
HAL Id: hal-03152153
https://hal.science/hal-03152153v2

Submitted on 3 Mar 2021 (v2), last revised 13 Jan 2022 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Simulation of bacterial populations with SLiM
Jean Cury, Benjamin C Haller, Guillaume Achaz, Flora Jay

To cite this version:
Jean Cury, Benjamin C Haller, Guillaume Achaz, Flora Jay. Simulation of bacterial populations with
SLiM. Peer Community In Evolutionary Biology, 2021, �10.1101/2020.09.28.316869�. �hal-03152153v2�

https://hal.science/hal-03152153v2
https://hal.archives-ouvertes.fr


RESEARCH ARTICLE

Open Access

Open Peer-Review

Open Code

Cite as: Cury J, Haller BC, Achaz G, Jay F
(2021) Simulation of bacterial
populations with SLiM. bioRxiv,
2020.09.28.316869, version 5
peer-reviewed and recommended by
Peer community in Evolutionary Biology.
doi: 10.1101/2020.09.28.316869

Posted: 3 March 2021

Recommender:
Frederic Bertels

Reviewers:
Three anonymous reviewers

Correspondence:
jean.cury@normalesup.org

Simulation of bacterial populations
with SLiM
Jean Cury1, Benjamin C. Haller2, Guillaume Achaz3, 4 & Flora
Jay1

1 Université Paris-Saclay, CNRS, INRIA, Laboratoire Interdisciplinaire des Sciences du
Numérique, UMR 9015 Orsay, France
2 Department of Computational Biology, Cornell University, USA
3 UMR7206 Eco-Anthropologie, Universite de Paris, CNRS, MNHN, Paris, France
4 UMR7241 Centre Interdisciplinaire de Recherche en Biologie, College de France, CNRS, IN-
SERM, Paris, France

This article has been peer-reviewed and recommended by
Peer Community In Evolutionary Biology
https://doi.org/10.24072/pci.evolbiol.100123

Abstract
Simulation of genomic data is a key tool in population genetics, yet, to date, there is no
forward-in-time simulator of bacterial populations that is both computationally efficient
and adaptable to a wide range of scenarios. Here we demonstrate how to simulate
bacterial populations with SLiM, a forward-in-time simulator built for eukaryotes. SLiM
has gained many users in recent years, due to its speed and power, and has extensive
documentation showcasing various scenarios that it can simulate. This paper focuses
on a simple demographic scenario, to explore unique aspects of modeling bacteria in
SLiM’s scripting language. In addition, we illustrate the flexibility of SLiM by simulating the
growth of bacteria on a Petri dish with antibiotic. To foster the development of bacterial
simulations based upon this recipe, we explain the inner workings of its code. We also
validate the simulator, by extensively testing the results of simulations against existing
simulators, and against theoretical expectations for some summary statistics. This protocol,
with the flexibility and power of SLiM, will enable the community to simulate bacterial
populations efficiently under a wide range of evolutionary scenarios.

Keywords: Population genetics; Simulator; SLiM; Bacteria

Peer Community In Evolutionary Biology 1 of 36

https://doi.org/10.1101/2020.09.28.316869
mailto:jean.cury@normalesup.org
https://doi.org/10.24072/pci.evolbiol.100123


1 Introduction

Bacterial population genomics aims to reconstruct past evolutionary events and better un-
derstand the ongoing evolutionary dynamics operating in present-day populations. Demo-
graphic changes, selection, and migration are examples of processes whose genotypic sig-
nals remain in present-day populations. Trying to recover these signals from ever-growing
sequencing data is a major goal of population genomics. In the context of epidemiological
surveillance the inference of these types of events can be useful, since pathogens are known
to undergo frequent demographic changes [1]. Similarly, a better understanding of the evo-
lutionary forces operating in pathogen populations can help to inform public health policy [2].
For instance, one can assess the impact of a vaccination campaign or the efficacy of a new
antibiotic on a given pathogen population [3], [4]. Beyond these clinical settings, bacterial
population genomics can also be useful to describe natural population diversity [5].

Simulations are essential to population genetics [6]. They are useful for testing and vali-
dating population genetics methods (whether based on simulations or not), since they pro-
vide data generated by known evolutionary forces (unlike, typically, empirical sequence data).
Notably, they can be used to assess the performance of statistical methods when assump-
tions are violated [7], [8]. They are also helpful for predicting the impact of an environmental
change on a population, or the expected response to intervention [9], [10].

Many methods inferring past evolutionary events also rely on simulated data. In Approxi-
mate Bayesian Computation (ABC), probably the most famous likelihood-free inference frame-
work in our field, simulations enable estimation of the posterior distribution of parameters
of interest [11]. Other methods, based on machine learning, also require simulations to train
a model to learn the mapping between input sequence data and evolutionary processes [12].
Increasingly, machine learning methods involve ”deep learning” algorithms that hold great
promise but require a large volume of simulated data [13]–[17]. Despite these many ap-
plications of simulations in population genetics, there are very few bacterial population ge-
netics simulators, and those that exist do not cover many possible scenarios. In particu-
lar, existing bacterial simulators are coalescent-based simulators (msPro [18], SimBac [19],
FastSimBac [20]), which means they are very fast and memory-efficient, but can model only
a narrow range of evolutionary dynamics. For instance, these simulators do not allow selec-
tion, and in the case of SimBac, demographic changes cannot be simulated either. Simulation
of complex selective forces together with demographic processes remains a difficult prob-
lem for coalescence-based simulators [19]; other coalescent-based simulators that are not
specific to bacteria (e.g., ms [21], msprime [22]) suffer from the same constraints, and addi-
tionally most cannot simulate bacterial recombination (similar to gene conversion). On the
other hand forward simulators such as SFS CODE [23] enable complex models including vary-
ing demography and multiple types of selection; however, this software suffers from poor
performance [24]. Yet computational efficiency is crucial for supervised methods trained on
large simulated datasets, such as ABC, machine learning, and deep learning. Using forward

Peer Community In Evolutionary Biology 2 of 36



simulation instead of coalescent-based methods can therefore be problematic, given that
forward simulation has traditionally been several orders of magnitude slower than the coa-
lescent. CoreSimul, a forward-in-time bacterial simulator with bacterial recombination and
selection, was recently published [25]; however, it is designed for a different problem space
than we are interested in here (simulation of different models of molecular evolution on a
fixed genealogical tree of sampled individuals).

Here we present a method for simulating bacterial populations in a flexible and fast way,
using a forward simulator called SLiM [26]. The SLiM forward simulation framework is be-
coming quite widely used due to its speed, power, and flexibility [27]–[29]. SLiM includes a
scriptable interface with its own language, Eidos, which allows simulation of a wide range of
evolutionary dynamics. The detailed instruction manual, combined with its helpful graphical
user interface and its versatility, enable users to build simulation models tailored to their re-
search. Simulation of bacterial populations, and haploids in general, is not supported intrinsi-
cally by SLiM, because every individual has two chromosomes. But because of its scriptability,
it is possible to extend SLiM into this area. In this protocol, we will show the key techniques
necessary to perform bacterial simulations. Following the SLiM manual’s convention, we will
introduce the model implementation step by step together with the related concepts. Then
we will show that the simulator behaves correctly according to the expected values of certain
summary statistics under the Wright-Fisher model or by validating against other simulators,
and that the model’s performance is good enough to allow numerous simulations to be run in
a reasonable amount of time and memory. Finally, we will showcase a more complex model,
based upon our method, in which we simulate bacteria growing on a Petri dish. This model is
spatially explicit, representing the bacteria actually colonizing the dish, half of which contains
an antibiotic that decreases their survival rate. Resistance mutations may emerge, substan-
tially increasing the fitness of bacteria growing in the presence of antibiotic, while slightly
decreasing fitness otherwise. This model illustrates the open-ended flexibility of SLiM.

We believe this work will open new avenues in bacterial population genetics by allowing
researchers to go beyond the limitations of the coalescent, broadening the potential applica-
tions of simulation to a much wider range of evolutionary dynamics.

2 Methods, simulator and data

The bacterial simulator proposed here is based on SLiM, a powerful and efficient forward
genetic simulator [30]. Thanks to its flexible scripting interface using the Eidos language, we
were able to adapt SLiM to the simulation of bacterial populations.

SLiM provides two types of simulations: Wright-Fisher (WF) models, and models that go be-
yond the Wright-Fisher framework (non-Wright-Fisher or nonWF models). The Wright-Fisher
model is based on many simplifying assumptions that are often not compatible with realis-
tic scenarios such as structured populations, overlapping generations, etc. [26]. However, it

Peer Community In Evolutionary Biology 3 of 36



is mathematically simple, allowing expectations for certain quantities to be estimated. This
is particularly useful to validate the created simulator against the expectations under this
model. The nonWF framework, on the other hand, is more individual-based, emergent, and
realistic. It allows a greater breadth of possible scenarios to be simulated, but we cannot de-
rive expectations of the same quantities. Thus, we will provide results for the same scenario
under both models to confirm that they behave similarly (according to the WF expectations).

In the main text we will present the protocol for simulating bacterial populations with
the nonWF framework, since it is a more powerful framework on which other users can
build more complex scenarios. The underlying simulation, however, corresponds to a Wright-
Fisher population, so we can compare to the theoretical expectations. The corresponding an-
notated WF script is available in a public repository (https://github.com/jeanrjc/Bacte
rialSlimulations), along with the nonWF script detailed below. The different simulators
used in this article are summarized in the table 1 below. To highlight the modeling steps that
are specific to bacterial populations, we kept the underlying population history simple, with
a single constant-size population and no selection, but those assumptions are trivial to relax
in SLiM.

2.1 Key concepts and definitions

2.1.1 Horizontal gene transfer, recombination, and circularity

In bacteria, pieces of DNA can be exchanged between different organisms in a process called
horizontal gene transfer [31]. When received, such a DNA fragment can be inserted in the host
chromosome with the help of integrases, at a specific site if the fragment is not homologous to
an existing chromosomal region. Alternatively, if the incoming DNA fragment is homologous,
it will integrate into the host chromosome by a mechanism similar to gene conversion in
eukaryotes [32]. This latter process is the bacterial recombination mechanism that we want
to implement. We will use the term ”gene conversion” to refer to gene conversion specifically
in eukaryotes, and the term ”bacterial recombination” to refer to the mechanistically similar
process in bacteria. Note that bacterial recombination differs from simple recombination
in eukaryotes (often called cross-over), in that mutations are not exchanged between two
fragments of DNA; instead, the mutations are copied from one fragment to the other. Some
coalescent simulators do implement gene conversion or bacterial recombination, such as
ms [21] or FastSimBac [20], but they are otherwise quite limited, as discussed above. Our
implementation of bacterial recombination also provides a slightly closer fit with reality, since
we model the bacterial chromosome as circular. It has been shown that circularity can lead
to different patterns, such as linkage disequilibrium decaying faster in linear genomes than
in circular genomes [5], [33]. Although circularity is likely not important for the metrics and
parameters shown in this study, including it is one less incorrect assumption when modeling
bacteria.

Peer Community In Evolutionary Biology 4 of 36

https://github.com/jeanrjc/BacterialSlimulations
https://github.com/jeanrjc/BacterialSlimulations


Table 1: Summary table of the simulators used in this paper. Phases 1 and 2 represent
simulation steps in the order that they are performed. The third column gives brief comments
regarding each simulator, while the last column gives an example of the degree of scenario
complexity that can be simulated with each.

Phase 1 Phase 2 Comments Example

ms / msprime /
FastSimBac

Coalescent
simulation

None

Ideal for
simple
simulations of
basic scenarios

Migration
between
populations
with
demographic
changes

SLiM with
Wright-Fisher
(WF)
framework

Burn-in with ms

Forward
simulation
with SLiM,
starting from
burn-in output

Ease of imple-
mentation of
slightly
complex
scenarios;
fitness affects
fecundity

Demographic
changes and
background
selection

SLiM with
nonWF
framework

Forward
simulation
with SLiM and
tree sequence
recording

Recapitation of
the tree
sequence
using msprime

Wide range of
possible
scenarios;
fitness affects
mortality;
faster and
more accurate
burn-in

Spatial model
with
environment-
associated
fitness for
certain
mutations

2.1.2 Burn-in

It is often desirable to start a simulation with a population which is at mutation-drift equilib-
rium. After 5×Ne generations in our simple scenario, the heterozygosity has reached more
than 99% of the heterozygosity expected under mutation-drift equilibrium (see Annexes for
demonstration). In forward simulations, the time spent to reach this equilibrium (5×Ne) is
called ”burn-in”. Because the effective size of bacterial populations is usually large, conduct-
ing this burn-in with a forward simulator would often require much more time than simulating
the actual time period of interest, and this problem can make forward simulation of bacteria
difficult or even infeasible.

To solve this issue, faster backward-in-time simulators can be used to simulate a popula-
tion at equilibrium that serves to initialize the forward simulation. The nonWF model allows

Peer Community In Evolutionary Biology 5 of 36



an elegant and efficient approach to this: we can combine SLiM’s tree-sequence recording
feature with the recapitation feature of msprime [26] to manage burn-in. With this strategy,
we can begin with forward simulation in SLiM, leaving the burn-in for later. At the end of the
forward simulation, there is often no single common ancestor for the population; in other
words, the ancestry tree of the underlying population has not yet coalesced. Recapitation
will then simulate, backward in time, the addition of ancestral branches to produce coales-
cence, providing the needed burn-in ancestry after the fact. However, because msprime does
not yet implement gene conversion, we cannot use bacterial recombination during burn-in
for our nonWF model.

The WF model requires a different approach, because tree-sequence recording cannot be
used; in the WF model SLiM cannot record HGT events in the tree sequence. In this case,
we therefore have to simulate the entire population backward in time with ms, and load the
generated diversity into SLiM to initialize its forward simulation. Because we simulate the
entire population, it is not possible to use gene conversion at a significant rate, otherwise ms
crashes; thus there is no bacterial recombination during burn-in for our WF model, either. As
of now, for long simulations, it is thus not possible to have bacterial recombination during
a coalescent-based burn-in; we analyse the impact of this limitation on simulations in the
results section. For small populations, however, the burn-in can be simulated directly in SLiM.
Finally, in certain situations a burn-in is not desirable (as in our Petri dish model).

2.1.3 Simulation rescaling

Forward simulators remain computationally intensive, and bacterial populations can be very
large. The effective population size of most bacterial species is on the order of 108

− 109 [34].
Depending on the task one wants to address, many thousands or even millions of simulations
may be required. One way to reduce the computation time is to parallelize the simulations on
a cluster, but it can remain costly. Another way is to rescale the model parameters such that
θ = 2 × Ne × µ and related quantities remain constant [35]. For instance, we can decrease
the size of the population by a factor of 10 while increasing the mutation and recombination
rates by the same factor. The choice of the rescaling factor is at the discretion of the user,
but one should keep in mind that excessive rescaling might lead to spurious results [35]. For
instance, rescaling increases the rate of double mutation at a site, although it should remain
rare [36]. Also, if the simulation involves a bottleneck, the user should make sure that the
number of individuals remaining in the population after the bottleneck is not so small as
to cause artifacts. A model of a bottleneck that reduces a population of 1000 individuals to
100 would lead to very different results if we were to rescale the model down to only 10
individuals before the bottleneck and one individual after! The rescaling factor must also be
applied to the duration of the simulation (and the duration of different events that might
occur), so that the effects of drift remain similar. For instance, with a rescaling factor of 10,
the length of the simulation should be shortened by a factor of 10, as should the duration

Peer Community In Evolutionary Biology 6 of 36



of events such as bottlenecks or expansions. Thus, rescaled simulations not only run faster
per generation (because there are fewer individuals to process), but also run for a smaller
number of generations. In the results section, we will show the effect of the rescaling factor
on two summary statistics, along with the increase in the speed of the model. Because there
are many complexities involved in rescaling, we recommend choosing this factor with great
care, and cross-validating the results of downstream analyses by doing a small number of
runs that are unscaled (or less rescaled, at least).

2.2 Simulation protocol

2.2.1 Forward simulation

We now describe the protocol step by step. A schema in supplementary Figure S1 may help
to understand the following section by giving an overview of the approach taken.

SLiM scripts can be called from the command line or run within the SLiMgui graphical mod-
eling environment. Here we will define constant variables directly in the script, so that one
can run the code in SLiMgui. When running the model at the command line, those constants
could instead be passed to SLiM as -d constant=value command-line arguments; this is
convenient to run a whole set of simulations with different parameters. In this example, we
simulate 1000 generations of a population of 100 000 individuals, which have a chromosome
of 2Mb, and a recombination rate of 10−9 bacterial recombination events per generation per
base pair, with a mean recombination tract length of 10kb. The script begins with a block of
code called an initialize() callback:

1 initialize()

2 {

3 // Definition of constant variables

4 defineConstant("Ne", 1e5);

5 defineConstant("N_generations", 1000);

6 defineConstant("Rho", 1e-7);

7 defineConstant("tractlen", 1e4);

8 defineConstant("genomeSize", 2e6);

9 defineConstant("HGTrate", Rho * genomeSize); // HGT probability

10

11 // Initialization

12 initializeSLiMModelType("nonWF");

13 initializeTreeSeq(); // record trees for recapitation and/or adding neutral mutations later

14 initializeMutationRate(0); // no neutral mutations in the forward simulation

15 initializeMutationType("m1", 1.0, "f", 0.0); // neutral (unused)

16 initializeGenomicElementType("g1", m1, 1.0);

17 initializeGenomicElement(g1, 0, genomeSize - 1);

18 initializeRecombinationRate(0); // In SLiM recombination is between sister chromatids

19 }

Initialization of a bacterial simulation with SLiM

Here we initialize the simulation using the nonWF model with tree-sequence recording, as
explained in the SLiM manual. We set the mutation rate to zero because we will add neutral
mutations later with msprime, after recapitation; we do not want to forward-simulate neutral

Peer Community In Evolutionary Biology 7 of 36



mutations, for efficiency. Importantly for bacteria, the (generic) recombination process imple-
mented in SLiM should not happen, otherwise, because individuals in SLiM are diploids, our
haploid bacterial chromosomes will recombine with the empty second chromosomes. Thus,
the recombination rate should always be set to zero when simulating bacterial populations.
Instead, we define a constant, HGTrate, that represents the probability of a given bacterium
undergoing (homologous) HGT.

The population is created at the beginning of the first generation, as shown in the next
snippet; other populations could be created here too:

20 1 early()

21 {

22 sim.addSubpop("p1", Ne);

23 sim.rescheduleScriptBlock(s1, start=N_generations, end=N_generations);

24 }

Creation of a population

In line 22, we add a subpopulation named p1 of size Ne. The next line is not specific to bacte-
ria, but allows us to define the end of the simulation dynamically, governed by a parameter
(N generations). This is useful when comparing different rescaling factors, or when the end-
point of the simulation depends on other parameters or events.

25 reproduction()

26 {

27 // each parental individual reproduces twice, with independent probabilities of HGT

28 parents = p1.individuals;

29

30 for (rep in 0:1)

31 {

32

33 if (HGTrate > 0)

34 {

35 // for all daughter cells, which ones are going to undergo a HGT?

36 is_HGT = rbinom(size(parents), 1, HGTrate);

37 }

38 else

39 {

40 is_HGT = integer(size(parents)); // vector of 0s

41 }

42 for (i in seqAlong(parents))

43 {

44 if (is_HGT[i])

45 {

46 // Pick another individual to receive a piece of DNA from

47 HGTsource = p1.sampleIndividuals(1, exclude=parents[i]).genome1;

48 // Choose which fragment

49 pos_beg = rdunif(1, 0, genomeSize - 1);

50 tractLength = rgeom(1, 1.0 / tractlen);

51 pos_end = pos_beg + tractLength - 1;

52

53 // Prevent an edge case when both

54 // pos_beg and tractLength are equal to 0

55

56 if (pos_end == -1) {

57 pos_end = 1;

Peer Community In Evolutionary Biology 8 of 36



58 }

59 else

60 {

61 pos_end = integerMod(pos_beg + tractLength - 1, genomeSize);

62 }

63

64 // HGT from pos_beg forward to pos_end on a circular chromosome

65 if (pos_beg > pos_end)

66 breaks = c(0, pos_end, pos_beg);

67 else

68 breaks = c(pos_beg, pos_end);

69 subpop.addRecombinant(parents[i].genome1, HGTsource, breaks, NULL, NULL, NULL);

70 }

71 else

72 {

73 // no horizontal gene transfer; clonal replication

74 subpop.addRecombinant(parents[i].genome1, NULL, NULL, NULL, NULL, NULL);

75 }

76 }

77 }

78 // deactivate the reproduction() callback for this generation

79 self.active = 0;

80 }

Bacterial reproduction

In each generation, SLiM calls reproduction() callbacks for each individual and the call-
back handles how that focal individual reproduces and generates offspring. Since we want
to reproduce the whole population in one big bang (for efficiency, mostly), we override that
default behavior by setting self.active = 0; at the end of the callback. As a result, this
callback is called only once per generation and manages the reproduction of all individuals.
We make each parent reproduce twice (rep in 0:1) to circumvent SLiM’s constraint that in-
dividuals cannot undergo a horizontal gene transfer event in the middle of their lifespan. By
creating two clonal offspring, each can be part of a horizontal gene transfer event; had we
implemented a single clonal reproduction, only one of the two daughter cells (the one that is
not the parent) could have undergone HGT. Later in the script the parents are removed from
the population (by setting their fitness to 0), such that in each generation, a bacterium repro-
duces, generating two daughter cells. We then decide which clones (see line 36 above) will
undergo an HGT event by drawing from a binomial distribution, with the probability of HGT de-
fined by the constant HGTrate, line 9. If an individual was chosen as a recipient for HGT, then
the donor is picked randomly from the population (excluding the recipient); note that newly
generated individuals are merged into the populations by SLiM at the end of reproduction,
so a new daughter cell will never be an HGT source for another daughter cell. The DNA frag-
ment that is going to be transferred is now defined by a starting position, drawn uniformly
along the chromosome, and a length, whose value is drawn from a geometric distribution
with mean equal to the tract length parameter (tractlen). Then, the addRecombinant()
call creates a new daughter cell that is a clone of the parent, but with the recombination tract
copied from the donor to the recipient. If the individual was not an HGT recipient, it is simply

Peer Community In Evolutionary Biology 9 of 36



defined as a clone of its parent. Finally, as explained above, we deactivate this callback for
the rest of the generation since it has just reproduced every parent.

81 early()

82 {

83 inds = p1.individuals;

84 ages = inds.age;

85

86 // kill off parental individuals; biologically they don’t even exist,

87 // since they split by mitosis to generate their offspring

88 inds[ages > 0].fitnessScaling = 0.0;

89

90 // density-dependent population regulation on juveniles, toward Ne

91 juvenileCount = sum(ages == 0);

92 inds[ages == 0].fitnessScaling = Ne / juvenileCount;

93 }

Regulating the population size

As we saw earlier, we had to clone each individual (parent) twice, to produce two new
individuals (daughter cells/juveniles). To simulate mitotic cell division, we now remove the
parents by setting their fitness to 0. In order to simulate a demographic scenario of constant
population size, and because we are under the nonWF model where the size of the population
is an emergent property (not a parameter as in WF models), we rescale the fitness of all
juveniles so that the average number of individuals at each generation remains Ne. Before
the next generation, SLiM will kill individuals based on their absolute fitness, which acts as
a survival probability. Thus, at the start of the next generation we will have, on average, Ne
individuals (with some stochastic fluctuation around that average).

94 s1 10000late()

95 {

96 sim.treeSeqOutput("mySimulation.trees");

97 sim.simulationFinished();

98 }

Ending the simulation

This script block, named s1, was rescheduled by rescheduleScriptBlock() in line 23,
but a scheduled time for the block to execute – here 10 000 – has to be specified even though
it will be overridden with N generations. The value just needs to be high enough to avoid
unintended execution of the block before it gets rescheduled; the time at which the unscaled
simulation would end is typically a good choice, since it will never be too early. When the
simulation is over, we output the tree sequence to a .trees file that we can work with in
Python. In the next part we will show how to generate a burn-in period and genetic diversity
with msprime.

2.2.2 Recapitating and adding neutral mutations

When simulating with the nonWF framework, we efficiently obtain an initial population at
mutation-drift equilibrium by performing a recapitation of the tree sequence, as explained

Peer Community In Evolutionary Biology 10 of 36



earlier. So far, we have only forward-simulated the population while recording the tree se-
quence. Most likely, the simulation has not coalesced yet, because we did not run the simula-
tion for at least 5Ne generations. We now recapitate the tree sequence, which runs backward
in time, from the beginning of the forward simulation, to finish the coalescence process for
our recorded tree sequence. Then, to obtain a matrix of neutral SNPs for the population at
mutation-drift equilibrium – to compute summary statistics, for instance – the tree sequence
can be manipulated in msprime with the help of pyslim, a Python interface between SLiM
and msprime.

1 ts = pyslim.load("mySimulation.trees")

2 ts_recap = ts.recapitate(recombination_rate=1e-20, # Crossing over recombination set to 0.

3 Ne=Ne)

4

5 # simplify to a subset of the population that is still alive

6 sample_inds = np.random.choice(ts_recap.individuals_alive_at(0),

7 size=20, # the sample size

8 replace=False)

9 # get the first node of the sampled individuals to make them haploid

10 sample_nodes = [ts_recap.individual(i).nodes[0] for i in sample_inds]

11 ts_sampled_haploid = ts_recap.simplify(samples=sample_nodes)

12

13 # Add neutral mutations

14 ts_mutated = pyslim.SlimTreeSequence(

15 msprime.mutate(ts_sampled_haploid,

16 rate=1.53e-9/2 # mutation_rate/2 : to have 2.Ne.mu and not 4.Ne.mu

17 keep=True) # keep existing mutations

18 )

19

20

21 # Get the matrix of SNP, individuals in rows and SNP in columns.

22 snp_mat = ts_mutated.genotype_matrix().T

23

24 # get positions of the SNPs

25 pos = np.round(ts_mutated.tables.asdict()["sites"]["position"]).astype(int)

Recapitation and generation of SNPs with pyslim and msprime, in Python

First we load the tree sequence with pyslim, which returns a tree-sequence object. We
then recapitate the branches that have not coalesced yet, with a very low recombination rate
since msprime does not yet implement gene conversion. Since, for this protocol, we want
to generate a matrix of SNPs for a sample of individuals, not for the whole population, we
subsequently sample a random subset of extant individuals. We keep only the first node of
each individual, corresponding to the first chromosome in SLiM where our haploid genetic
material resides. Finally, we overlay neutral mutations on the resulting tree sequence. We
have to divide the mutation rate by two to obtain the desired θ = 2 × Ne × µ, instead of
θ = 4 ×Ne × µ that msprime expects for diploids. At the end, we get a matrix of SNPs and a
vector of corresponding positions, often used as input for inference methods [13], [16], [37].
This could easily be saved as an MS or VCF file if needed.

Peer Community In Evolutionary Biology 11 of 36



2.3 Simulations performed

To test the simulator, we ran simulations with parameters fitting the bacteria Streptoccocus
agalactiae Clonal Complex 17, which is a major neonatal pathogen [38], [39]. We used a chro-
mosome size of 2Mb, and we estimated the following parameters based upon data we found
in the literature. The simulation spans 20,000 generations, which represents about 55 years
of evolution for such bacteria in the wild, when using a generation time of 1 generation per
day (as estimated for E. coli [40]). The mutation rate is set to 1.53 × 10−9 mutations per base-
pair per generation [38]. The recombination rate was set equal to the mutation rate, and the
mean recombination tract length was estimated as 122 kb [41]. Note that the true recombi-
nation rate for S. agalactiae is probably lower [42], but in order to assess the correctness of
the implementation of bacterial recombination, we chose to set it equal to the mutation rate
and study the effects of varying it. The effective population size of this clonal complex was
estimated to be around 140,000 individuals [38]. At the end of simulation, we sampled 20
individuals and built a matrix of SNPs, from which we computed summary statistics.

Simulations were run on a Dell R640 server rack with Intel Xeon Silver 4112 2.6GHz proces-
sors.

2.4 Simulating Bacteria on a Petri dish with antibiotic

To demonstrate the flexibility and scriptability of our SLiM bacterial model, we also present
the results of a more complex and very different simulation scenario based upon our meth-
ods. It models bacteria growing on a Petri dish, seeded by 50 clones distributed randomly
on the plate. Half of the plate contains an antibiotic that decreases a bacterium’s fitness, be-
fore density-dependent selection, from 1.0 to 0.47. However, a resistance allele can emerge
through random mutation (at a rate of 10−5 per generation), and carrying this allele increases
fitness back to 0.906 in the presence of antibiotic. In all cases there is a small cost for having
the resistance allele, which leads to a reduced fitness of 0.98 for carriers of the resistance
allele when antibiotic is not present.

Because this is a spatially explicit model the bacteria interact with their neighbors. In this
type of model each bacterium has a given position in 2D space. Offspring appear near their
parents, horizontal gene transfer occurs only between neighboring bacteria, and bacteria
compete with their neighbors (which decreases the probability that a bacterium will divide
under crowded conditions). More details can be found in the SLiM manual [35] in the section
”Continuous-space models and interactions”. In this simulation with ongoing selection, neu-
tral mutations are not tracked during forward simulation; they would be added during the
recapitation phase. Only the resistance (beneficial) mutations are tracked here, since they
are non-neutral and therefore influence the shape of the tree sequence.

At equilibrium, the probability that a given bacterium will divide is about 0.5, so half of
the bacteria produce two offspring and die, while the other half produce no offspring and
die, so the population size is then (stochastically) constant. The neutral mutation rate was

Peer Community In Evolutionary Biology 12 of 36



set to 10−9, and the recombination rate was 10−7 with a mean recombination tract length of
500bp. The figures were generated using the random number seed 2049327378235, and
snapshots were taken in SLiMgui. The code to reproduce this simulation can be found in the
same repository: https://github.com/jeanrjc/BacterialSlimulations.

3 Results

We performed two sets of experiments to assess the performance and accuracy of our sim-
ulator. In the first experiment, we assessed the impact of rescaling the effective population
size, Ne, in order to speed up the computation time. In the second experiment, we analysed
the impact of varying the recombination rate and the mean recombination tract length, to bet-
ter grasp their effects on the simulations. For both experiments, we monitored the running
time and peak memory usage of SLiM, and assessed the quality of the simulations by com-
paring the site frequency spectrum (SFS) and the linkage disequilibrium (LD) with simulations
obtained using ms [21] and FastSimBac [20], which are backward simulators implementing
bacterial recombination (or gene conversion, in ms). For reference, we report runtime and
memory footprint data for the backward simulators as well.

3.1 Impact of rescaling

We compared 9 different rescaling factors (RFs): 1 (no rescaling), 2, 3, 4, 5, 10, 25, 50, and 100.
For RFs above 2, we generated 100 replicates for each RF and each SLiM model (WF, nonWF);
for RF 1, 30 replicates were used, and for RF 2, 50 replicates. We generated 300 replicates
when running FastSimBac and ms for comparison. Rescaling was not applied to backward
simulators, since they do not simulate the entire population.

Peer Community In Evolutionary Biology 13 of 36

https://github.com/jeanrjc/BacterialSlimulations


101

103

105

CP
U 

tim
e 

(s
)

FastSimBac
ms

WF
nonWF

1 2 3 4 5 10 25 50 100
Rescaling Factor

101

102

103

M
em

or
y 

(M
B)

FastSimBac

ms

Figure 1: Distribution of CPU time and peak memory usage for different rescaling factors.
For comparison with backward simulators, the dashed lines represent the average times for
FastSimBac (∼54s) and ms (∼14s). Rescaling does not apply to backward simulators. Note
the log scale on the y axis; 105 seconds is about 28 hours. Parameters used : chromosome
size : 2Mb; µ = ρ = 1.53 × 10−9; Ne = 140k; 20000 generations. There are 30 replicates
for RF 1, 50 replicates for RF2, 100 replicates for other RFs. Rescaling drastically reduces
the computational time and memory usage, matching the performance of the coalescent
simulators for sufficiently large RF.

Without rescaling, the generation of a single replicate takes about a day (Figure 1). This is
too long if one wants to run millions of simulations; however, it is possible to do a few such
runs for other purposes, such as confirming that rescaling did not introduce a bias when im-
plementing a new script. This might also be useful to test a method on a dataset produced
without rescaling, since even minor artifacts introduced by rescaling could conceivably bias
or confuse inference methods. When using a rescaling factor of 5, a simulation takes about
1 hour to run, which is practicable if one wants to run thousands of simulations on a cluster.
With a factor of 25 or more, the running time is comparable to that of FastSimBac and ms,
if not faster; FastSimBac is a bit slower than ms, probably because we used an additional
FastSimBac script to create an ms-formatted output file. At 100 seconds or less per repli-

Peer Community In Evolutionary Biology 14 of 36



cate, it is possible to generate about a million replicates in a few days or a week, on a typical
computing cluster (using perhaps 100 cores). The time of the burn-in period is included here,
and is not a limiting factor since it is faster than the forward-simulation period by about two
orders of magnitude for rescaling factors smaller than 5 (supplementary Figure S2). The mem-
ory peak usage is fairly low (up to a few gigabytes without rescaling), allowing any modern
laptop to run these simulations.

Comparing WF and nonWF performance, we see that the nonWF model tends to be faster,
especially at higher rescaling factors. This is due to the overhead of the burn-in step, which
is slower in the WF models. Without rescaling, or at lower rescaling factors, the difference
between WF and nonWF runtimes tends to disappear. Interestingly, the variance in time and
in memory is lower for the nonWF version, which can help predict the resources needed for
large runs. It is important to note that these performance metrics depend on the parameter
values used (such as the recombination rate).

We then computed the normalized SFS produced by the different rescaling factors. The SFS
represents the distribution of the frequency of derived alleles. Each bin (i) is given by iξi/θ̂,
where ξi is the count of SNPs having i derived alleles, and θ̂ is an estimator of θ computed
as the mean over the different bins (1/n

∑
iξi). Because iξi is an estimator of θ, the expected

normalized SFS for a constant-size neutral population under the Wright-Fisher model is a flat
line centered on 1 [43], [44].

Peer Community In Evolutionary Biology 15 of 36



0

1

2

3

4

5
No

rm
al

ize
d 

co
un

t i
.

i/
WF

Rescaling factor
1
5
10

25
50
100

nonWF

0.2 0.4 0.6 0.8
Frequency of derived allele

0

1

2

3

4

5

No
rm

al
ize

d 
co

un
t i

.
i/ FastSimBac

ms
WF : RF=1
WF : RF=25

0.2 0.4 0.6 0.8
Frequency of derived allele

FastSimBac
ms
nonWF : RF=1
nonWF : RF=25

Figure 2: Normalized Site Frequency Spectrum (SFS) for four simulators and different rescal-
ing factors. The left panels represent the SFS of the WF simulations under different rescaling
factors (top left) and compared to the coalescent simulators (bottom left). The same informa-
tion is shown on the right-hand side of the figure, but for the nonWF simulations. The colored
shaded areas represent one standard deviation (mean ± std). The horizontal dashed line at
1 indicates the expected average value and the black line the expected standard deviation,
both under the WF model without recombination. Parameters used: chromosome size: 2Mb;
µ = ρ = 1.53×10−9; Ne = 140k; 20000 generations. Rescaling does not affect the shape of the
SFS and it matches that of the expected horizontal line at 1, is not different across rescaling
factors, and is similar to the SFS obtained with the coalescent simulators.

Figure 2 shows the normalized SFS for 6 rescaling factors (see supplementary figure S3 for
all RFs) with the expected standard deviation under the Wright-Fisher model without recom-
bination [43]. FastSimBac and ms simulations are shown as a second control, in addition to
the theoretical expectations (horizontal line at 1).

We see that all experiments lead to the expected SFS, well within the expected standard
deviation for linked loci. The smaller standard deviations, compared to the theoretical ex-
pectation, are not surprising since recombination is known to decrease the variance of the
SFS [45]. Thus, rescaling factors up to 100 with this set of parameters do not affect the aver-
age SFS, which behaves correctly for WF and nonWF models.

Next, we assessed the impact of bacterial recombination on linkage disequilibrium (LD).
The LD is measured by r2, which quantifies how much correlation (or linkage) there is between
pairs of alleles separated by a given distance. We measured this correlation by subsampling
pairs of SNPs, in 19 bins of increasing distances. The LD is represented as a function of the
mean distance within each bin. We compared our results to the LD obtained with simula-

Peer Community In Evolutionary Biology 16 of 36



tions from FastSimBac and ms. In figure 3 we observe that the LD for both WF and nonWF
models is similar to that obtained with ms and FastSimBac, and does not seem to be af-
fected by the rescaling factor. Unlike for the SFS, the expected LD and expected variation
are hard to obtain and are beyond the scope of this paper. However, we know that the LD
at very short distances should be close to the LD obtained in the absence of recombination.
In figure 3, we used a shaded gray area to represent the range of LD without recombina-
tion at short distance. More precisely, it shows the mean +/- standard error of the mean for
the four simulators without recombination. The full LD plot without recombination can be
seen in supplementary figures S6 and S7. Note that in figure 3 a small difference between
the backward and forward simulators can be seen, with the backward simulators tending to
produce higher LD at short distances than the forward ones. This might be due to different
implementations of recombination at short distances, or to a lack of recombination during
the burn-in for forward simulation. Overall, however, we show that all types of simulations
produced the expected LD at short distances and converged toward the expected r2 with free
recombination of 1/n (dashed line) [46], [47].

0.05
0.10
0.15
0.20
0.25
0.30
0.35

r2

WF
Rescaling factor

1
5
10

25
50
100

nonWF

102 103 104 105 106

distance (bp)

0.05
0.10
0.15
0.20
0.25
0.30
0.35

r2

FastSimBac
ms
WF : RF=1
WF : RF=25

102 103 104 105 106

distance (bp)

FastSimBac
ms
nonWF : RF=1
nonWF : RF=25

Figure 3: Linkage disequilibrium for WF (left) and nonWF (right) simulations under different
rescaling factors (RFs) and for ms and FastSimBac (bottom). The horizontal dashed line in-
dicates the expected r2 with free recombination when sampling 20 individuals (1/20). The
colored shaded areas represent standard error of the mean, and the gray area toward the
left of each panel represents the range of expected values at very short distances. Param-
eters used: chromosome size = 2Mb; µ = ρ = 1.53 × 10−9; Ne = 140k; 20000 generations.
Rescaling does not affect the shape of LD (top), which matches that of coalescent simulators
fairly well (bottom).

Peer Community In Evolutionary Biology 17 of 36



Overall, rescaling the simulations up to a factor of one hundred produces the expected
SFS and LD, while allowing a drastic reduction in time and memory. This opens the possibility
of running many simulations in a small amount of time, allowing the power and flexibility of
forward simulation to be leveraged much more usefully in bacterial population genomics.

3.2 Impact of recombination

In this section we assess the impact of recombination with the same set of parameters used
previously, with a rescaling factor of 25 across all of these runs. We compare simulations
under three recombination rates (ρ/10, ρ and 10ρ, where ρ = 1.53 × 10−9) and three mean
tract lengths (λ/100, λ/10, λ, where λ = 122 kb). These different recombination tract lengths
cover the span of tract lengths found in bacteria where, depending on the mechanism of
transfer, the size of the recombining region can range from approximately a 2kb fragment
for transformation [48] to more than 100kb with conjugation [41]. It is worth stressing that
for more realistic bacterial simulations, the mean tract length should represent the average
for all recombination events, not only selected ones, otherwise the length might be overesti-
mated [48]. We show here that a wide range of recombination tract lengths can be simulated.
First looking at performance, increasing the recombination rate by a factor of 100 increases
the runtime of the WF model 18-fold, but by only about 3-fold for the nonWF model (Figure
4 top). Higher recombination rates do require more memory, particularly when using the
nonWF model, but with the rescaling factor used in this experiment it is still less than 1 GB
(Figure 4 bottom).

Peer Community In Evolutionary Biology 18 of 36



100
101
102
103
104

CP
U 

tim
e 

(s
)

WF nonWF FastSimBac ms

/10
/100

/10
/10

/10
/100 /10

10
/100

10
/10

10

= 1.53.10 9 ; = 122kb

101

102

103

M
em

or
y 

(M
B)

Figure 4: Distribution of the CPU time and peak memory usage for different recombination
rates (ρ) and mean recombination tract lengths (λ). Parameters used : chromosome size
: 2Mb; µ = 1.53 × 10−9; Ne = 140k; 30000 generations; RF=25. There are 100 replicates
for each combination of ρ and λ. Computation time and memory usage increase with the
recombination rate, but not with the recombination tract length.

The recombination rate thus has an important impact on the runtime of the WF simula-
tions, but has much less impact on the nonWF simulations. The size of the recombination
tract does not seem to significantly affect either runtime or memory usage. As expected, co-
alescent simulators are very fast at low recombination rates, but tend to struggle at higher
recombination rates [20]. It takes them up to 10 thousand times longer to run when increas-
ing the recombination rate by a factor of 100. Because of this, the simulations with ms and
FastSimBac with 10ρ and λ were too slow, so we could only run 6 and 7 replicates, respec-
tively, instead of a hundred. Other backward simulators may better handle higher recombi-
nation rates; however, our focus here is on the results of the simulations, not the efficiency of
the simulators (a pointless comparison given the very different nature of coalescent simula-
tors). The timing data for the backward simulators is just intended to give context for readers
familiar with these software programs.

As in the previous experiment, we analysed the behaviour of our simulations with respect
to the normalized SFS and the LD. In figure 5, we see that the SFS is distributed as expected
(flat line centered at 1), independently of the simulator or type of simulation. Interestingly, we
observed two expected theoretical results: the standard deviation of the simulated SFS at low
recombination matches expectation [43], and the variance decreases as the recombination
rate increases [45]. We see that for a given recombination rate, decreasing the recombination
tract length has a similar effect as decreasing the recombination rate for a given tract length

Peer Community In Evolutionary Biology 19 of 36



(moving between figure panels leftward is similar to moving between figure panels upward).
In figure 6 the decay of LD with distance is similar when comparing all four types of sim-

ulations. We observe the same small discrepancy between coalescent and SLiM simulations
as seen earlier, but only for a subset of the parameters. At low recombination rate, we re-
cover the clonal frame, corresponding to the fact that bacterial recombination involves small
patches of homologous DNA, rather than long stretches [49]. This means that positions on
either side of an HGT patch will stay linked, and this explains the space between the line of the
expected LD with free recombination and the LD curve at high distance, which is expected
in bacteria [32]. A higher recombination rate or a longer recombination tract length tends
to approximate the expected LD of an organism with recombination by crossing over rather
than HGT.

Peer Community In Evolutionary Biology 20 of 36



0

1

2

3

4

5

No
rm

al
ize

d 
co

un
t i

.
i/

/100 /10

/10

WF
nonWF

FastSimBac
ms

0

1

2

3

4

5

No
rm

al
ize

d 
co

un
t i

.
i/

0.2 0.4 0.6 0.8
Frequency of derived allele

0

1

2

3

4

5

No
rm

al
ize

d 
co

un
t i

.
i/

0.2 0.4 0.6 0.8
Frequency of derived allele

0.2 0.4 0.6 0.8
Frequency of derived allele

10

Figure 5: The normalized Site Frequency Spectrum (SFS) for different recombination rates (ρ)
and tract lengths (λ). The colored shaded areas represent standard deviation. The horizontal
line at 1 is the expected normalized SFS and the black line represents the expected standard
deviation, both under the WF model without recombination. Parameters used: chromosome
size = 2Mb; µ = ρ = 1.53 × 10−9; λ = 122kb; Ne = 140k; 30000 generations; RF=25. The
observed SFS matches the expected horizontal line in all cases. Under low recombination
their standard deviations also match the expectation, but the variance decreases with the
recombination rate in accord with theoretical expectations.

Peer Community In Evolutionary Biology 21 of 36



0.05

0.10

0.15

0.20

0.25

0.30

0.35
r2

/100

WF
nonWF

FastSimBac
ms

/10

/10

0.05

0.10

0.15

0.20

0.25

0.30

0.35

r2

103 105

distance (bp)

0.05

0.10

0.15

0.20

0.25

0.30

0.35

r2

103 105

distance (bp)
103 105

distance (bp)

10

Figure 6: Linkage disequilibrium for WF and nonWF simulations with various recombination
rates (ρ) and tract lengths (λ). The colored shaded areas represent standard error of the
mean, and the gray area represents the range of expected values at very short distances.
The horizontal black dashed line is the expected r2 with free recombination when sampling 20
individuals (1/20). Parameters used: chromosome size = 2Mb; µ = ρ = 1.53×10−9; λ = 122kb;
Ne = 140k; 30000 generations; RF=25. Various recombination rates and mean tract lengths
produce similar patterns of LD between SLiM simulations and backward simulators.

Overall, changing the recombination rate and mean recombination tract length produced
the expected statistical results. Even for the highest recombination rate, the runtime and
memory requirements are still low enough to allow many simulations to be run (Figure 4),
and if necessary, one might increase the rescaling factor (with proper validation and testing).
Interestingly, with a high recombination rate the rescaled SLiM simulations were much faster
than coalescent simulations. Finally, the nonWF model seems to have a more predictable
runtime and memory footprint, which might be beneficial when computing resources are
scarce.

Peer Community In Evolutionary Biology 22 of 36



3.3 Simulating bacterial growth on a Petri dish with antibiotic

In this paper, we mostly focus on results from a very simple population-genetic scenario.
Here, however, we briefly showcase a radically different model, based upon our simple nonWF
model, which might be of interest for evolutionary microbiologists. This model includes ef-
fects of explicit space on dispersal, competition, and genetic relatedness; this type of model
may help with understanding the impact of environmental structure on a given evolutionary
dynamic. For instance, a similar simulation framework was used to estimate the impact of a
structured environment on resistance to phage and antibiotics [50]. In this toy scenario, we
follow the growth of multiple colonies that are spread on a Petri dish as depicted in figure 7.
The figure clearly shows how the antibiotic prevents the bacteria from spreading during a cer-
tain period and how the appearance of a resistance allele, despite being costly for its host in
a neutral environment, eventually changes the spatial dynamics of colonization. This is obvi-
ously a basic model, and we are not interested in analyzing its results in any detail; instead, its
purpose here is to show how easily more complex scenarios can be modeled in SLiM, based
upon our simple bacterial protocol. Importantly, we still have access to the tree sequence of
the population and we could thus recapitate the 50 individuals that started the simulations,
overlay neutral mutations, etc., and perform further analysis.

Peer Community In Evolutionary Biology 23 of 36



(a) Generation 1 (b) Generation 20 (c) Generation 50

(d) Generation 100 (e) Generation 200 (f) Generation 300

(g) Generation 400 (h) Generation 500 (i) Generation 600

Figure 7: Representation of the simulated Petri dish at different generations. The pink area
represents the half of the dish with antibiotic, while the white half has none. At the first gener-
ation, there are 50 colonies (single bacteria) spread randomly on the plate. As the simulation
goes forward, we see those colonies growing, in yellow. They grow better in the right-hand
half of the plate, due to the absence of antibiotic. Bacteria colored red have acquired an-
tibiotic resistance. We see that the resistant bacteria later grow better in the left half of the
dish. Because of the fitness cost of the antibiotic-resistance mutation in the absence of antibi-
otic, there are only a few red bacteria in the right half at the end of simulation despite their
markedly higher mean fitness over the environment as a whole, showing the importance of
spatiality for the outcome of the model. The code used to generate this simulation can be
found at https://github.com/jeanrjc/BacterialSlimulations.

Peer Community In Evolutionary Biology 24 of 36

https://github.com/jeanrjc/BacterialSlimulations


4 Discussion

We presented a step-by-step protocol for performing simulations in SLiM of a simple bacterial
population, and one example of a more complex spatial model based upon our protocol. Al-
though SLiM is not focused on bacteria, the simulations were shown to behave correctly, and
ran in a reasonable amount of time. The basic models we presented were simple in order
to draw attention to the particular techniques involved in simulating bacterial populations,
but all of the model variation discussed in the SLiM manual – complex demography and pop-
ulation structure, selection, and so forth – can easily be added to this foundational model,
as exemplified with our spatial model. Our simplified approach also allowed us to compare
the accuracy of our implementation to theoretical expectations, and to other simulators for
which substantially more complex scenarios would not have been possible. The final model,
of bacteria on a Petri dish, certainly could not be run in any coalescent simulator.

These simulations were made both within SLiM’s Wright-Fisher framework and within the
more individual-based nonWF framework, to showcase these two possibilities for the user.
The recipes for our WF and nonWF models are freely available on our dedicated repository
(https://github.com/jeanrjc/BacterialSlimulations), where we encourage ev-
eryone to propose their recipes for more complex scenarios. It might be worth mentioning
why one would choose between SLiM’s WF and nonWF model types, since this fundamental
choice will guide much of the model development that follows. The WF model is simpler in
many ways: it involves more simplifying assumptions and less individual-level behavior. For
example, population size in the WF model is automatically maintained at a set level, whereas
the nonWF model requires you to write script that regulates the population size via mecha-
nisms such as density-dependence or – appropriately for pathogens, perhaps – host mortality.
Similarly, reproduction in the WF model is automatic, based upon fitness; high-fitness individ-
uals reproduce more than low-fitness individuals, a fact that SLiM automatically enforces. In
nonWF models, in contrast, fitness typically influences mortality, not fecundity, and repro-
duction is explicitly scripted to allow for greater individual-level variation in the modes and
mechanisms of offspring generation. Writing a nonWF model is therefore a bit more com-
plex and technical, and requires more details to be spelled out explicitly. Normally, nonWF
models are a bit slower, but here the opposite was true; the slower implementation of the
burn-in for the WF model, due to the incompatibility between tree-sequence recording and
the WF implementation of bacterial recombination, meant that the WF model was slower.
This is, in part, why we emphasized the nonWF model here; in this context, it really provides
both greater power and flexibility, and better performance. However, the WF model remains
simpler, conceptually and in its implementation; and if one wants fitness to affect fecundity
rather than mortality it can be the more natural choice. These remarks are summarized in
Table 1.

Currently, the only drawback of this simulator concerns the lack of recombination during
the burn-in step. For the WF model, this is due to a technical limitation in ms; for the nonWF

Peer Community In Evolutionary Biology 25 of 36

https://github.com/jeanrjc/BacterialSlimulations


model, it is due to the current lack of gene conversion support in msprime. Implementation
of gene conversion in msprime is in progress, and may be available soon. This will greatly
improve the nonWF model, and will be trivial to add with a minor change to the recapitation
step of the Python script. We will update our repository as soon as this feature is released
in msprime. This lack of recombination during burn-in leads to a deficit in LD when forward
simulation is too brief. In our runs, we see that after about 20 000 forward generations (about
Ne/7 generations), LD and SFS match that of ms and FastSimBac (supplementary Figure S5
and Figure S6). If one wants to run a very short simulation (e.g. less than Ne/7) with burn-in,
it might still be worth running at least Ne/7 generations more of forward burn-in in addition
to a coalescent burn-in. The higher variance of the SFS observed in the experiments for the
SLiM simulations, compared to ms and FastSimBac, might be explained by this lack of re-
combination during burn-in, since recombination decreases the SFS’s variance [45]. In short,
for simulations that require burn-in (in order to start non-neutral dynamics at mutation-drift
equilibrium, for example, or to obtain fully coalesced ancestry trees in Python), a few gen-
erations of neutral dynamics at the beginning of forward simulation are enough to recover
the correct LD, at least in our simple model. (The necessary length of neutral forward simu-
lation may be longer for other models, particularly with strong spatial structure.) Once gene
conversion is added to msprime, this will not be needed any more.

We hope that our work here will stimulate a wave of development of simulation-based
models for bacterial population genetics. We believe that this paper, combined with the
hundred-plus models presented in SLiM’s extensive documentation, will allow anyone to cre-
ate new scenarios for bacterial populations seamlessly. It is possible to simulate evolution in
continuous space (such as in a Petri dish), to model nucleotides explicitly (including the use of
FASTA and VCF files), to model selection based on external environmental factors such as the
presence of antibiotics (and selection for resistance genes), and even to model within-host
evolution using a single subpopulation for each host while modeling between-host transmis-
sion and infectivity dynamics; with the scriptability of SLiM almost anything is possible. We
look forward to seeing the diverse research questions that the bacterial genomics community
will explore with SLiM.

Acknowledgements

We thank Peter Ralph, Eduardo Rocha, and Philippe Glaser for fruitful discussions. JC and
FJ thank DIM One Health 2017 (number RPH17094JJP) and Human Frontier Science Project
(number RGY0075/2019) for funding. The authors of this preprint declare that they have no
financial conflict of interest with the content of this article. Guillaume Achaz is one of the PCI
Evol Biol recommenders and is part of the managing board. Version 5 of this preprint has
been peer-reviewed and recommended by Peer Community In Evolutionary Biology (https:
//doi.org/10.24072/pci.evolbiol.100123)

Peer Community In Evolutionary Biology 26 of 36

https://doi.org/10.24072/pci.evolbiol.100123
https://doi.org/10.24072/pci.evolbiol.100123


References

[1] J. B. H. Martiny, B. J. Bohannan, J. H. Brown, R. K. Colwell, J. A. Fuhrman, J. L. Green, M. C.
Horner-Devine, M. Kane, J. A. Krumins, C. R. Kuske, P. J. Morin, S. Naeem, L. Øvres, A.-L.
Reysenbach, V. H. Smith, and J. T. Staley, “Microbial biogeography: Putting microorgan-
isms on the map,”Nature ReviewsMicrobiology, vol. 4, no. 2, pp. 102–112, Feb. 2006, issn:
1740-1526, 1740-1534. doi: 10.1038/nrmicro1341.

[2] Y. H. Grad and M. Lipsitch, “Epidemiologic data and pathogen genome sequences: A
powerful synergy for public health,” Genome Biology, vol. 15, no. 11, p. 538, Nov. 2014,
issn: 1474-760X. doi: 10.1186/s13059-014-0538-4.

[3] N. J. Croucher, J. A. Finkelstein, S. I. Pelton, P. K. Mitchell, G. M. Lee, J. Parkhill, S. D.
Bentley, W. P. Hanage, and M. Lipsitch, “Population genomics of post-vaccine changes
in pneumococcal epidemiology,” Nature Publishing Group, vol. 45, no. 6, 2013. doi: 10.
1038/ng.2625.

[4] N. J. Croucher, C. Chewapreecha, W. P. Hanage, S. R. Harris, L. Mcgee, M. Van Der Lin-
den, J.-H. Song, K. S. Ko, H. De Lencastre, C. Turner, F. Yang, R. Sá-Leã O, B. Beall, K. P.
Klugman, J. Parkhill, P. Turner, and S. D. Bentley, “Evidence for Soft Selective Sweeps
in the Evolution of Pneumococcal Multidrug Resistance and Vaccine Escape,” Genome
Biol. Evol, vol. 6, no. 7, pp. 1589–1602, 2014. doi: 10.1093/gbe/evu120.

[5] D. A. Robinson, D. Falush, and E. J. Feil, Bacterial Population Genetics in Infectious Disease,
Wiley-Blackwell. 2010, isbn: 978-0-470-42474-2.

[6] S. Hoban, “An overview of the utility of population simulation software in molecular
ecology,” Molecular Ecology, vol. 23, no. 10, pp. 2383–2401, May 2014, issn: 09621083.
doi: 10.1111/mec.12741.

[7] M. Lapierre, C. Blin, A. Lambert, G. Achaz, and E. P. C. Rocha, “The Impact of Selection,
Gene Conversion, and Biased Sampling on the Assessment of Microbial Demography,”
Molecular Biology and Evolution, vol. 33, no. 7, pp. 1711–1725, Jul. 2016. doi: 10.1093/
molbev/msw048.

[8] L. Chikhi, V. C. Sousa, P. Luisi, B. Goossens, and M. A. Beaumont, “The Confounding
Effects of Population Structure, Genetic Diversity and the Sampling Scheme on the De-
tection and Quantification of Population Size Changes,”Genetics, vol. 186, no. 3, pp. 983–
995, Nov. 2010, issn: 0016-6731, 1943-2631. doi: 10.1534/genetics.110.118661.

[9] F. Jay, S. Manel, N. Alvarez, E. Y. Durand, W. Thuiller, R. Holderegger, P. Taberlet, and
O. François, “Forecasting changes in population genetic structure of alpine plants in
response to global warming,” Molecular Ecology, vol. 21, no. 10, pp. 2354–2368, May
2012, issn: 09621083. doi: 10.1111/j.1365-294X.2012.05541.x.

Peer Community In Evolutionary Biology 27 of 36

https://doi.org/10.1038/nrmicro1341
https://doi.org/10.1186/s13059-014-0538-4
https://doi.org/10.1038/ng.2625
https://doi.org/10.1038/ng.2625
https://doi.org/10.1093/gbe/evu120
https://doi.org/10.1111/mec.12741
https://doi.org/10.1093/molbev/msw048
https://doi.org/10.1093/molbev/msw048
https://doi.org/10.1534/genetics.110.118661
https://doi.org/10.1111/j.1365-294X.2012.05541.x


[10] M. Bruford, M. Ancrenaz, L. Chikhi, I. Lackmann-Ancrenaz, M. Andau, L. Ambu, and
B. Goossens, “Projecting genetic diversity and population viability for the fragmented
orang-utan population in the Kinabatangan floodplain, Sabah, Malaysia,” Endangered
Species Research, vol. 12, no. 3, pp. 249–261, Oct. 2010, issn: 1863-5407, 1613-4796. doi:
10.3354/esr00295.

[11] K. Csilléry, M. G. Blum, O. E. Gaggiotti, and O. François, “Approximate Bayesian Com-
putation (ABC) in practice,” Trends in Ecology & Evolution, vol. 25, no. 7, pp. 410–418, Jul.
2010, issn: 01695347. doi: 10.1016/j.tree.2010.04.001.

[12] D. R. Schrider and A. D. Kern, “Supervised Machine Learning for Population Genetics:
A New Paradigm,” Trends in Genetics, vol. 34, no. 4, pp. 301–312, Apr. 2018, issn: 0168-
9525. doi: 10.1016/j.tig.2017.12.005.

[13] S. Sheehan and Y. S. Song, “Deep Learning for Population Genetic Inference,” PLOS
Computational Biology, vol. 12, no. 3, K. Chen, Ed., e1004845–e1004845, Mar. 2016. doi:
10.1371/journal.pcbi.1004845.

[14] A. D. Kern and D. R. Schrider, “diploS/HIC: An Updated Approach to Classifying Selective
Sweeps,” G3: Genes, Genomes, Genetics, g3.200262.2018, Apr. 2018, issn: 2160-1836. doi:
10.1534/g3.118.200262.

[15] L. Flagel, Y. Brandvain, and D. R. Schrider, “The Unreasonable Effectiveness of Convo-
lutional Neural Networks in Population Genetic Inference,” Molecular Biology and Evo-
lution, vol. 36, no. 2, pp. 220–238, Feb. 2019, issn: 0737-4038. doi: 10.1093/molbev/
msy224.

[16] T. Sanchez, J. Cury, G. Charpiat, and F. Jay, “Deep learning for population size history
inference: Design, comparison and combination with approximate Bayesian compu-
tation,” Molecular Ecology Resources, pp. 1755–0998.13224, Jul. 2020, issn: 1755-098X,
1755-0998. doi: 10.1111/1755-0998.13224.

[17] C. Battey, P. L. Ralph, and A. D. Kern, “Predicting geographic location from genetic vari-
ation with deep neural networks,” eLife, vol. 9, e54507, Jun. 2020, issn: 2050-084X. doi:
10.7554/eLife.54507.

[18] T. Akita, S. Takuno, and H. Innan, “Coalescent framework for prokaryotes undergoing
interspecific homologous recombination,” Heredity, Jan. 2018, issn: 0018-067X, 1365-
2540. doi: 10.1038/s41437-017-0034-1.

[19] T. Brown, X. Didelot, D. J. Wilson, and N. D. Maio, “SimBac: Simulation of whole bacterial
genomes with homologous recombination,” Microbial Genomics, vol. 2, no. 1, Jan. 2016,
issn: 2057-5858, 2057-5858. doi: 10.1099/mgen.0.000044.

[20] N. De Maio and D. J. Wilson, “The Bacterial Sequential Markov Coalescent,” Genetics,
vol. 206, no. 1, pp. 333–343, May 2017, issn: 0016-6731, 1943-2631. doi: 10.1534/
genetics.116.198796.

Peer Community In Evolutionary Biology 28 of 36

https://doi.org/10.3354/esr00295
https://doi.org/10.1016/j.tree.2010.04.001
https://doi.org/10.1016/j.tig.2017.12.005
https://doi.org/10.1371/journal.pcbi.1004845
https://doi.org/10.1534/g3.118.200262
https://doi.org/10.1093/molbev/msy224
https://doi.org/10.1093/molbev/msy224
https://doi.org/10.1111/1755-0998.13224
https://doi.org/10.7554/eLife.54507
https://doi.org/10.1038/s41437-017-0034-1
https://doi.org/10.1099/mgen.0.000044
https://doi.org/10.1534/genetics.116.198796
https://doi.org/10.1534/genetics.116.198796


[21] R. R. Hudson, “Ms a program for generating samples under neutral models,” 2004.

[22] J. Kelleher, A. M. Etheridge, and G. McVean, “Efficient Coalescent Simulation and Ge-
nealogical Analysis for Large Sample Sizes,” PLOS Computational Biology, vol. 12, no. 5,
e1004842, May 2016, issn: 1553-7358. doi: 10.1371/journal.pcbi.1004842.

[23] R. D. Hernandez, “A flexible forward simulator for populations subject to selection and
demography,” Bioinformatics, vol. 24, no. 23, pp. 2786–2787, Dec. 2008, issn: 1367-4803,
1460-2059. doi: 10.1093/bioinformatics/btn522.

[24] B. C. Haller and P. W. Messer, “SLiM 2: Flexible, Interactive Forward Genetic Simula-
tions,” Molecular Biology and Evolution, vol. 34, no. 1, pp. 230–240, Jan. 2017, issn: 0737-
4038. doi: 10.1093/molbev/msw211.

[25] L.-M. Bobay, “CoreSimul: A forward-in-time simulator of genome evolution for prokary-
otes modeling homologous recombination,” BMC Bioinformatics, vol. 21, no. 1, p. 264,
Dec. 2020, issn: 1471-2105. doi: 10.1186/s12859-020-03619-x.

[26] B. C. Haller and P. W. Messer, “SLiM 3: Forward Genetic Simulations Beyond the Wright–Fisher
Model,” Molecular Biology and Evolution, p. 6, Jan. 2019. doi: 10.1093/molbev/msy228.

[27] A. M. Sackman, R. B. Harris, and J. D. Jensen, “Inferring Demography and Selection in Or-
ganisms Characterized by Skewed Offspring Distributions,” Genetics, vol. 211, pp. 1019–
1028, 2019.

[28] G. S. Bradburd and P. L. Ralph, “Spatial Population Genetics: It’s About Time,” Annual
Review of Ecology, Evolution, and Systematics, vol. 50, no. 1, pp. 427–449, Nov. 2019, issn:
1543-592X, 1545-2069. doi: 10.1146/annurev-ecolsys-110316-022659.

[29] J. Kelleher, Y. Wong, A. W. Wohns, C. Fadil, P. K. Albers, and G. McVean, “Inferring whole-
genome histories in large population datasets,”Nature Genetics, vol. 51, no. 9, pp. 1330–
1338, Sep. 2019, issn: 1061-4036, 1546-1718. doi: 10.1038/s41588-019-0483-y.

[30] B. C. Haller and P. W. Messer, “Evolutionary Modeling in SLiM 3 for Beginners,”Molecular
Biology and Evolution, vol. 36, no. 5, R. Hernandez, Ed., pp. 1101–1109, May 2019, issn:
0737-4038, 1537-1719. doi: 10.1093/molbev/msy237.

[31] H. Ochman, J. G. Lawrence, and E. A. Groisman, “Lateral gene transfer and the nature
of bacterial innovation.,” Nature, vol. 405, no. 6784, pp. 299–304, May 2000, issn: 0028-
0836. doi: 10.1038/35012500.

[32] E. P. C. Rocha, “Neutral Theory, Microbial Practice: Challenges in Bacterial Population
Genetics,” Molecular Biology and Evolution, vol. 35, no. 6, pp. 1338–1347, Jun. 2018, issn:
0737-4038. doi: 10.1093/molbev/msy078.

[33] C. Wiuf, “Recombination in Human Mitochondrial DNA?,” p. 8, 2001.

[34] L.-M. Bobay and H. Ochman, “Factors driving effective population size and pan-genome
evolution in bacteria,” BMC Evolutionary Biology, vol. 18, no. 1, p. 153, Dec. 2018, issn:
1471-2148. doi: 10.1186/s12862-018-1272-4.

Peer Community In Evolutionary Biology 29 of 36

https://doi.org/10.1371/journal.pcbi.1004842
https://doi.org/10.1093/bioinformatics/btn522
https://doi.org/10.1093/molbev/msw211
https://doi.org/10.1186/s12859-020-03619-x
https://doi.org/10.1093/molbev/msy228
https://doi.org/10.1146/annurev-ecolsys-110316-022659
https://doi.org/10.1038/s41588-019-0483-y
https://doi.org/10.1093/molbev/msy237
https://doi.org/10.1038/35012500
https://doi.org/10.1093/molbev/msy078
https://doi.org/10.1186/s12862-018-1272-4


[35] B. C. Haller and P. W. Messer, SLiM: An Evolutionary Simulation Framework, http://
benhaller.com/slim/SLiM_Manual.pdf, 2016.

[36] C. J. Hoggart, M. Chadeau-Hyam, T. G. Clark, R. Lampariello, J. C. Whittaker, M. De Io-
rio, and D. J. Balding, “Sequence-Level Population Simulations Over Large Genomic Re-
gions,” Genetics, vol. 177, no. 3, pp. 1725–1731, Nov. 2007, issn: 0016-6731. doi: 10.
1534/genetics.106.069088.

[37] F. Jay, S. Boitard, and F. Austerlitz, “An ABC Method for Whole-Genome Sequence Data:
Inferring Paleolithic and Neolithic Human Expansions,” Molecular Biology and Evolution,
vol. 36, no. 7, pp. 1565–1579, Jul. 2019, issn: 0737-4038. doi: 10.1093/molbev/msz038.

[38] V. Da Cunha, M. R. Davies, P.-E. Douarre, I. Rosinski-Chupin, I. Margarit, S. Spinali, T.
Perkins, P. Lechat, N. Dmytruk, E. Sauvage, L. Ma, B. Romi, M. Tichit, M.-J. Lopez-Sanchez,
S. Descorps-Declere, E. Souche, C. Buchrieser, P. Trieu-Cuot, I. Moszer, D. Clermont, D.
Maione, C. Bouchier, D. J. Mcmillan, J. Parkhill, J. L. Telford, G. Dougan, M. J. Walker, T. D.
Consortium, M. T. G. Holden, C. Poyart, and P. Glaser, “Streptococcus agalactiae clones
infecting humans were selected and fixed through the extensive use of tetracycline,”
Nature Communications, vol. 5, no. 4544, 2014. doi: 10.1038/ncomms5544.

[39] S. Bellais, A. Six, A. Fouet, M. Longo, N. Dmytruk, P. Glaser, P. Trieu-Cuot, and C. Poyart,
“Capsular Switching in Group B Streptococcus CC17 Hypervirulent Clone: A Future Chal-
lenge for Polysaccharide Vaccine Development,” Journal of Infectious Diseases, vol. 206,
no. 11, pp. 1745–1752, Dec. 2012, issn: 0022-1899, 1537-6613. doi: 10.1093/infdis/
jis605.

[40] M. A. Savageau, “Escherichia coli habitats, cell types, and molecular mechanisms of
gene control,” The American Naturalist, vol. 122, no. 6, pp. 732–744, 1983.

[41] M. Brochet, C. Rusniok, E. Couvé, S. Dramsi, C. Poyart, P. Trieu-Cuot, F. Kunst, and P.
Glaser, “Shaping a bacterial genome by large chromosomal replacements, the evolu-
tionary history of Streptococcus agalactiae,” Proceedings of the National Academy of Sci-
ences, vol. 105, no. 41, pp. 15 961–15 966, 2008.

[42] T. Lefébure and M. J. Stanhope, “Evolution of the core and pan-genome of Strepto-
coccus: Positive selection, recombination, and genome composition,” Genome Biology,
vol. 8, R71, May 2007, issn: 1474-760X. doi: 10.1186/gb-2007-8-5-r71.

[43] Y.-X. Fu, “Statistical Properties of Segregating Sites,” Theoretical Population Biology, vol. 48,
pp. 172–197, 1995.

[44] G. Achaz, “Frequency Spectrum Neutrality Tests: One for All and All for One,” Genetics,
vol. 183, no. 1, pp. 249–258, Sep. 2009, issn: 0016-6731, 1943-2631. doi: 10.1534/
genetics.109.104042.

[45] J. D. Wall, “Recombination and the power of statistical tests of neutrality,” Genetical Re-
search, vol. 74, no. 1, pp. 65–79, Aug. 1999, issn: 00166723. doi:10.1017/S0016672399003870.

Peer Community In Evolutionary Biology 30 of 36

http://benhaller.com/slim/SLiM_Manual.pdf
http://benhaller.com/slim/SLiM_Manual.pdf
https://doi.org/10.1534/genetics.106.069088
https://doi.org/10.1534/genetics.106.069088
https://doi.org/10.1093/molbev/msz038
https://doi.org/10.1038/ncomms5544
https://doi.org/10.1093/infdis/jis605
https://doi.org/10.1093/infdis/jis605
https://doi.org/10.1186/gb-2007-8-5-r71
https://doi.org/10.1534/genetics.109.104042
https://doi.org/10.1534/genetics.109.104042
https://doi.org/10.1017/S0016672399003870


[46] S. Takuno, T. Kado, R. P. Sugino, L. Nakhleh, and H. Innan, “Population Genomics in Bac-
teria: A Case Study of Staphylococcus aureus,” Molecular Biology and Evolution, vol. 29,
no. 2, pp. 797–809, Feb. 2012, issn: 0737-4038. doi: 10.1093/molbev/msr249.

[47] R. S. Waples, “A bias correction for estimates of effective population size based on link-
age disequilibrium at unlinked gene loci*,” Conservation Genetics, vol. 7, no. 2, pp. 167–
184, Apr. 2006, issn: 1566-0621, 1572-9737. doi: 10.1007/s10592-005-9100-y.

[48] N. J. Croucher, S. R. Harris, L. Barquist, J. Parkhill, S. D. Bentley, and X. Didelot, “A High-
Resolution View of Genome-Wide Pneumococcal Transformation,” PLoS Pathog, vol. 8,
no. 6, 2012. doi: 10.1371/journal.ppat.1002745.

[49] R. Milkman and M. M. Bridges, “Molecular evolution of the Escherichia coli chromo-
some. III. Clonal frames.,” Genetics, vol. 126, no. 3, pp. 505–517, 1990.

[50] J. A. M. de Sousa and E. P. C. Rocha, “Environmental structure drives resistance to
phages and antibiotics during phage therapy and to invading lysogens during colonisa-
tion,” Scientific Reports, vol. 9, no. 1, p. 3149, Dec. 2019, issn: 2045-2322. doi: 10.1038/
s41598-019-39773-3.

[51] G. Malécot, “Mathématiques de l’hérédité,” 1948.

Peer Community In Evolutionary Biology 31 of 36

https://doi.org/10.1093/molbev/msr249
https://doi.org/10.1007/s10592-005-9100-y
https://doi.org/10.1371/journal.ppat.1002745
https://doi.org/10.1038/s41598-019-39773-3
https://doi.org/10.1038/s41598-019-39773-3


Supplementary Figures

Parents:

Juveniles:

re
p=

1rep=0

is_HGT: Yes

1
1

0.5 0.5

Fitness

0.5
0.5

is_HGT: Yes 0.5

1

0.5

Pool of individuals for next 
generation

SLiM simulation :
- Forward simulation
- Bacterial recombination

- wide range of possible scenarios

- No neutral mutation
- Tree recording

msprime simulation
- Burn-in through
recapitation

- neutral mutation overlay

SNP data
- of a sampled
population

- other outputs
possible

12 3

A

B

Time

tree mutation
Ne 

bacteria
100000100

100001000

100001000

101000100

010100010

010100001

010100001

010100000

Bacteria

Chromosome

1st generation

Fitness-based
mortality

HGT transfer

Figure S1: Schema of the nonWF simulation process described in this study. This schema is a visual companion to
section 2.2 Simulation protocol, and is not self sufficient. (A) Step 1 : forward simulation with SLiM of a population of
bacteria with Ne individuals. The population at the time of sampling (on the right-hand side) will not have coalesced;
here, for example, there are still three ancestors at the first generation (darker circles) and no single most recent
common ancestor. Step 2 : burn-in with msprime by recapitation of the tree sequence. The recapitation coalesces
remaining branches back in time, acting as a burn-in period for the forward simulation. Then we can overlay neutral
mutations on the fully coalesced tree sequence. Step 3 : output SNP data for further analysis. Other types of data
may be output, such as a VCF file, or a .trees tree sequence file. Panel (B) provides a simplified depiction of the
reproduction process. Each parent produces two juveniles, and some of them will receive gene fragments (thicker
chromosomal segments) from other parents by HGT. Parents that are going to receive HGT are drawn from a binomial
distribution with the HGT rate as the probability (HGTrate parameter, L. 36 in the bacterial reproduction code snippet).
The first position of the recombining fragment is drawn uniformly along the chromosome, and the second position is
drawn from a geometric distribution with the mean tract length parameter (tractlen parameter, L. 50). The fitness
is then adjusted by density-dependent selection, causing mortality (red crosses), such that on average the population
size remains constant at equilibrium (see Regulating the population size’s code snippet, L. 81- 92).

32 of 36



1 2 3 4 5 10 25 50 100
Rescaling Factor

100

101

102

103

104

105

CP
U 

tim
e 

(s
)

Burn-in
WF
nonWF

1 2 3 4 5 10 25 50 100
Rescaling Factor

FastSimBac
ms

Forward

Figure S2: Computing time as in Figure 1, but split between the burn-in and forward simulation components of the
total simulation time.

0

1

2

3

4

5

No
rm

al
ize

d 
co

un
t i

.
i/

RF = 1
WF
nonWF

FastSimBac
ms

RF = 2 RF = 3

0

1

2

3

4

5

No
rm

al
ize

d 
co

un
t i

.
i/

RF = 4 RF = 5 RF = 10

0.2 0.4 0.6 0.8
Frequency of derived allele

0

1

2

3

4

5

No
rm

al
ize

d 
co

un
t i

.
i/

RF = 25

0.2 0.4 0.6 0.8
Frequency of derived allele

RF = 50

0.2 0.4 0.6 0.8
Frequency of derived allele

RF = 100

Figure S3: The normalized Site Frequency Spectrum (SFS) for different rescaling factors. The shaded area represents
one standard deviation (mean ± std). The horizontal line at 1 is the expected normalized SFS and the black line
represents the expected standard deviation, both under the WF model. Parameters used: chromosome size: 2Mb;
µ = ρ = 1.53 × 10−9; Ne = 140k; 20000 generations. Rescaling does not affect the shape of the SFS and it matches
that of the expected horizontal line at 1, is not different across rescaling factors, and is similar to the SFS obtained
with the coalescent simulators.

33 of 36



100
101
102
103
104

CP
U 

tim
e 

(s
)

WF nonWF

/10
1k

/10
10k

/10
20k

/10
45k

/10
70k

/10
140k

/10
1400k 1k 10k 20k 45k 70k 140k 1400k

10
1k

10
10k

10
20k

10
45k

10
70k

10
140k

10
1400k

= 1.53.10 9 ; = 12.2kb

102

103

M
em

or
y 

(M
B)

Figure S4: Computing time for different numbers of forward-simulated generations, with three different recombina-
tion rates. Ne=140 000, λ = 12200bp and RF=25.

0

1

2

3

4

5

No
rm

al
ize

d 
co

un
t

i.
i/

1k (1/140 Ne)
WF
nonWF

FastSimBac
ms

10k (1/14 Ne) 20k (1/7 Ne) 45k (~1/3 Ne) 70k (1/2 Ne) 140k (Ne)

/10

1400k (10 Ne)

0

1

2

3

4

5

No
rm

al
ize

d 
co

un
t

i.
i/

0.2 0.4 0.6 0.8
Frequency of derived

allele

0

1

2

3

4

5

No
rm

al
ize

d 
co

un
t

i.
i/

0.2 0.4 0.6 0.8
Frequency of derived

allele

0.2 0.4 0.6 0.8
Frequency of derived

allele

0.2 0.4 0.6 0.8
Frequency of derived

allele

0.2 0.4 0.6 0.8
Frequency of derived

allele

0.2 0.4 0.6 0.8
Frequency of derived

allele

0.2 0.4 0.6 0.8
Frequency of derived

allele

10

Figure S5: The normalized Site Frequency Spectrum (SFS) for different numbers of forward-simulated generations
and recombination rates. The number of generations are indicated on the top of each column (e.g. 1k is 1,000
generations, and corresponds in unit of Ne to 1/140-th of Ne). The shaded areas represent standard deviation. The
black lines represent the expected standard deviation for the Wright-Fisher model without recombination. Ne=140
000, λ = 12200bp and RF=25.

34 of 36



0.05

0.10

0.15

0.20

0.25

0.30

0.35

r2

1k (1/140 Ne)

WF
nonWF
fsb
ms

WF_noRec
nonWF_noRec
fsb_noRec
ms_noRec

10k (1/14 Ne) 20k (1/7 Ne) 45k (~1/3 Ne) 70k (1/2 Ne) 140k (Ne)

/10

1400k (10 Ne)

0.05

0.10

0.15

0.20

0.25

0.30

0.35

r2

101 102 103 104 105

distance (bp)

0.05

0.10

0.15

0.20

0.25

0.30

0.35

r2

101 102 103 104 105

distance (bp)
101 102 103 104 105

distance (bp)
101 102 103 104 105

distance (bp)
101 102 103 104 105

distance (bp)
101 102 103 104 105

distance (bp)
101 102 103 104 105

distance (bp)

10

Figure S6: Linkage disequilibrium for WF and nonWF simulations with various numbers of forward-simulated gen-
erations and recombination rates (ρ). The number of generations are indicated on the top of each column (e.g. 1k
is 1,000 generations, and corresponds in unit of Ne to 1/140-th of Ne). Ne=140 000, λ = 12200bp and RF=25. The
horizontal dashed line is the expected r2 with free recombination when sampling 20 individuals (1/20). The shaded
areas represent standard error of the mean; the standard deviation is 10 times larger (since we have 100 samples),
as shown in figure S7 below.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

r2

1k (1/140 Ne)

WF
nonWF
fsb
ms

WF_noRec
nonWF_noRec
fsb_noRec
ms_noRec

10k (1/14 Ne) 20k (1/7 Ne) 45k (~1/3 Ne) 70k (1/2 Ne) 140k (Ne)

/10

1400k (10 Ne)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

r2

101 102 103 104 105

distance (bp)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

r2

101 102 103 104 105

distance (bp)
101 102 103 104 105

distance (bp)
101 102 103 104 105

distance (bp)
101 102 103 104 105

distance (bp)
101 102 103 104 105

distance (bp)
101 102 103 104 105

distance (bp)

10

Figure S7: Same Figure as supplementary figure S6, but with shaded areas representing standard deviation instead
of standard error of the mean.

35 of 36



Annexes

Demonstration of 5.N rule to reach mutation-drift equilibrium

Following Malecot’s derivation on heterozygosity [51], we have Ht, the heterozygosity at time t, which can be ex-
pressed as follows:

(1 −Ht) = (1 − 2µ)[
1
N
+ (1 −

1
N

)(1 −Ht−1)]

where basically, two individuals are identical at the previous generation (homozygosity, 1−Ht) if they coalesced (1/N)
or if they were already identical and did not coalesce ((1 − 1/N)(1 −Ht−1)). In both cases, no mutation should occur
((1 − µ)2

∼ (1 − 2µ)).
Rearranging the previous equation leads to:

Ht = Ht−1(1 − 2µ)(1 −
1
N

) + 2µ

We can calculate the probability of heterozygosity at the equilibrium:

H∗ = H∗(1 − 2µ)(1 −
1
N

) + 2µ

H∗ =
2Nµ

2Nµ + 1 − 2µ

H∗ ∼
2Nµ

2Nµ + 1
=

θ
θ + 1

Ht is an arithmetic-geometric sequence of the form aHt−1 + b that can thus be expressed as

Ht = at(H0 − r) + r

where a = (1 − 2µ)(1 − 1
N ), b = 2µ and r = b

1−a .

Because |a| < 1, Ht converges towards r; i.e., r is H∗, hence

Ht
−H∗

H0 −H∗
= at

This ratio tends toward 0 as Ht gets closer to the equilibrium. We want to estimate t99, the expected waiting time
until the ratio falls down to 0.01, meaning that the heterozygosity is 99% closer to the equilibrium than when we
started, i.e.,

Ht99 −H∗

H0 −H∗
= at99% = 0.01

From this we get:

t99% =
ln(0.01)

ln(a)

Because ln(a) = ln((1 − 2µ)(1 − 1
N )) ≈ −1

N for small µ and large N, t99% simplifies to

t99% ≈ −Nln(0.01) = −4.6N

Thus after 5N generations the heterozygosity has almost reached its equilibrium, having progressed more than
99% of the way toward it, whatever the value of H0 (the initial heterozygosity).

36 of 36


	Introduction
	Methods, simulator and data
	Key concepts and definitions
	Horizontal gene transfer, recombination, and circularity
	Burn-in
	Simulation rescaling

	Simulation protocol
	Forward simulation
	Recapitating and adding neutral mutations

	Simulations performed
	Simulating Bacteria on a Petri dish with antibiotic

	Results
	Impact of rescaling
	Impact of recombination
	Simulating bacterial growth on a Petri dish with antibiotic

	Discussion

