate the entire population.
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Figure 1 – Distribution of CPU time and peak memory usage for different rescaling fac-tors. For comparison with backward simulators, the dashed lines represent the averagetimes for FastSimBac (∼54s) and ms (∼14s). Rescaling does not apply to backward simu-lators. Note the log scale on the y axis; 105 seconds is about 28 hours. Parameters used: chromosome size : 2Mb; µ = ρ = 1.53× 10−9; Ne = 140k; 20000 generations. There are30 replicates for RF 1, 50 replicates for RF2, 100 replicates for other RFs. Rescaling dras-tically reduces the computational time and memory usage, matching the performance ofthe coalescent simulators for sufficiently large RF.
Without rescaling, the generation of a single replicate takes about a day (Figure 1). This is toolong if one wants to run millions of simulations; however, it is possible to do a few such runs forother purposes, such as confirming that rescaling did not introduce a bias when implementing anew script. This might also be useful to test a method on a dataset produced without rescaling,since even minor artifacts introduced by rescaling could conceivably bias or confuse inferencemethods. When using a rescaling factor of 5, a simulation takes about 1 hour to run, which ispracticable if one wants to run thousands of simulations on a cluster. With a factor of 25 ormore, the running time is comparable to that of FastSimBac and ms, if not faster; FastSimBacis a bit slower than ms, probably because we used an additional FastSimBac script to create an

ms-formatted output file. At 100 seconds or less per replicate, it is possible to generate abouta million replicates in a few days or a week, on a typical computing cluster (using perhaps 100
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cores). The time of the burn-in period is included here, and is not a limiting factor since it isfaster than the forward-simulation period by about two orders of magnitude for rescaling factorssmaller than 5 (supplementary Figure S2). The memory peak usage is fairly low (up to a fewgigabytes without rescaling), allowing any modern laptop to run these simulations.Comparing WF and nonWF performance, we see that the nonWF model tends to be faster,especially at higher rescaling factors. This is due to the overhead of the burn-in step, which isslower in theWFmodels.Without rescaling, or at lower rescaling factors, the difference betweenWF and nonWF runtimes tends to disappear. Interestingly, the variance in time and in memoryis lower for the nonWF version, which can help predict the resources needed for large runs. It isimportant to note that these performance metrics depend on the parameter values used (suchas the recombination rate).We then computed the normalized SFS produced by the different rescaling factors. The SFSrepresents the distribution of the frequency of derived alleles. Each bin (i ) is given by iξi/θ̂, where
ξi is the count of SNPs having i derived alleles, and θ̂ is an estimator of θ computed as the meanover the different bins (1/n∑ iξi ). Because iξi is an estimator of θ, the expected normalized SFSfor a constant-size neutral population under the Wright-Fisher model is a flat line centered on1 (Achaz, 2009; Fu, 1995).
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Figure 2 – Normalized Site Frequency Spectrum (SFS) for four simulators and differentrescaling factors. The left panels represent the SFS of theWF simulations under differentrescaling factors (top left) and compared to the coalescent simulators (bottom left). Thesame information is shown on the right-hand side of the figure, but for the nonWF sim-ulations. The colored shaded areas represent one standard deviation (mean ± std). Thehorizontal dashed line at 1 indicates the expected average value and the black line theexpected standard deviation, both under the WF model without recombination. Param-eters used: chromosome size: 2Mb; µ = ρ = 1.53 × 10−9; Ne = 140k; 20000 generations.Rescaling does not affect the shape of the SFS and it matches that of the expected hori-zontal line at 1, is not different across rescaling factors, and is similar to the SFS obtainedwith the coalescent simulators.
Figure 2 shows the normalized SFS for 6 rescaling factors (see supplementary figure S3 forall RFs) with the expected standard deviation under the Wright-Fisher model without recombi-nation (Fu, 1995). FastSimBac and ms simulations are shown as a second control, in addition tothe theoretical expectations (horizontal line at 1).We see that all experiments lead to the expected SFS, well within the expected standarddeviation for linked loci. The smaller standard deviations, compared to the theoretical expecta-tion, are not surprising since recombination is known to decrease the variance of the SFS (Wall,
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1999). Thus, rescaling factors up to 100 with this set of parameters do not affect the averageSFS, which behaves correctly for WF and nonWF models.
Next, we assessed the impact of bacterial recombination on linkage disequilibrium (LD). TheLD is measured by r 2, which quantifies how much correlation (or linkage) there is between pairsof alleles separated by a given distance. We measured this correlation by subsampling pairs ofSNPs, in 19 bins of increasing distances. The LD is represented as a function of themean distancewithin each bin. We compared our results to the LD obtained with simulations from FastSimBacand ms. In figure 3 we observe that the LD for both WF and nonWF models is similar to thatobtained with ms and FastSimBac, and does not seem to be affected by the rescaling factor.Unlike for the SFS, the expected LD and expected variation are hard to obtain and are beyondthe scope of this paper. However, we know that the LD at very short distances should be closeto the LD obtained in the absence of recombination. In figure 3, we used a shaded gray areato represent the range of LD without recombination at short distance. More precisely, it showsthe mean +/- standard error of the mean for the four simulators without recombination. Thefull LD plot without recombination can be seen in supplementary figures S6 and S7. Note thatin figure 3 a small difference between the backward and forward simulators can be seen, withthe backward simulators tending to produce higher LD at short distances than the forward ones.This might be due to different implementations of recombination at short distances, or to a lackof recombination during the burn-in for forward simulation. Overall, however, we show that alltypes of simulations produced the expected LD at short distances and converged toward theexpected r 2 with free recombination of 1/n (dashed line) (Takuno et al., 2012; Waples, 2006).
Overall, rescaling the simulations up to a factor of one hundred produces the expected SFSand LD, while allowing a drastic reduction in time and memory. This opens the possibility ofrunningmany simulations in a small amount of time, allowing the power and flexibility of forwardsimulation to be leveraged much more usefully in bacterial population genomics.
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3.2. Impact of recombination.
In this section we assess the impact of recombination with the same set of parameters usedpreviously, with a rescaling factor of 25 across all of these runs. We compare simulations underthree recombination rates (ρ/10, ρ and 10ρ, where ρ = 1.53× 10−9) and three mean tract lengths(λ/100, λ/10, λ, where λ = 122 kb). These different recombination tract lengths cover the spanof tract lengths found in bacteria where, depending on the mechanism of transfer, the size of therecombining region can range from approximately a 2kb fragment for transformation (Croucheret al., 2012) to more than 100kb with conjugation (Brochet et al., 2008). It is worth stressingthat for more realistic bacterial simulations, the mean tract length should represent the averagefor all recombination events, not only selected ones, otherwise the length might be overesti-mated (Croucher et al., 2012). We show here that a wide range of recombination tract lengthscan be simulated. First looking at performance, increasing the recombination rate by a factor of100 increases the runtime of the WF model 18-fold, but by only about 3-fold for the nonWFmodel (Figure 4 top). Higher recombination rates do require more memory, particularly whenusing the nonWF model, but with the rescaling factor used in this experiment it is still less than1 GB (Figure 4 bottom).
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The recombination rate thus has an important impact on the runtime of the WF simulations,but hasmuch less impact on the nonWF simulations. The size of the recombination tract does notseem to significantly affect either runtime or memory usage. As expected, coalescent simulatorsare very fast at low recombination rates, but tend to struggle at higher recombination rates (DeMaio andWilson, 2017). It takes themup to 10 thousand times longer to runwhen increasing therecombination rate by a factor of 100. Because of this, the simulations with ms and FastSimBacwith 10ρ and λ were too slow, so we could only run 6 and 7 replicates, respectively, instead ofa hundred. Other backward simulators may better handle higher recombination rates; however,our focus here is on the results of the simulations, not the efficiency of the simulators (a pointlesscomparison given the very different nature of coalescent simulators). The timing data for thebackward simulators is just intended to give context for readers familiar with these softwareprograms.As in the previous experiment, we analysed the behaviour of our simulations with respect tothe normalized SFS and the LD. In figure 5, we see that the SFS is distributed as expected (flat linecentered at 1), independently of the simulator or type of simulation. Interestingly, we observed
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two expected theoretical results: the standard deviation of the simulated SFS at low recombi-nation matches expectation (Fu, 1995), and the variance decreases as the recombination rateincreases (Wall, 1999). We see that for a given recombination rate, decreasing the recombina-tion tract length has a similar effect as decreasing the recombination rate for a given tract length(moving between figure panels leftward is similar to moving between figure panels upward).In figure 6 the decay of LD with distance is similar when comparing all four types of simu-lations. We observe the same small discrepancy between coalescent and SLiM simulations asseen earlier, but only for a subset of the parameters. At low recombination rate, we recover theclonal frame, corresponding to the fact that bacterial recombination involves small patches ofhomologous DNA, rather than long stretches (Milkman and Bridges, 1990). This means that po-sitions on either side of an HGT patch will stay linked, and this explains the space between theline of the expected LD with free recombination and the LD curve at high distance, which isexpected in bacteria (Rocha, 2018). A higher recombination rate or a longer recombination tractlength tends to approximate the expected LD of an organism with recombination by crossingover rather than HGT.
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Overall, changing the recombination rate and mean recombination tract length produced theexpected statistical results. Even for the highest recombination rate, the runtime and memory
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requirements are still low enough to allow many simulations to be run (Figure 4), and if neces-sary, one might increase the rescaling factor (with proper validation and testing). Interestingly,with a high recombination rate the rescaled SLiM simulations were much faster than coalescentsimulations. Finally, the nonWF model seems to have a more predictable runtime and memoryfootprint, which might be beneficial when computing resources are scarce.
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3.3. Simulating bacterial growth on a Petri dish with antibiotic.
In this paper, we mostly focus on results from a very simple population-genetic scenario.Here, however, we briefly showcase a radically different model, based upon our simple nonWFmodel, which might be of interest for evolutionary microbiologists. This model includes effectsof explicit space on dispersal, competition, and genetic relatedness; this type of model may helpwith understanding the impact of environmental structure on a given evolutionary dynamic. Forinstance, a similar simulation framework was used to estimate the impact of a structured envi-ronment on resistance to phage and antibiotics (Sousa and Rocha, 2019). In this toy scenario,
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we follow the growth of multiple colonies that are spread on a Petri dish as depicted in figure 7.The figure clearly shows how the antibiotic prevents the bacteria from spreading during a cer-tain period and how the appearance of a resistance allele, despite being costly for its host in aneutral environment, eventually changes the spatial dynamics of colonization. This is obviouslya basic model, and we are not interested in analyzing its results in any detail; instead, its purposehere is to show how easily more complex scenarios can be modeled in SLiM, based upon oursimple bacterial protocol. Importantly, we still have access to the tree sequence of the popula-tion and we could thus recapitate the 50 individuals that started the simulations, overlay neutralmutations, etc., and perform further analysis.
4. Discussion

We presented a step-by-step protocol for performing simulations in SLiM of a simple bac-terial population, and one example of a more complex spatial model based upon our protocol.Although SLiM is not focused on bacteria, the simulations were shown to behave correctly, andran in a reasonable amount of time. The basic models we presented were simple in order to drawattention to the particular techniques involved in simulating bacterial populations, but all of themodel variation discussed in the SLiM manual – complex demography and population structure,selection, and so forth – can easily be added to this foundational model, as exemplified withour spatial model. Our simplified approach also allowed us to compare the accuracy of our im-plementation to theoretical expectations, and to other simulators for which substantially morecomplex scenarios would not have been possible. The final model, of bacteria on a Petri dish,certainly could not be run in any coalescent simulator.These simulations were made both within SLiM’s Wright-Fisher framework and within themore individual-based nonWF framework, to showcase these two possibilities for the user. Therecipes for our WF and nonWF models are freely available on our dedicated repository (https:
//github.com/jeanrjc/BacterialSlimulations), where we encourage everyone to pro-pose their recipes for more complex scenarios. It might be worth mentioning why one wouldchoose between SLiM’s WF and nonWF model types, since this fundamental choice will guidemuch of the model development that follows. The WF model is simpler in many ways: it in-volves more simplifying assumptions and less individual-level behavior. For example, populationsize in the WF model is automatically maintained at a set level, whereas the nonWF model re-quires you to write script that regulates the population size via mechanisms such as density-dependence or – appropriately for pathogens, perhaps – host mortality. Similarly, reproductionin the WF model is automatic, based upon fitness; high-fitness individuals reproduce more thanlow-fitness individuals, a fact that SLiM automatically enforces. In nonWF models, in contrast,fitness typically influences mortality, not fecundity, and reproduction is explicitly scripted to al-low for greater individual-level variation in the modes and mechanisms of offspring generation.Writing a nonWFmodel is therefore a bit more complex and technical, and requires more detailsto be spelled out explicitly. Normally, nonWF models are a bit slower, but here the opposite wastrue; the slower implementation of the burn-in for the WF model, due to the incompatibility be-tween tree-sequence recording and the WF implementation of bacterial recombination, meantthat the WF model was slower. This is, in part, why we emphasized the nonWF model here; inthis context, it really provides both greater power and flexibility, and better performance. How-ever, the WF model remains simpler, conceptually and in its implementation; and if one wantsfitness to affect fecundity rather than mortality it can be the more natural choice. These remarksare summarized in Table 1.Currently, the only drawback of this simulator concerns the lack of recombination duringthe burn-in step. For the WF model, this is due to a technical limitation in ms; for the nonWFmodel, it is due to the current lack of gene conversion support in msprime. Implementation ofgene conversion in msprime is in progress, and may be available soon. This will greatly improvethe nonWF model, and will be trivial to add with a minor change to the recapitation step ofthe Python script. We will update our repository as soon as this feature is released in msprime.This lack of recombination during burn-in leads to a deficit in LD when forward simulation is too
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(a) Generation 1 (b) Generation 20 (c) Generation 50

(d) Generation 100 (e) Generation 200 (f) Generation 300

(g) Generation 400 (h) Generation 500 (i) Generation 600
Figure 7 – Representation of the simulated Petri dish at different generations. The pinkarea represents the half of the dish with antibiotic, while the white half has none. At thefirst generation, there are 50 colonies (single bacteria) spread randomly on the plate. Asthe simulation goes forward, we see those colonies growing, in yellow. They grow betterin the right-hand half of the plate, due to the absence of antibiotic. Bacteria colored redhave acquired antibiotic resistance.We see that the resistant bacteria later grow better inthe left half of the dish. Because of the fitness cost of the antibiotic-resistance mutationin the absence of antibiotic, there are only a few red bacteria in the right half at the end ofsimulation despite their markedly higher mean fitness over the environment as a whole,showing the importance of spatiality for the outcome of the model. The code used togenerate this simulation can be found at https://github.com/jeanrjc/BacterialSl
imulations.

brief. In our runs, we see that after about 20 000 forward generations (about Ne/7 generations),LD and SFS match that of ms and FastSimBac (supplementary Figure S5 and Figure S6). If onewants to run a very short simulation (e.g. less than Ne/7) with burn-in, it might still be worthrunning at least Ne/7 generations more of forward burn-in in addition to a coalescent burn-in.The higher variance of the SFS observed in the experiments for the SLiM simulations, compared
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to ms and FastSimBac, might be explained by this lack of recombination during burn-in, sincerecombination decreases the SFS’s variance (Wall, 1999). In short, for simulations that requireburn-in (in order to start non-neutral dynamics at mutation-drift equilibrium, for example, or toobtain fully coalesced ancestry trees in Python), a few generations of neutral dynamics at thebeginning of forward simulation are enough to recover the correct LD, at least in our simplemodel. (The necessary length of neutral forward simulation may be longer for other models,particularly with strong spatial structure.) Once gene conversion is added to msprime, this willnot be needed any more.We hope that our work here will stimulate a wave of development of simulation-based mod-els for bacterial population genetics.We believe that this paper, combinedwith the hundred-plusmodels presented in SLiM’s extensive documentation, will allow anyone to create new scenar-ios for bacterial populations seamlessly. It is possible to simulate evolution in continuous space(such as in a Petri dish), to model nucleotides explicitly (including the use of FASTA and VCF files),to model selection based on external environmental factors such as the presence of antibiotics(and selection for resistance genes), and even to model within-host evolution using a single sub-population for each host while modeling between-host transmission and infectivity dynamics;with the scriptability of SLiM almost anything is possible. We look forward to seeing the diverseresearch questions that the bacterial genomics community will explore with SLiM.
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Figure S6 – Linkage disequilibrium forWF and nonWF simulations with various numbersof forward-simulated generations and recombination rates (ρ).Ne=140 000, λ = 12200bpand RF=25. The horizontal dashed line is the expected r 2 with free recombination whensampling 20 individuals (1/20). The shaded areas represent standard error of the mean;the standard deviation is 10 times larger (since we have 100 samples), as shown in figureS7 below.
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Figure S7 – Same Figure as supplementary figure S6, but with shaded areas representingstandard deviation instead of standard error of the mean.
Annexes

Demonstration of 5.N rule to reach mutation-drift equilibrium.
Following Malécot’s derivation on heterozygosity (Malécot, 1948), we have Ht , the heterozy-gosity at time t , which can be expressed as follows:

(1 − Ht) = (1 − 2µ)[
1
N + (1 − 1

N )(1 − Ht−1)]

where basically, two individuals are identical at the previous generation (homozygosity, 1−Ht ) ifthey coalesced (1/N) or if they were already identical and did not coalesce ((1 − 1/N)(1 − Ht−1)).In both cases, no mutation should occur ((1 − µ)2 ∼ (1 − 2µ)).
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Rearranging the previous equation leads to:
Ht = Ht−1(1 − 2µ)(1 − 1

N ) + 2µ

We can calculate the probability of heterozygosity at the equilibrium:
H∗ = H∗(1 − 2µ)(1 − 1

N ) + 2µ

H∗ =
2Nµ

2Nµ + 1 − 2µ

H∗ ∼ 2Nµ
2Nµ + 1

=
θ
θ + 1

Ht is an arithmetic-geometric sequence of the form aHt−1 + b that can thus be expressed as
Ht = at(H0 − r ) + r

where a = (1 − 2µ)(1 − 1
N ), b = 2µ and r = b

1−a .
Because |a| < 1, Ht converges towards r ; i.e., r is H∗, hence

Ht − H∗
H0 − H∗ = at

This ratio tends toward 0 as Ht gets closer to the equilibrium. We want to estimate t99, theexpected waiting time until the ratio falls down to 0.01, meaning that the heterozygosity is 99%closer to the equilibrium than when we started, i.e.,
Ht99 − H∗
H0 − H∗ = at99% = 0.01

From this we get:
t99% =

ln(0.01)
ln(a)

Because ln(a) = ln((1 − 2µ)(1 − 1
N )) ≈ −1

N for small µ and large N , t99% simplifies to
t99% ≈ −Nln(0.01) = −4.6N

Thus after 5N generations the heterozygosity has almost reached its equilibrium, having pro-gressedmore than 99% of theway toward it, whatever the value ofH0 (the initial heterozygosity).
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