
HAL Id: hal-03152153
https://hal.science/hal-03152153v1

Preprint submitted on 25 Feb 2021 (v1), last revised 13 Jan 2022 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Simulation of bacterial populations with SLiM
Jean Cury, Benjamin C Haller, Guillaume Achaz, Flora Jay

To cite this version:
Jean Cury, Benjamin C Haller, Guillaume Achaz, Flora Jay. Simulation of bacterial populations with
SLiM. 2021. �hal-03152153v1�

https://hal.science/hal-03152153v1
https://hal.archives-ouvertes.fr

Simulation of bacterial populations with SLiM

Jean Cury1, Benjamin C. Haller2, Guillaume Achaz3, and Flora Jay1

1Université Paris-Saclay, Centre National de la Recherche Scientifique, Inria, Laboratoire de Recherche en
Informatique UMR 8623, Orsay , France

2Department of Computational Biology, Cornell University, USA
3Université de Paris, Collège de France, Museum National d’Histoire Naturelle, Paris, France

Abstract

Simulation of genomic data is a key tool in population genetics, yet, to date, there is no
forward-in-time simulator of bacterial populations that is both computationally efficient and
adaptable to a wide range of scenarios. Here we demonstrate how to simulate bacterial pop-
ulations with SLiM, a forward-in-time simulator built for eukaryotes. SLiM has gained many
users in recent years, due to its speed and power, and has extensive documentation showcasing
various scenarios that it can simulate. This paper focuses on a simple demographic scenario,
to explore unique aspects of modeling bacteria in SLiM’s scripting language. In addition, we
illustrate the flexibility of SLiM by simulating the growth of bacteria on a Petri dish with antibi-
otic. To foster the development of bacterial simulations based upon this recipe, we explain the
inner workings of its code. We also validate the simulator, by extensively testing the results of
simulations against existing simulators, and against theoretical expectations for some summary
statistics. This protocol, with the flexibility and power of SLiM, will enable the community to
simulate bacterial populations efficiently under a wide range of evolutionary scenarios.

1 Introduction

Bacterial population genomics aims to reconstruct past evolutionary events and better understand
the ongoing evolutionary dynamics operating in present-day populations. Demographic changes,
selection, and migration are examples of processes whose genotypic signals remain in present-day
populations. Trying to recover these signals from ever-growing sequencing data is a major goal of
population genomics. In the context of epidemiological surveillance the inference of these types
of events can be useful, since pathogens are known to undergo frequent demographic changes [1].
Similarly, a better understanding of the evolutionary forces operating in pathogen populations
can help to inform public health policy [2]. For instance, one can assess the impact of a vaccination
campaign or the efficacy of a new antibiotic on a given pathogen population [3], [4]. Beyond these
clinical settings, bacterial population genomics can also be useful to describe natural population
diversity [5].

Simulations are essential to population genetics [6]. They are useful for testing and validating
population genetics methods (whether based on simulations or not), since they provide data
generated by known evolutionary forces (unlike, typically, empirical sequence data). Notably, they
can be used to assess the performance of statistical methods when assumptions are violated [7],
[8]. They are also helpful for predicting the impact of an environmental change on a population,
or the expected response to intervention [9], [10].

Many methods inferring past evolutionary events also rely on simulated data. In Approximate
Bayesian Computation (ABC), probably the most famous likelihood-free inference framework in
our field, simulations enable estimation of the posterior distribution of parameters of interest [11].
Other methods, based on machine learning, also require simulations to train a model to learn
the mapping between input sequence data and evolutionary processes [12]. Increasingly, ma-
chine learning methods involve ”deep learning” algorithms that hold great promise but require
a large volume of simulated data [13]–[17]. Despite these many applications of simulations
in population genetics, there are very few bacterial population genetics simulators, and those
that exist do not cover many possible scenarios. In particular, existing bacterial simulators are
coalescent-based simulators (msPro [18], SimBac [19], FastSimBac [20]), which means they are
very fast and memory-efficient, but can model only a narrow range of evolutionary dynamics.
For instance, these simulators do not allow selection, and in the case of SimBac, demographic

1

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted February 10, 2021. ; https://doi.org/10.1101/2020.09.28.316869doi: bioRxiv preprint

https://doi.org/10.1101/2020.09.28.316869
http://creativecommons.org/licenses/by/4.0/

changes cannot be simulated either. Simulation of complex selective forces together with de-
mographic processes remains a difficult problem for coalescence-based simulators [19]; other
coalescent-based simulators that are not specific to bacteria (e.g., ms [21], msprime [22]) suffer from
the same constraints, and additionally most cannot simulate bacterial recombination (similar to
gene conversion). On the other hand forward simulators such as SFS CODE [23] enable complex
models including varying demography and multiple types of selection; however, this software
suffers from poor performance [24]. Yet computational efficiency is crucial for supervised methods
trained on large simulated datasets, such as ABC, machine learning, and deep learning. Using
forward simulation instead of coalescent-based methods can therefore be problematic, given that
forward simulation has traditionally been several orders of magnitude slower than the coalescent.
CoreSimul, a forward-in-time bacterial simulator with bacterial recombination and selection, was
recently published [25]; however, it is designed for a different problem space than we are inter-
ested in here (simulation of different models of molecular evolution on a fixed genealogical tree
of sampled individuals).

Here we present a method for simulating bacterial populations in a flexible and fast way, using
a forward simulator called SLiM [26]. The SLiM forward simulation framework is becoming quite
widely used due to its speed, power, and flexibility [27]–[29]. SLiM includes a scriptable interface
with its own language, Eidos, which allows simulation of a wide range of evolutionary dynamics.
The detailed instruction manual, combined with its helpful graphical user interface and its ver-
satility, enable users to build simulation models tailored to their research. Simulation of bacterial
populations, and haploids in general, is not supported intrinsically by SLiM, because every indi-
vidual has two chromosomes. But because of its scriptability, it is possible to extend SLiM into this
area. In this protocol, we will show the key techniques necessary to perform bacterial simulations.
Following the SLiM manual’s convention, we will introduce the model implementation step by
step together with the related concepts. Then we will show that the simulator behaves correctly
according to the expected values of certain summary statistics under the Wright-Fisher model or
by validating against other simulators, and that the model’s performance is good enough to allow
numerous simulations to be run in a reasonable amount of time and memory. Finally, we will
showcase a more complex model, based upon our method, in which we simulate bacteria growing
on a Petri dish. This model is spatially explicit, representing the bacteria actually colonizing the
dish, half of which contains an antibiotic that decreases their survival rate. Resistance mutations
may emerge, substantially increasing the fitness of bacteria growing in the presence of antibiotic,
while slightly decreasing fitness otherwise. This model illustrates the open-ended flexibility of
SLiM.

We believe this work will open new avenues in bacterial population genetics by allowing
researchers to go beyond the limitations of the coalescent, broadening the potential applications
of simulation to a much wider range of evolutionary dynamics.

2 Methods, simulator and data

The bacterial simulator proposed here is based on SLiM, a powerful and efficient forward genetic
simulator [30]. Thanks to its flexible scripting interface using the Eidos language, we were able to
adapt SLiM to the simulation of bacterial populations.

SLiM provides two types of simulations: Wright-Fisher (WF) models, and models that go
beyond the Wright-Fisher framework (non-Wright-Fisher or nonWF models). The Wright-Fisher
model is based on many simplifying assumptions that are often not compatible with realistic
scenarios such as structured populations, overlapping generations, etc. [26]. However, it is
mathematically simple, allowing expectations for certain quantities to be estimated. This is
particularly useful to validate the created simulator against the expectations under this model.
The nonWF framework, on the other hand, is more individual-based, emergent, and realistic. It
allows a greater breadth of possible scenarios to be simulated, but we cannot derive expectations
of the same quantities. Thus, we will provide results for the same scenario under both models to
confirm that they behave similarly (according to the WF expectations).

In the main text we will present the protocol for simulating bacterial populations with the
nonWF framework, since it is a more powerful framework on which other users can build more
complex scenarios. The underlying simulation, however, corresponds to a Wright-Fisher popula-
tion, so we can compare to the theoretical expectations. The corresponding annotated WF script is
available in a public repository (https://github.com/jeanrjc/BacterialSlimulations), along
with the nonWF script detailed below. The different simulators used in this article are summarized
in the table 1 below. To highlight the modeling steps that are specific to bacterial populations,

2

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted February 10, 2021. ; https://doi.org/10.1101/2020.09.28.316869doi: bioRxiv preprint

https://github.com/jeanrjc/BacterialSlimulations
https://doi.org/10.1101/2020.09.28.316869
http://creativecommons.org/licenses/by/4.0/

we kept the underlying population history simple, with a single constant-size population and no
selection, but those assumptions are trivial to relax in SLiM.

Table 1: Summary table of the simulators used in this paper. Phases 1 and 2 represent simulation
steps in the order that they are performed. The third column gives brief comments regarding each
simulator, while the last column gives an example of the degree of scenario complexity that can
be simulated with each.

Phase 1 Phase 2 Comments Example

ms / msprime /
FastSimBac

Coalescent
simulation None

Ideal for simple
simulations of
basic scenarios

Migration
between
populations
with
demographic
changes

SLiMwith
Wright-Fisher
(WF)
framework

Burn-in with ms

Forward
simulation with
SLiM, starting
from burn-in
output

Ease of
implementation
of slightly
complex
scenarios;
fitness affects
fecundity

Demographic
changes and
background
selection

SLiMwith
nonWF
framework

Forward
simulation with
SLiM and tree
sequence
recording

Recapitation of
the tree
sequence using
msprime

Wide range of
possible
scenarios;
fitness affects
mortality; faster
and more
accurate
burn-in

Spatial model
with
environment-
associated
fitness for
certain
mutations

2.1 Key concepts and definitions

2.1.1 Horizontal gene transfer, recombination, and circularity

In bacteria, pieces of DNA can be exchanged between different organisms in a process called
horizontal gene transfer [31]. When received, such a DNA fragment can be inserted in the host
chromosome with the help of integrases, at a specific site if the fragment is not homologous to an
existing chromosomal region. Alternatively, if the incoming DNA fragment is homologous, it will
integrate into the host chromosome by a mechanism similar to gene conversion in eukaryotes [32].
This latter process is the bacterial recombination mechanism that we want to implement. We
will use the term ”gene conversion” to refer to gene conversion specifically in eukaryotes, and the
term ”bacterial recombination” to refer to the mechanistically similar process in bacteria. Note that
bacterial recombination differs from simple recombination in eukaryotes (often called cross-over),
in that mutations are not exchanged between two fragments of DNA; instead, the mutations are
copied from one fragment to the other. Some coalescent simulators do implement gene conversion
or bacterial recombination, such as ms [21] or FastSimBac [20], but they are otherwise quite limited,
as discussed above. Our implementation of bacterial recombination also provides a slightly closer
fit with reality, since we model the bacterial chromosome as circular. It has been shown that
circularity can lead to different patterns, such as linkage disequilibrium decaying faster in linear
genomes than in circular genomes [5], [33]. Although circularity is likely not important for the
metrics and parameters shown in this study, including it is one less incorrect assumption when
modeling bacteria.

2.1.2 Burn-in

It is often desirable to start a simulation with a population which is at mutation-drift equilibrium.
After 5×Ne generations in our simple scenario, the heterozygosity has reached more than 99% of
the heterozygosity expected under mutation-drift equilibrium (see Annexes for demonstration). In
forward simulations, the time spent to reach this equilibrium (5×Ne) is called ”burn-in”. Because

3

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted February 10, 2021. ; https://doi.org/10.1101/2020.09.28.316869doi: bioRxiv preprint

https://doi.org/10.1101/2020.09.28.316869
http://creativecommons.org/licenses/by/4.0/

the effective size of bacterial populations is usually large, conducting this burn-in with a forward
simulator would often require much more time than simulating the actual time period of interest,
and this problem can make forward simulation of bacteria difficult or even infeasible.

To solve this issue, faster backward-in-time simulators can be used to simulate a population at
equilibrium that serves to initialize the forward simulation. The nonWF model allows an elegant
and efficient approach to this: we can combine SLiM’s tree-sequence recording feature with the
recapitation feature of msprime [26] to manage burn-in. With this strategy, we can begin with
forward simulation in SLiM, leaving the burn-in for later. At the end of the forward simulation,
there is often no single common ancestor for the population; in other words, the ancestry tree of
the underlying population has not yet coalesced. Recapitation will then simulate, backward in
time, the addition of ancestral branches to produce coalescence, providing the needed burn-in
ancestry after the fact. However, because msprime does not yet implement gene conversion, we
cannot use bacterial recombination during burn-in for our nonWF model.

The WF model requires a different approach, because tree-sequence recording cannot be used;
in the WF model SLiM cannot record HGT events in the tree sequence. In this case, we therefore
have to simulate the entire population backward in time with ms, and load the generated diversity
into SLiM to initialize its forward simulation. Because we simulate the entire population, it is not
possible to use gene conversion at a significant rate, otherwise ms crashes; thus there is no bacterial
recombination during burn-in for our WF model, either. As of now, for long simulations, it is thus
not possible to have bacterial recombination during a coalescent-based burn-in; we analyse the
impact of this limitation on simulations in the results section. For small populations, however, the
burn-in can be simulated directly in SLiM. Finally, in certain situations a burn-in is not desirable
(as in our Petri dish model).

2.1.3 Simulation rescaling

Forward simulators remain computationally intensive, and bacterial populations can be very
large. The effective population size of most bacterial species is on the order of 108

− 109 [34].
Depending on the task one wants to address, many thousands or even millions of simulations
may be required. One way to reduce the computation time is to parallelize the simulations on
a cluster, but it can remain costly. Another way is to rescale the model parameters such that
θ = 2 ×Ne × µ and related quantities remain constant [35]. For instance, we can decrease the size
of the population by a factor of 10 while increasing the mutation and recombination rates by the
same factor. The choice of the rescaling factor is at the discretion of the user, but one should keep in
mind that excessive rescaling might lead to spurious results [35]. For instance, rescaling increases
the rate of double mutation at a site, although it should remain rare [36]. Also, if the simulation
involves a bottleneck, the user should make sure that the number of individuals remaining in the
population after the bottleneck is not so small as to cause artifacts. A model of a bottleneck that
reduces a population of 1000 individuals to 100 would lead to very different results if we were
to rescale the model down to only 10 individuals before the bottleneck and one individual after!
The rescaling factor must also be applied to the duration of the simulation (and the duration of
different events that might occur), so that the effects of drift remain similar. For instance, with
a rescaling factor of 10, the length of the simulation should be shortened by a factor of 10, as
should the duration of events such as bottlenecks or expansions. Thus, rescaled simulations not
only run faster per generation (because there are fewer individuals to process), but also run for
a smaller number of generations. In the results section, we will show the effect of the rescaling
factor on two summary statistics, along with the increase in the speed of the model. Because there
are many complexities involved in rescaling, we recommend choosing this factor with great care,
and cross-validating the results of downstream analyses by doing a small number of runs that are
unscaled (or less rescaled, at least).

2.2 Simulation protocol

2.2.1 Forward simulation

We now describe the protocol step by step. A schema in supplementary Figure S1 may help to
understand the following section by giving an overview of the approach taken.

SLiM scripts can be called from the command line or run within the SLiMgui graphical mod-
eling environment. Here we will define constant variables directly in the script, so that one can
run the code in SLiMgui. When running the model at the command line, those constants could
instead be passed to SLiM as -d constant=value command-line arguments; this is convenient

4

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted February 10, 2021. ; https://doi.org/10.1101/2020.09.28.316869doi: bioRxiv preprint

https://doi.org/10.1101/2020.09.28.316869
http://creativecommons.org/licenses/by/4.0/

to run a whole set of simulations with different parameters. In this example, we simulate 1000
generations of a population of 100 000 individuals, which have a chromosome of 2Mb, and a re-
combination rate of 10−9 bacterial recombination events per generation per base pair, with a mean
recombination tract length of 10kb. The script begins with a block of code called an initialize()
callback:

 initialize()
 {
 // Definition of constant variables
 defineConstant("Ne", 1e5);
 defineConstant("N_generations", 1000);
 defineConstant("Rho", 1e-7);
 defineConstant("tractlen", 1e4);
 defineConstant("genomeSize", 2e6);
 defineConstant("HGTrate", Rho * genomeSize); // HGT probability

 // Initialization
 initializeSLiMModelType("nonWF");
 initializeTreeSeq(); // record trees for recapitation and/or adding neutral mutations later
 initializeMutationRate(0); // no neutral mutations in the forward simulation
 initializeMutationType("m1", 1.0, "f", 0.0); // neutral (unused)
 initializeGenomicElementType("g1", m1, 1.0);
 initializeGenomicElement(g1, 0, genomeSize - 1);
 initializeRecombinationRate(0); // In SLiM recombination is between sister chromatids
 }

Initialization of a bacterial simulation with SLiM

Here we initialize the simulation using the nonWF model with tree-sequence recording, as
explained in the SLiM manual. We set the mutation rate to zero because we will add neutral
mutations later with msprime, after recapitation; we do not want to forward-simulate neutral
mutations, for efficiency. Importantly for bacteria, the (generic) recombination process imple-
mented in SLiM should not happen, otherwise, because individuals in SLiM are diploids, our
haploid bacterial chromosomes will recombine with the empty second chromosomes. Thus, the
recombination rate should always be set to zero when simulating bacterial populations. Instead,
we define a constant, HGTrate, that represents the probability of a given bacterium undergoing
(homologous) HGT.

The population is created at the beginning of the first generation, as shown in the next snippet;
other populations could be created here too:

 1 early()
 {
 sim.addSubpop("p1", Ne);
 sim.rescheduleScriptBlock(s1, start=N_generations, end=N_generations);
 }

Creation of a population

In line 22, we add a subpopulation named p1 of size Ne. The next line is not specific to bac-
teria, but allows us to define the end of the simulation dynamically, governed by a parameter
(N generations). This is useful when comparing different rescaling factors, or when the endpoint
of the simulation depends on other parameters or events.

 reproduction()
 {
 // each parental individual reproduces twice, with independent probabilities of HGT
 parents = p1.individuals;

 for (rep in 0:1)
 {

 if (HGTrate > 0)
 {
 // for all daughter cells, which ones are going to undergo a HGT?
 is_HGT = rbinom(size(parents), 1, HGTrate);
 }
 else
 {
 is_HGT = integer(size(parents)); // vector of 0s
 }
 for (i in seqAlong(parents))
 {
 if (is_HGT[i])
 {
 // Pick another individual to receive a piece of DNA from
 HGTsource = p1.sampleIndividuals(1, exclude=parents[i]).genome1;
 // Choose which fragment
 pos_beg = rdunif(1, 0, genomeSize - 1);
 tractLength = rgeom(1, 1.0 / tractlen);
 pos_end = pos_beg + tractLength - 1;

5

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted February 10, 2021. ; https://doi.org/10.1101/2020.09.28.316869doi: bioRxiv preprint

https://doi.org/10.1101/2020.09.28.316869
http://creativecommons.org/licenses/by/4.0/

 // Prevent an edge case when both
 // pos_beg and tractLength are equal to 0

 if (pos_end == -1) {
 pos_end = 1;
 }
 else
 {
 pos_end = integerMod(pos_beg + tractLength - 1, genomeSize);
 }

 // HGT from pos_beg forward to pos_end on a circular chromosome
 if (pos_beg > pos_end)
 breaks = c(0, pos_end, pos_beg);
 else
 breaks = c(pos_beg, pos_end);
 subpop.addRecombinant(parents[i].genome1, HGTsource, breaks, NULL, NULL, NULL);
 }
 else
 {
 // no horizontal gene transfer; clonal replication
 subpop.addRecombinant(parents[i].genome1, NULL, NULL, NULL, NULL, NULL);
 }
 }
 }
 // deactivate the reproduction() callback for this generation
 self.active = 0;
 }

Bacterial reproduction

In each generation, SLiM calls reproduction() callbacks for each individual and the callback
handles how that focal individual reproduces and generates offspring. Since we want to reproduce
the whole population in one big bang (for efficiency, mostly), we override that default behavior by
setting self.active = 0; at the end of the callback. As a result, this callback is called only once
per generation and manages the reproduction of all individuals. We make each parent reproduce
twice (rep in 0:1) to circumvent SLiM’s constraint that individuals cannot undergo a horizontal
gene transfer event in the middle of their lifespan. By creating two clonal offspring, each can
be part of a horizontal gene transfer event; had we implemented a single clonal reproduction,
only one of the two daughter cells (the one that is not the parent) could have undergone HGT.
Later in the script the parents are removed from the population (by setting their fitness to 0),
such that in each generation, a bacterium reproduces, generating two daughter cells. We then
decide which clones (see line 36 above) will undergo an HGT event by drawing from a binomial
distribution, with the probability of HGT defined by the constant HGTrate, line 9. If an individual
was chosen as a recipient for HGT, then the donor is picked randomly from the population
(excluding the recipient); note that newly generated individuals are merged into the populations
by SLiM at the end of reproduction, so a new daughter cell will never be an HGT source for
another daughter cell. The DNA fragment that is going to be transferred is now defined by a
starting position, drawn uniformly along the chromosome, and a length, whose value is drawn
from a geometric distribution with mean equal to the tract length parameter (tractlen). Then,
the addRecombinant() call creates a new daughter cell that is a clone of the parent, but with the
recombination tract copied from the donor to the recipient. If the individual was not an HGT
recipient, it is simply defined as a clone of its parent. Finally, as explained above, we deactivate
this callback for the rest of the generation since it has just reproduced every parent.

 early()
 {
 inds = p1.individuals;
 ages = inds.age;

 // kill off parental individuals; biologically they don’t even exist,
 // since they split by mitosis to generate their offspring
 inds[ages > 0].fitnessScaling = 0.0;

 // density-dependent population regulation on juveniles, toward Ne
 juvenileCount = sum(ages == 0);
 inds[ages == 0].fitnessScaling = Ne / juvenileCount;
 }

Regulating the population size

As we saw earlier, we had to clone each individual (parent) twice, to produce two new
individuals (daughter cells/juveniles). To simulate mitotic cell division, we now remove the
parents by setting their fitness to 0. In order to simulate a demographic scenario of constant
population size, and because we are under the nonWF model where the size of the population is
an emergent property (not a parameter as in WF models), we rescale the fitness of all juveniles so

6

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted February 10, 2021. ; https://doi.org/10.1101/2020.09.28.316869doi: bioRxiv preprint

https://doi.org/10.1101/2020.09.28.316869
http://creativecommons.org/licenses/by/4.0/

that the average number of individuals at each generation remains Ne. Before the next generation,
SLiM will kill individuals based on their absolute fitness, which acts as a survival probability.
Thus, at the start of the next generation we will have, on average, Ne individuals (with some
stochastic fluctuation around that average).

 s1 10000late()
 {
 sim.treeSeqOutput("mySimulation.trees");
 sim.simulationFinished();
 }

Ending the simulation

This script block, named s1, was rescheduled by rescheduleScriptBlock() in line 23, but a
scheduled time for the block to execute – here 10 000 – has to be specified even though it will be
overridden with N generations. The value just needs to be high enough to avoid unintended
execution of the block before it gets rescheduled; the time at which the unscaled simulation would
end is typically a good choice, since it will never be too early. When the simulation is over, we
output the tree sequence to a .trees file that we can work with in Python. In the next part we
will show how to generate a burn-in period and genetic diversity with msprime.

2.2.2 Recapitating and adding neutral mutations

When simulating with the nonWF framework, we efficiently obtain an initial population at
mutation-drift equilibrium by performing a recapitation of the tree sequence, as explained earlier.
So far, we have only forward-simulated the population while recording the tree sequence. Most
likely, the simulation has not coalesced yet, because we did not run the simulation for at least 5Ne
generations. We now recapitate the tree sequence, which runs backward in time, from the begin-
ning of the forward simulation, to finish the coalescence process for our recorded tree sequence.
Then, to obtain a matrix of neutral SNPs for the population at mutation-drift equilibrium – to
compute summary statistics, for instance – the tree sequence can be manipulated in msprimewith
the help of pyslim, a Python interface between SLiM and msprime.

 ts = pyslim.load("mySimulation.trees")
 ts_recap = ts.recapitate(recombination_rate=1e-20, # Crossing over recombination set to 0.
 Ne=Ne)

 # simplify to a subset of the population that is still alive
 sample_inds = np.random.choice(ts_recap.individuals_alive_at(0),
 size=20, # the sample size
 replace=False)
 # get the first node of the sampled individuals to make them haploid
 sample_nodes = [ts_recap.individual(i).nodes[0] for i in sample_inds]
 ts_sampled_haploid = ts_recap.simplify(samples=sample_nodes)

 # Add neutral mutations
 ts_mutated = pyslim.SlimTreeSequence(
 msprime.mutate(ts_sampled_haploid,
 rate=1.53e-9/2 # mutation_rate/2 : to have 2.Ne.mu and not 4.Ne.mu
 keep=True) # keep existing mutations
)

 # Get the matrix of SNP, individuals in rows and SNP in columns.
 snp_mat = ts_mutated.genotype_matrix().T

 # get positions of the SNPs
 pos = np.round(ts_mutated.tables.asdict()["sites"]["position"]).astype(int)

Recapitation and generation of SNPs with pyslim and msprime, in Python

First we load the tree sequence with pyslim, which returns a tree-sequence object. We then
recapitate the branches that have not coalesced yet, with a very low recombination rate since
msprime does not yet implement gene conversion. Since, for this protocol, we want to generate
a matrix of SNPs for a sample of individuals, not for the whole population, we subsequently
sample a random subset of extant individuals. We keep only the first node of each individual,
corresponding to the first chromosome in SLiM where our haploid genetic material resides. Finally,
we overlay neutral mutations on the resulting tree sequence. We have to divide the mutation rate
by two to obtain the desired θ = 2 × Ne × µ, instead of θ = 4 × Ne × µ that msprime expects for
diploids. At the end, we get a matrix of SNPs and a vector of corresponding positions, often used
as input for inference methods [13], [16], [37]. This could easily be saved as an MS or VCF file if
needed.

7

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted February 10, 2021. ; https://doi.org/10.1101/2020.09.28.316869doi: bioRxiv preprint

https://doi.org/10.1101/2020.09.28.316869
http://creativecommons.org/licenses/by/4.0/

2.3 Simulations performed

To test the simulator, we ran simulations with parameters fitting the bacteria Streptoccocus agalactiae
Clonal Complex 17, which is a major neonatal pathogen [38], [39]. We used a chromosome size
of 2Mb, and we estimated the following parameters based upon data we found in the literature.
The simulation spans 20,000 generations, which represents about 55 years of evolution for such
bacteria in the wild, when using a generation time of 1 generation per day (as estimated for E.
coli [40]). The mutation rate is set to 1.53 × 10−9 mutations per base-pair per generation [38]. The
recombination rate was set equal to the mutation rate, and the mean recombination tract length
was estimated as 122 kb [41]. Note that the true recombination rate for S. agalactiae is probably
lower [42], but in order to assess the correctness of the implementation of bacterial recombination,
we chose to set it equal to the mutation rate and study the effects of varying it. The effective
population size of this clonal complex was estimated to be around 140,000 individuals [38]. At
the end of simulation, we sampled 20 individuals and built a matrix of SNPs, from which we
computed summary statistics.

Simulations were run on a Dell R640 server rack with Intel Xeon Silver 4112 2.6GHz processors.

2.4 Simulating Bacteria on a Petri dish with antibiotic

To demonstrate the flexibility and scriptability of our SLiM bacterial model, we also present
the results of a more complex and very different simulation scenario based upon our methods.
It models bacteria growing on a Petri dish, seeded by 50 clones distributed randomly on the
plate. Half of the plate contains an antibiotic that decreases a bacterium’s fitness, before density-
dependent selection, from 1.0 to 0.47. However, a resistance allele can emerge through random
mutation (at a rate of 10−5 per generation), and carrying this allele increases fitness back to 0.906
in the presence of antibiotic. In all cases there is a small cost for having the resistance allele, which
leads to a reduced fitness of 0.98 for carriers of the resistance allele when antibiotic is not present.

Because this is a spatially explicit model the bacteria interact with their neighbors. In this
type of model each bacterium has a given position in 2D space. Offspring appear near their
parents, horizontal gene transfer occurs only between neighboring bacteria, and bacteria compete
with their neighbors (which decreases the probability that a bacterium will divide under crowded
conditions). More details can be found in the SLiM manual [35] in the section ”Continuous-space
models and interactions”. In this simulation with ongoing selection, neutral mutations are not
tracked during forward simulation; they would be added during the recapitation phase. Only
the resistance (beneficial) mutations are tracked here, since they are non-neutral and therefore
influence the shape of the tree sequence.

At equilibrium, the probability that a given bacterium will divide is about 0.5, so half of
the bacteria produce two offspring and die, while the other half produce no offspring and die,
so the population size is then (stochastically) constant. The neutral mutation rate was set to
10−9, and the recombination rate was 10−7 with a mean recombination tract length of 500bp.
The figures were generated using the random number seed 2049327378235, and snapshots were
taken in SLiMgui. The code to reproduce this simulation can be found in the same repository:
https://github.com/jeanrjc/BacterialSlimulations.

3 Results

We performed two sets of experiments to assess the performance and accuracy of our simulator. In
the first experiment, we assessed the impact of rescaling the effective population size, Ne, in order
to speed up the computation time. In the second experiment, we analysed the impact of varying
the recombination rate and the mean recombination tract length, to better grasp their effects on the
simulations. For both experiments, we monitored the running time and peak memory usage of
SLiM, and assessed the quality of the simulations by comparing the site frequency spectrum (SFS)
and the linkage disequilibrium (LD) with simulations obtained using ms [21] and FastSimBac [20],
which are backward simulators implementing bacterial recombination (or gene conversion, in ms).
For reference, we report runtime and memory footprint data for the backward simulators as well.

3.1 Impact of rescaling

We compared 9 different rescaling factors (RFs): 1 (no rescaling), 2, 3, 4, 5, 10, 25, 50, and 100. For
RFs above 2, we generated 100 replicates for each RF and each SLiM model (WF, nonWF); for RF

8

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted February 10, 2021. ; https://doi.org/10.1101/2020.09.28.316869doi: bioRxiv preprint

https://github.com/jeanrjc/BacterialSlimulations
https://doi.org/10.1101/2020.09.28.316869
http://creativecommons.org/licenses/by/4.0/

1, 30 replicates were used, and for RF 2, 50 replicates. We generated 300 replicates when running
FastSimBac and ms for comparison. Rescaling was not applied to backward simulators, since they
do not simulate the entire population.

101

103

105

CP
U

tim
e

(s
)

FastSimBac
ms

WF
nonWF

1 2 3 4 5 10 25 50 100
Rescaling Factor

101

102

103

M
em

or
y

(M
B)

FastSimBac

ms

Figure 1: Distribution of CPU time and peak memory usage for different rescaling factors. For com-
parison with backward simulators, the dashed lines represent the average times for FastSimBac
(∼54s) and ms (∼14s). Rescaling does not apply to backward simulators. Note the log scale on the y
axis; 105 seconds is about 28 hours. Parameters used : chromosome size : 2Mb; µ = ρ = 1.53×10−9;
Ne = 140k; 20000 generations. There are 30 replicates for RF 1, 50 replicates for RF2, 100 replicates
for other RFs. Rescaling drastically reduces the computational time and memory usage, matching
the performance of the coalescent simulators for sufficiently large RF.

Without rescaling, the generation of a single replicate takes about a day (Figure 1). This is too
long if one wants to run millions of simulations; however, it is possible to do a few such runs for
other purposes, such as confirming that rescaling did not introduce a bias when implementing a
new script. This might also be useful to test a method on a dataset produced without rescaling,
since even minor artifacts introduced by rescaling could conceivably bias or confuse inference
methods. When using a rescaling factor of 5, a simulation takes about 1 hour to run, which
is practicable if one wants to run thousands of simulations on a cluster. With a factor of 25 or
more, the running time is comparable to that of FastSimBac and ms, if not faster; FastSimBac
is a bit slower than ms, probably because we used an additional FastSimBac script to create an
ms-formatted output file. At 100 seconds or less per replicate, it is possible to generate about a
million replicates in a few days or a week, on a typical computing cluster (using perhaps 100
cores). The time of the burn-in period is included here, and is not a limiting factor since it is
faster than the forward-simulation period by about two orders of magnitude for rescaling factors
smaller than 5 (supplementary Figure S2). The memory peak usage is fairly low (up to a few
gigabytes without rescaling), allowing any modern laptop to run these simulations.

Comparing WF and nonWF performance, we see that the nonWF model tends to be faster,
especially at higher rescaling factors. This is due to the overhead of the burn-in step, which is
slower in the WF models. Without rescaling, or at lower rescaling factors, the difference between
WF and nonWF runtimes tends to disappear. Interestingly, the variance in time and in memory
is lower for the nonWF version, which can help predict the resources needed for large runs. It is
important to note that these performance metrics depend on the parameter values used (such as
the recombination rate).

We then computed the normalized SFS produced by the different rescaling factors. The SFS
represents the distribution of the frequency of derived alleles. Each bin (i) is given by iξi/θ̂, where

9

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted February 10, 2021. ; https://doi.org/10.1101/2020.09.28.316869doi: bioRxiv preprint

https://doi.org/10.1101/2020.09.28.316869
http://creativecommons.org/licenses/by/4.0/

ξi is the count of SNPs having i derived alleles, and θ̂ is an estimator of θ computed as the mean
over the different bins (1/n

∑
iξi). Because iξi is an estimator of θ, the expected normalized SFS for

a constant-size neutral population under the Wright-Fisher model is a flat line centered on 1 [43],
[44].

0

1

2

3

4

5
No

rm
al

ize
d

co
un

t i
.

i/
WF

Rescaling factor
1
5
10

25
50
100

nonWF

0.2 0.4 0.6 0.8
Frequency of derived allele

0

1

2

3

4

5

No
rm

al
ize

d
co

un
t i

.
i/ FastSimBac

ms
WF : RF=1
WF : RF=25

0.2 0.4 0.6 0.8
Frequency of derived allele

FastSimBac
ms
nonWF : RF=1
nonWF : RF=25

Figure 2: Normalized Site Frequency Spectrum (SFS) for four simulators and different rescaling
factors. The left panels represent the SFS of the WF simulations under different rescaling factors
(top left) and compared to the coalescent simulators (bottom left). The same information is shown
on the right-hand side of the figure, but for the nonWF simulations. The colored shaded areas
represent one standard deviation (mean ± std). The horizontal dashed line at 1 indicates the
expected average value and the black line the expected standard deviation, both under the WF
model without recombination. Parameters used: chromosome size: 2Mb; µ = ρ = 1.53 × 10−9; Ne
= 140k; 20000 generations. Rescaling does not affect the shape of the SFS and it matches that of
the expected horizontal line at 1, is not different across rescaling factors, and is similar to the SFS
obtained with the coalescent simulators.

Figure 2 shows the normalized SFS for 6 rescaling factors (see supplementary figure S3 for
all RFs) with the expected standard deviation under the Wright-Fisher model without recombi-
nation [43]. FastSimBac and ms simulations are shown as a second control, in addition to the
theoretical expectations (horizontal line at 1).

We see that all experiments lead to the expected SFS, well within the expected standard
deviation for linked loci. The smaller standard deviations, compared to the theoretical expectation,
are not surprising since recombination is known to decrease the variance of the SFS [45]. Thus,
rescaling factors up to 100 with this set of parameters do not affect the average SFS, which behaves
correctly for WF and nonWF models.

Next, we assessed the impact of bacterial recombination on linkage disequilibrium (LD). The
LD is measured by r2, which quantifies how much correlation (or linkage) there is between pairs
of alleles separated by a given distance. We measured this correlation by subsampling pairs
of SNPs, in 19 bins of increasing distances. The LD is represented as a function of the mean
distance within each bin. We compared our results to the LD obtained with simulations from
FastSimBac and ms. In figure 3 we observe that the LD for both WF and nonWF models is similar
to that obtained with ms and FastSimBac, and does not seem to be affected by the rescaling factor.
Unlike for the SFS, the expected LD and expected variation are hard to obtain and are beyond
the scope of this paper. However, we know that the LD at very short distances should be close
to the LD obtained in the absence of recombination. In figure 3, we used a shaded gray area
to represent the range of LD without recombination at short distance. More precisely, it shows
the mean +/- standard error of the mean for the four simulators without recombination. The
full LD plot without recombination can be seen in supplementary figures S6 and S7. Note that
in figure 3 a small difference between the backward and forward simulators can be seen, with
the backward simulators tending to produce higher LD at short distances than the forward ones.
This might be due to different implementations of recombination at short distances, or to a lack

10

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted February 10, 2021. ; https://doi.org/10.1101/2020.09.28.316869doi: bioRxiv preprint

https://doi.org/10.1101/2020.09.28.316869
http://creativecommons.org/licenses/by/4.0/

of recombination during the burn-in for forward simulation. Overall, however, we show that
all types of simulations produced the expected LD at short distances and converged toward the
expected r2 with free recombination of 1/n (dashed line) [46], [47].

0.05
0.10
0.15
0.20
0.25
0.30
0.35

r2
WF

Rescaling factor
1
5
10

25
50
100

nonWF

102 103 104 105 106

distance (bp)

0.05
0.10
0.15
0.20
0.25
0.30
0.35

r2

FastSimBac
ms
WF : RF=1
WF : RF=25

102 103 104 105 106

distance (bp)

FastSimBac
ms
nonWF : RF=1
nonWF : RF=25

Figure 3: Linkage disequilibrium for WF (left) and nonWF (right) simulations under different
rescaling factors (RFs) and for ms and FastSimBac (bottom). The horizontal dashed line indicates
the expected r2 with free recombination when sampling 20 individuals (1/20). The colored shaded
areas represent standard error of the mean, and the gray area toward the left of each panel
represents the range of expected values at very short distances. Parameters used: chromosome
size = 2Mb; µ = ρ = 1.53× 10−9; Ne = 140k; 20000 generations. Rescaling does not affect the shape
of LD (top), which matches that of coalescent simulators fairly well (bottom).

Overall, rescaling the simulations up to a factor of one hundred produces the expected SFS
and LD, while allowing a drastic reduction in time and memory. This opens the possibility of
running many simulations in a small amount of time, allowing the power and flexibility of forward
simulation to be leveraged much more usefully in bacterial population genomics.

3.2 Impact of recombination

In this section we assess the impact of recombination with the same set of parameters used
previously, with a rescaling factor of 25 across all of these runs. We compare simulations under
three recombination rates (ρ/10, ρ and 10ρ, where ρ = 1.53 × 10−9) and three mean tract lengths
(λ/100, λ/10, λ, where λ = 122 kb). These different recombination tract lengths cover the span
of tract lengths found in bacteria where, depending on the mechanism of transfer, the size of
the recombining region can range from approximately a 2kb fragment for transformation [48]
to more than 100kb with conjugation [41]. It is worth stressing that for more realistic bacterial
simulations, the mean tract length should represent the average for all recombination events, not
only selected ones, otherwise the length might be overestimated [48]. We show here that a wide
range of recombination tract lengths can be simulated. First looking at performance, increasing
the recombination rate by a factor of 100 increases the runtime of the WF model 18-fold, but by
only about 3-fold for the nonWF model (Figure 4 top). Higher recombination rates do require
more memory, particularly when using the nonWF model, but with the rescaling factor used in
this experiment it is still less than 1 GB (Figure 4 bottom).

11

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted February 10, 2021. ; https://doi.org/10.1101/2020.09.28.316869doi: bioRxiv preprint

https://doi.org/10.1101/2020.09.28.316869
http://creativecommons.org/licenses/by/4.0/

100
101
102
103
104

CP
U

tim
e

(s
)

WF nonWF FastSimBac ms

/10
/100

/10
/10

/10
/100 /10

10
/100

10
/10

10

= 1.53.10 9 ; = 122kb

101

102

103

M
em

or
y

(M
B)

Figure 4: Distribution of the CPU time and peak memory usage for different recombination
rates (ρ) and mean recombination tract lengths (λ). Parameters used : chromosome size : 2Mb;
µ = 1.53×10−9; Ne = 140k; 30000 generations; RF=25. There are 100 replicates for each combination
of ρ and λ. Computation time and memory usage increase with the recombination rate, but not
with the recombination tract length.

The recombination rate thus has an important impact on the runtime of the WF simulations,
but has much less impact on the nonWF simulations. The size of the recombination tract does not
seem to significantly affect either runtime or memory usage. As expected, coalescent simulators
are very fast at low recombination rates, but tend to struggle at higher recombination rates [20].
It takes them up to 10 thousand times longer to run when increasing the recombination rate by
a factor of 100. Because of this, the simulations with ms and FastSimBac with 10ρ and λ were
too slow, so we could only run 6 and 7 replicates, respectively, instead of a hundred. Other
backward simulators may better handle higher recombination rates; however, our focus here is on
the results of the simulations, not the efficiency of the simulators (a pointless comparison given
the very different nature of coalescent simulators). The timing data for the backward simulators
is just intended to give context for readers familiar with these software programs.

As in the previous experiment, we analysed the behaviour of our simulations with respect to
the normalized SFS and the LD. In figure 5, we see that the SFS is distributed as expected (flat line
centered at 1), independently of the simulator or type of simulation. Interestingly, we observed
two expected theoretical results: the standard deviation of the simulated SFS at low recombination
matches expectation [43], and the variance decreases as the recombination rate increases [45]. We
see that for a given recombination rate, decreasing the recombination tract length has a similar
effect as decreasing the recombination rate for a given tract length (moving between figure panels
leftward is similar to moving between figure panels upward).

In figure 6 the decay of LD with distance is similar when comparing all four types of sim-
ulations. We observe the same small discrepancy between coalescent and SLiM simulations as
seen earlier, but only for a subset of the parameters. At low recombination rate, we recover the
clonal frame, corresponding to the fact that bacterial recombination involves small patches of
homologous DNA, rather than long stretches [49]. This means that positions on either side of an
HGT patch will stay linked, and this explains the space between the line of the expected LD with
free recombination and the LD curve at high distance, which is expected in bacteria [32]. A higher
recombination rate or a longer recombination tract length tends to approximate the expected LD
of an organism with recombination by crossing over rather than HGT.

12

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted February 10, 2021. ; https://doi.org/10.1101/2020.09.28.316869doi: bioRxiv preprint

https://doi.org/10.1101/2020.09.28.316869
http://creativecommons.org/licenses/by/4.0/

0

1

2

3

4

5

No
rm

al
ize

d
co

un
t i

.
i/

/100 /10

/10

WF
nonWF

FastSimBac
ms

0

1

2

3

4

5

No
rm

al
ize

d
co

un
t i

.
i/

0.2 0.4 0.6 0.8
Frequency of derived allele

0

1

2

3

4

5

No
rm

al
ize

d
co

un
t i

.
i/

0.2 0.4 0.6 0.8
Frequency of derived allele

0.2 0.4 0.6 0.8
Frequency of derived allele

10

Figure 5: The normalized Site Frequency Spectrum (SFS) for different recombination rates (ρ) and
tract lengths (λ). The colored shaded areas represent standard deviation. The horizontal line at
1 is the expected normalized SFS and the black line represents the expected standard deviation,
both under the WF model without recombination. Parameters used: chromosome size = 2Mb;
µ = ρ = 1.53 × 10−9; λ = 122kb; Ne = 140k; 30000 generations; RF=25. The observed SFS matches
the expected horizontal line in all cases. Under low recombination their standard deviations also
match the expectation, but the variance decreases with the recombination rate in accord with
theoretical expectations.

13

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted February 10, 2021. ; https://doi.org/10.1101/2020.09.28.316869doi: bioRxiv preprint

https://doi.org/10.1101/2020.09.28.316869
http://creativecommons.org/licenses/by/4.0/

0.05

0.10

0.15

0.20

0.25

0.30

0.35

r2

/100

WF
nonWF

FastSimBac
ms

/10

/10

0.05

0.10

0.15

0.20

0.25

0.30

0.35

r2

103 105

distance (bp)

0.05

0.10

0.15

0.20

0.25

0.30

0.35

r2

103 105

distance (bp)
103 105

distance (bp)

10

Figure 6: Linkage disequilibrium for WF and nonWF simulations with various recombination
rates (ρ) and tract lengths (λ). The colored shaded areas represent standard error of the mean,
and the gray area represents the range of expected values at very short distances. The horizontal
black dashed line is the expected r2 with free recombination when sampling 20 individuals (1/20).
Parameters used: chromosome size = 2Mb; µ = ρ = 1.53 × 10−9; λ = 122kb; Ne = 140k; 30000
generations; RF=25. Various recombination rates and mean tract lengths produce similar patterns
of LD between SLiM simulations and backward simulators.

Overall, changing the recombination rate and mean recombination tract length produced the
expected statistical results. Even for the highest recombination rate, the runtime and memory
requirements are still low enough to allow many simulations to be run (Figure 4), and if neces-
sary, one might increase the rescaling factor (with proper validation and testing). Interestingly,
with a high recombination rate the rescaled SLiM simulations were much faster than coalescent
simulations. Finally, the nonWF model seems to have a more predictable runtime and memory
footprint, which might be beneficial when computing resources are scarce.

3.3 Simulating bacterial growth on a Petri dish with antibiotic

In this paper, we mostly focus on results from a very simple population-genetic scenario. Here,
however, we briefly showcase a radically different model, based upon our simple nonWF model,
which might be of interest for evolutionary microbiologists. This model includes effects of explicit
space on dispersal, competition, and genetic relatedness; this type of model may help with under-
standing the impact of environmental structure on a given evolutionary dynamic. For instance,
a similar simulation framework was used to estimate the impact of a structured environment on
resistance to phage and antibiotics [50]. In this toy scenario, we follow the growth of multiple
colonies that are spread on a Petri dish as depicted in figure 7. The figure clearly shows how the
antibiotic prevents the bacteria from spreading during a certain period and how the appearance
of a resistance allele, despite being costly for its host in a neutral environment, eventually changes
the spatial dynamics of colonization. This is obviously a basic model, and we are not interested in
analyzing its results in any detail; instead, its purpose here is to show how easily more complex

14

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted February 10, 2021. ; https://doi.org/10.1101/2020.09.28.316869doi: bioRxiv preprint

https://doi.org/10.1101/2020.09.28.316869
http://creativecommons.org/licenses/by/4.0/

scenarios can be modeled in SLiM, based upon our simple bacterial protocol. Importantly, we still
have access to the tree sequence of the population and we could thus recapitate the 50 individuals
that started the simulations, overlay neutral mutations, etc., and perform further analysis.

(a) Generation 1 (b) Generation 20 (c) Generation 50

(d) Generation 100 (e) Generation 200 (f) Generation 300

(g) Generation 400 (h) Generation 500 (i) Generation 600

Figure 7: Representation of the simulated Petri dish at different generations. The pink area rep-
resents the half of the dish with antibiotic, while the white half has none. At the first generation,
there are 50 colonies (single bacteria) spread randomly on the plate. As the simulation goes for-
ward, we see those colonies growing, in yellow. They grow better in the right-hand half of the
plate, due to the absence of antibiotic. Bacteria colored red have acquired antibiotic resistance. We
see that the resistant bacteria later grow better in the left half of the dish. Because of the fitness cost
of the antibiotic-resistance mutation in the absence of antibiotic, there are only a few red bacteria
in the right half at the end of simulation despite their markedly higher mean fitness over the envi-
ronment as a whole, showing the importance of spatiality for the outcome of the model. The code
used to generate this simulation can be found at https://github.com/jeanrjc/BacterialSlimulations.

4 Discussion

We presented a step-by-step protocol for performing simulations in SLiM of a simple bacterial
population, and one example of a more complex spatial model based upon our protocol. Although
SLiM is not focused on bacteria, the simulations were shown to behave correctly, and ran in
a reasonable amount of time. The basic models we presented were simple in order to draw
attention to the particular techniques involved in simulating bacterial populations, but all of the

15

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted February 10, 2021. ; https://doi.org/10.1101/2020.09.28.316869doi: bioRxiv preprint

https://doi.org/10.1101/2020.09.28.316869
http://creativecommons.org/licenses/by/4.0/

model variation discussed in the SLiM manual – complex demography and population structure,
selection, and so forth – can easily be added to this foundational model, as exemplified with
our spatial model. Our simplified approach also allowed us to compare the accuracy of our
implementation to theoretical expectations, and to other simulators for which substantially more
complex scenarios would not have been possible. The final model, of bacteria on a Petri dish,
certainly could not be run in any coalescent simulator.

These simulations were made both within SLiM’s Wright-Fisher framework and within the
more individual-based nonWF framework, to showcase these two possibilities for the user. The
recipes for our WF and nonWF models are freely available on our dedicated repository (https:
//github.com/jeanrjc/BacterialSlimulations), where we encourage everyone to propose
their recipes for more complex scenarios. It might be worth mentioning why one would choose
between SLiM’s WF and nonWF model types, since this fundamental choice will guide much of
the model development that follows. The WF model is simpler in many ways: it involves more
simplifying assumptions and less individual-level behavior. For example, population size in the
WF model is automatically maintained at a set level, whereas the nonWF model requires you
to write script that regulates the population size via mechanisms such as density-dependence
or – appropriately for pathogens, perhaps – host mortality. Similarly, reproduction in the WF
model is automatic, based upon fitness; high-fitness individuals reproduce more than low-fitness
individuals, a fact that SLiM automatically enforces. In nonWF models, in contrast, fitness
typically influences mortality, not fecundity, and reproduction is explicitly scripted to allow for
greater individual-level variation in the modes and mechanisms of offspring generation. Writing
a nonWF model is therefore a bit more complex and technical, and requires more details to be
spelled out explicitly. Normally, nonWF models are a bit slower, but here the opposite was true;
the slower implementation of the burn-in for the WF model, due to the incompatibility between
tree-sequence recording and the WF implementation of bacterial recombination, meant that the
WF model was slower. This is, in part, why we emphasized the nonWF model here; in this context,
it really provides both greater power and flexibility, and better performance. However, the WF
model remains simpler, conceptually and in its implementation; and if one wants fitness to affect
fecundity rather than mortality it can be the more natural choice. These remarks are summarized
in Table 1.

Currently, the only drawback of this simulator concerns the lack of recombination during the
burn-in step. For the WF model, this is due to a technical limitation in ms; for the nonWF model,
it is due to the current lack of gene conversion support in msprime. Implementation of gene
conversion in msprime is in progress, and may be available soon. This will greatly improve the
nonWF model, and will be trivial to add with a minor change to the recapitation step of the Python
script. We will update our repository as soon as this feature is released in msprime. This lack of
recombination during burn-in leads to a deficit in LD when forward simulation is too brief. In our
runs, we see that after about 20 000 forward generations (about Ne/7 generations), LD and SFS
match that of ms and FastSimBac (supplementary Figure S5 and Figure S6). If one wants to run
a very short simulation (e.g. less than Ne/7) with burn-in, it might still be worth running at least
Ne/7 generations more of forward burn-in in addition to a coalescent burn-in. The higher variance
of the SFS observed in the experiments for the SLiM simulations, compared to ms and FastSimBac,
might be explained by this lack of recombination during burn-in, since recombination decreases
the SFS’s variance [45]. In short, for simulations that require burn-in (in order to start non-neutral
dynamics at mutation-drift equilibrium, for example, or to obtain fully coalesced ancestry trees
in Python), a few generations of neutral dynamics at the beginning of forward simulation are
enough to recover the correct LD, at least in our simple model. (The necessary length of neutral
forward simulation may be longer for other models, particularly with strong spatial structure.)
Once gene conversion is added to msprime, this will not be needed any more.

We hope that our work here will stimulate a wave of development of simulation-based models
for bacterial population genetics. We believe that this paper, combined with the hundred-plus
models presented in SLiM’s extensive documentation, will allow anyone to create new scenarios
for bacterial populations seamlessly. It is possible to simulate evolution in continuous space (such
as in a Petri dish), to model nucleotides explicitly (including the use of FASTA and VCF files),
to model selection based on external environmental factors such as the presence of antibiotics
(and selection for resistance genes), and even to model within-host evolution using a single
subpopulation for each host while modeling between-host transmission and infectivity dynamics;
with the scriptability of SLiM almost anything is possible. We look forward to seeing the diverse
research questions that the bacterial genomics community will explore with SLiM.

16

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted February 10, 2021. ; https://doi.org/10.1101/2020.09.28.316869doi: bioRxiv preprint

https://github.com/jeanrjc/BacterialSlimulations
https://github.com/jeanrjc/BacterialSlimulations
https://doi.org/10.1101/2020.09.28.316869
http://creativecommons.org/licenses/by/4.0/

Acknowledgements

We thank Peter Ralph, Eduardo Rocha, and Philippe Glaser for fruitful discussions. JC and FJ
thank DIM One Health 2017 (number RPH17094JJP) and Human Frontier Science Project (number
RGY0075/2019) for funding.

References

[1] J. B. H. Martiny, B. J. Bohannan, J. H. Brown, R. K. Colwell, J. A. Fuhrman, J. L. Green, M. C.
Horner-Devine, M. Kane, J. A. Krumins, C. R. Kuske, P. J. Morin, S. Naeem, L. Øvreås, A.-L.
Reysenbach, V. H. Smith, and J. T. Staley, “Microbial biogeography: Putting microorganisms
on the map,” Nature Reviews Microbiology, vol. 4, no. 2, pp. 102–112, Feb. 2006, issn: 1740-1526,
1740-1534. doi: 10.1038/nrmicro1341.

[2] Y. H. Grad and M. Lipsitch, “Epidemiologic data and pathogen genome sequences: A
powerful synergy for public health,” Genome Biology, vol. 15, no. 11, p. 538, Nov. 2014, issn:
1474-760X. doi: 10.1186/s13059-014-0538-4.

[3] N. J. Croucher, J. A. Finkelstein, S. I. Pelton, P. K. Mitchell, G. M. Lee, J. Parkhill, S. D.
Bentley, W. P. Hanage, and M. Lipsitch, “Population genomics of post-vaccine changes in
pneumococcal epidemiology,” Nature Publishing Group, vol. 45, no. 6, 2013. doi: 10.1038/
ng.2625.

[4] N. J. Croucher, C. Chewapreecha, W. P. Hanage, S. R. Harris, L. Mcgee, M. Van Der Linden,
J.-H. Song, K. S. Ko, H. De Lencastre, C. Turner, F. Yang, R. Sá-Leã O, B. Beall, K. P. Klugman,
J. Parkhill, P. Turner, and S. D. Bentley, “Evidence for Soft Selective Sweeps in the Evolution
of Pneumococcal Multidrug Resistance and Vaccine Escape,” Genome Biol. Evol, vol. 6, no. 7,
pp. 1589–1602, 2014. doi: 10.1093/gbe/evu120.

[5] D. A. Robinson, D. Falush, and E. J. Feil, Bacterial Population Genetics in Infectious Disease,
Wiley-Blackwell. 2010, isbn: 978-0-470-42474-2.

[6] S. Hoban, “An overview of the utility of population simulation software in molecular
ecology,” Molecular Ecology, vol. 23, no. 10, pp. 2383–2401, May 2014, issn: 09621083. doi:
10.1111/mec.12741.

[7] M. Lapierre, C. Blin, A. Lambert, G. Achaz, and E. P. C. Rocha, “The Impact of Selection, Gene
Conversion, and Biased Sampling on the Assessment of Microbial Demography,” Molecular
Biology and Evolution, vol. 33, no. 7, pp. 1711–1725, Jul. 2016. doi: 10.1093/molbev/msw048.

[8] L. Chikhi, V. C. Sousa, P. Luisi, B. Goossens, and M. A. Beaumont, “The Confounding Effects
of Population Structure, Genetic Diversity and the Sampling Scheme on the Detection and
Quantification of Population Size Changes,” Genetics, vol. 186, no. 3, pp. 983–995, Nov. 2010,
issn: 0016-6731, 1943-2631. doi: 10.1534/genetics.110.118661.

[9] F. Jay, S. Manel, N. Alvarez, E. Y. Durand, W. Thuiller, R. Holderegger, P. Taberlet, and O.
François, “Forecasting changes in population genetic structure of alpine plants in response to
global warming,” Molecular Ecology, vol. 21, no. 10, pp. 2354–2368, May 2012, issn: 09621083.
doi: 10.1111/j.1365-294X.2012.05541.x.

[10] M. Bruford, M. Ancrenaz, L. Chikhi, I. Lackmann-Ancrenaz, M. Andau, L. Ambu, and B.
Goossens, “Projecting genetic diversity and population viability for the fragmented orang-
utan population in the Kinabatangan floodplain, Sabah, Malaysia,” Endangered Species Re-
search, vol. 12, no. 3, pp. 249–261, Oct. 2010, issn: 1863-5407, 1613-4796. doi: 10.3354/
esr00295.

[11] K. Csilléry, M. G. Blum, O. E. Gaggiotti, and O. François, “Approximate Bayesian Compu-
tation (ABC) in practice,” Trends in Ecology & Evolution, vol. 25, no. 7, pp. 410–418, Jul. 2010,
issn: 01695347. doi: 10.1016/j.tree.2010.04.001.

[12] D. R. Schrider and A. D. Kern, “Supervised Machine Learning for Population Genetics: A
New Paradigm,” Trends in Genetics, vol. 34, no. 4, pp. 301–312, Apr. 2018, issn: 0168-9525.
doi: 10.1016/j.tig.2017.12.005.

[13] S. Sheehan and Y. S. Song, “Deep Learning for Population Genetic Inference,” PLOS Com-
putational Biology, vol. 12, no. 3, K. Chen, Ed., e1004845–e1004845, Mar. 2016. doi: 10.1371/
journal.pcbi.1004845.

17

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted February 10, 2021. ; https://doi.org/10.1101/2020.09.28.316869doi: bioRxiv preprint

https://doi.org/10.1038/nrmicro1341
https://doi.org/10.1186/s13059-014-0538-4
https://doi.org/10.1038/ng.2625
https://doi.org/10.1038/ng.2625
https://doi.org/10.1093/gbe/evu120
https://doi.org/10.1111/mec.12741
https://doi.org/10.1093/molbev/msw048
https://doi.org/10.1534/genetics.110.118661
https://doi.org/10.1111/j.1365-294X.2012.05541.x
https://doi.org/10.3354/esr00295
https://doi.org/10.3354/esr00295
https://doi.org/10.1016/j.tree.2010.04.001
https://doi.org/10.1016/j.tig.2017.12.005
https://doi.org/10.1371/journal.pcbi.1004845
https://doi.org/10.1371/journal.pcbi.1004845
https://doi.org/10.1101/2020.09.28.316869
http://creativecommons.org/licenses/by/4.0/

[14] A. D. Kern and D. R. Schrider, “diploS/HIC: An Updated Approach to Classifying Selective
Sweeps,” G3: Genes, Genomes, Genetics, g3.200262.2018, Apr. 2018, issn: 2160-1836. doi: 10.
1534/g3.118.200262.

[15] L. Flagel, Y. Brandvain, and D. R. Schrider, “The Unreasonable Effectiveness of Convolu-
tional Neural Networks in Population Genetic Inference,” Molecular Biology and Evolution,
vol. 36, no. 2, pp. 220–238, Feb. 2019, issn: 0737-4038. doi: 10.1093/molbev/msy224.

[16] T. Sanchez, J. Cury, G. Charpiat, and F. Jay, “Deep learning for population size history
inference: Design, comparison and combination with approximate Bayesian computation,”
Molecular Ecology Resources, pp. 1755–0998.13224, Jul. 2020, issn: 1755-098X, 1755-0998. doi:
10.1111/1755-0998.13224.

[17] C. Battey, P. L. Ralph, and A. D. Kern, “Predicting geographic location from genetic variation
with deep neural networks,” eLife, vol. 9, e54507, Jun. 2020, issn: 2050-084X. doi: 10.7554/
eLife.54507.

[18] T. Akita, S. Takuno, and H. Innan, “Coalescent framework for prokaryotes undergoing
interspecific homologous recombination,” Heredity, Jan. 2018, issn: 0018-067X, 1365-2540.
doi: 10.1038/s41437-017-0034-1.

[19] T. Brown, X. Didelot, D. J. Wilson, and N. D. Maio, “SimBac: Simulation of whole bacterial
genomes with homologous recombination,” Microbial Genomics, vol. 2, no. 1, Jan. 2016, issn:
2057-5858, 2057-5858. doi: 10.1099/mgen.0.000044.

[20] N. De Maio and D. J. Wilson, “The Bacterial Sequential Markov Coalescent,” Genetics,
vol. 206, no. 1, pp. 333–343, May 2017, issn: 0016-6731, 1943-2631. doi: 10.1534/genetics.
116.198796.

[21] R. R. Hudson, “Ms a program for generating samples under neutral models,” 2004.

[22] J. Kelleher, A. M. Etheridge, and G. McVean, “Efficient Coalescent Simulation and Genealog-
ical Analysis for Large Sample Sizes,” PLOS Computational Biology, vol. 12, no. 5, e1004842,
May 2016, issn: 1553-7358. doi: 10.1371/journal.pcbi.1004842.

[23] R. D. Hernandez, “A flexible forward simulator for populations subject to selection and
demography,” Bioinformatics, vol. 24, no. 23, pp. 2786–2787, Dec. 2008, issn: 1367-4803, 1460-
2059. doi: 10.1093/bioinformatics/btn522.

[24] B. C. Haller and P. W. Messer, “SLiM 2: Flexible, Interactive Forward Genetic Simulations,”
Molecular Biology and Evolution, vol. 34, no. 1, pp. 230–240, Jan. 2017, issn: 0737-4038. doi:
10.1093/molbev/msw211.

[25] L.-M. Bobay, “CoreSimul: A forward-in-time simulator of genome evolution for prokaryotes
modeling homologous recombination,” BMC Bioinformatics, vol. 21, no. 1, p. 264, Dec. 2020,
issn: 1471-2105. doi: 10.1186/s12859-020-03619-x.

[26] B. C. Haller and P. W. Messer, “SLiM 3: Forward Genetic Simulations Beyond the Wright–Fisher
Model,” Molecular Biology and Evolution, p. 6, Jan. 2019. doi: 10.1093/molbev/msy228.

[27] A. M. Sackman, R. B. Harris, and J. D. Jensen, “Inferring Demography and Selection in
Organisms Characterized by Skewed Offspring Distributions,” Genetics, vol. 211, pp. 1019–
1028, 2019.

[28] G. S. Bradburd and P. L. Ralph, “Spatial Population Genetics: It’s About Time,” Annual
Review of Ecology, Evolution, and Systematics, vol. 50, no. 1, pp. 427–449, Nov. 2019, issn:
1543-592X, 1545-2069. doi: 10.1146/annurev-ecolsys-110316-022659.

[29] J. Kelleher, Y. Wong, A. W. Wohns, C. Fadil, P. K. Albers, and G. McVean, “Inferring whole-
genome histories in large population datasets,” Nature Genetics, vol. 51, no. 9, pp. 1330–1338,
Sep. 2019, issn: 1061-4036, 1546-1718. doi: 10.1038/s41588-019-0483-y.

[30] B. C. Haller and P. W. Messer, “Evolutionary Modeling in SLiM 3 for Beginners,” Molecular
Biology and Evolution, vol. 36, no. 5, R. Hernandez, Ed., pp. 1101–1109, May 2019, issn:
0737-4038, 1537-1719. doi: 10.1093/molbev/msy237.

[31] H. Ochman, J. G. Lawrence, and E. A. Groisman, “Lateral gene transfer and the nature of
bacterial innovation.,” Nature, vol. 405, no. 6784, pp. 299–304, May 2000, issn: 0028-0836.
doi: 10.1038/35012500.

[32] E. P. C. Rocha, “Neutral Theory, Microbial Practice: Challenges in Bacterial Population
Genetics,” Molecular Biology and Evolution, vol. 35, no. 6, pp. 1338–1347, Jun. 2018, issn:
0737-4038. doi: 10.1093/molbev/msy078.

18

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted February 10, 2021. ; https://doi.org/10.1101/2020.09.28.316869doi: bioRxiv preprint

https://doi.org/10.1534/g3.118.200262
https://doi.org/10.1534/g3.118.200262
https://doi.org/10.1093/molbev/msy224
https://doi.org/10.1111/1755-0998.13224
https://doi.org/10.7554/eLife.54507
https://doi.org/10.7554/eLife.54507
https://doi.org/10.1038/s41437-017-0034-1
https://doi.org/10.1099/mgen.0.000044
https://doi.org/10.1534/genetics.116.198796
https://doi.org/10.1534/genetics.116.198796
https://doi.org/10.1371/journal.pcbi.1004842
https://doi.org/10.1093/bioinformatics/btn522
https://doi.org/10.1093/molbev/msw211
https://doi.org/10.1186/s12859-020-03619-x
https://doi.org/10.1093/molbev/msy228
https://doi.org/10.1146/annurev-ecolsys-110316-022659
https://doi.org/10.1038/s41588-019-0483-y
https://doi.org/10.1093/molbev/msy237
https://doi.org/10.1038/35012500
https://doi.org/10.1093/molbev/msy078
https://doi.org/10.1101/2020.09.28.316869
http://creativecommons.org/licenses/by/4.0/

[33] C. Wiuf, “Recombination in Human Mitochondrial DNA?,” p. 8, 2001.

[34] L.-M. Bobay and H. Ochman, “Factors driving effective population size and pan-genome
evolution in bacteria,” BMC Evolutionary Biology, vol. 18, no. 1, p. 153, Dec. 2018, issn:
1471-2148. doi: 10.1186/s12862-018-1272-4.

[35] B. C. Haller and P. W. Messer, SLiM: An Evolutionary Simulation Framework, http : / /
benhaller.com/slim/SLiM_Manual.pdf, 2016.

[36] C. J. Hoggart, M. Chadeau-Hyam, T. G. Clark, R. Lampariello, J. C. Whittaker, M. De Iorio,
and D. J. Balding, “Sequence-Level Population Simulations Over Large Genomic Regions,”
Genetics, vol. 177, no. 3, pp. 1725–1731, Nov. 2007, issn: 0016-6731. doi: 10.1534/genetics.
106.069088.

[37] F. Jay, S. Boitard, and F. Austerlitz, “An ABC Method for Whole-Genome Sequence Data:
Inferring Paleolithic and Neolithic Human Expansions,” Molecular Biology and Evolution,
vol. 36, no. 7, pp. 1565–1579, Jul. 2019, issn: 0737-4038. doi: 10.1093/molbev/msz038.

[38] V. Da Cunha, M. R. Davies, P.-E. Douarre, I. Rosinski-Chupin, I. Margarit, S. Spinali, T.
Perkins, P. Lechat, N. Dmytruk, E. Sauvage, L. Ma, B. Romi, M. Tichit, M.-J. Lopez-Sanchez,
S. Descorps-Declere, E. Souche, C. Buchrieser, P. Trieu-Cuot, I. Moszer, D. Clermont, D.
Maione, C. Bouchier, D. J. Mcmillan, J. Parkhill, J. L. Telford, G. Dougan, M. J. Walker, T. D.
Consortium, M. T. G. Holden, C. Poyart, and P. Glaser, “Streptococcus agalactiae clones
infecting humans were selected and fixed through the extensive use of tetracycline,” Nature
Communications, vol. 5, no. 4544, 2014. doi: 10.1038/ncomms5544.

[39] S. Bellais, A. Six, A. Fouet, M. Longo, N. Dmytruk, P. Glaser, P. Trieu-Cuot, and C. Po-
yart, “Capsular Switching in Group B Streptococcus CC17 Hypervirulent Clone: A Future
Challenge for Polysaccharide Vaccine Development,” Journal of Infectious Diseases, vol. 206,
no. 11, pp. 1745–1752, Dec. 2012, issn: 0022-1899, 1537-6613. doi: 10.1093/infdis/jis605.

[40] M. A. Savageau, “Escherichia coli habitats, cell types, and molecular mechanisms of gene
control,” The American Naturalist, vol. 122, no. 6, pp. 732–744, 1983.

[41] M. Brochet, C. Rusniok, E. Couvé, S. Dramsi, C. Poyart, P. Trieu-Cuot, F. Kunst, and P. Glaser,
“Shaping a bacterial genome by large chromosomal replacements, the evolutionary history
of Streptococcus agalactiae,” Proceedings of the National Academy of Sciences, vol. 105, no. 41,
pp. 15 961–15 966, 2008.

[42] T. Lefébure and M. J. Stanhope, “Evolution of the core and pan-genome of Streptococcus:
Positive selection, recombination, and genome composition,” Genome Biology, vol. 8, R71,
May 2007, issn: 1474-760X. doi: 10.1186/gb-2007-8-5-r71.

[43] Y.-X. Fu, “Statistical Properties of Segregating Sites,” Theoretical Population Biology, vol. 48,
pp. 172–197, 1995.

[44] G. Achaz, “Frequency Spectrum Neutrality Tests: One for All and All for One,” Genetics,
vol. 183, no. 1, pp. 249–258, Sep. 2009, issn: 0016-6731, 1943-2631. doi: 10.1534/genetics.
109.104042.

[45] J. D. Wall, “Recombination and the power of statistical tests of neutrality,” Genetical Research,
vol. 74, no. 1, pp. 65–79, Aug. 1999, issn: 00166723. doi: 10.1017/S0016672399003870.

[46] S. Takuno, T. Kado, R. P. Sugino, L. Nakhleh, and H. Innan, “Population Genomics in
Bacteria: A Case Study of Staphylococcus aureus,” Molecular Biology and Evolution, vol. 29,
no. 2, pp. 797–809, Feb. 2012, issn: 0737-4038. doi: 10.1093/molbev/msr249.

[47] R. S. Waples, “A bias correction for estimates of effective population size based on linkage
disequilibrium at unlinked gene loci*,” Conservation Genetics, vol. 7, no. 2, pp. 167–184, Apr.
2006, issn: 1566-0621, 1572-9737. doi: 10.1007/s10592-005-9100-y.

[48] N. J. Croucher, S. R. Harris, L. Barquist, J. Parkhill, S. D. Bentley, and X. Didelot, “A High-
Resolution View of Genome-Wide Pneumococcal Transformation,” PLoS Pathog, vol. 8, no. 6,
2012. doi: 10.1371/journal.ppat.1002745.

[49] R. Milkman and M. M. Bridges, “Molecular evolution of the Escherichia coli chromosome.
III. Clonal frames.,” Genetics, vol. 126, no. 3, pp. 505–517, 1990.

[50] J. A. M. de Sousa and E. P. C. Rocha, “Environmental structure drives resistance to phages and
antibiotics during phage therapy and to invading lysogens during colonisation,” Scientific
Reports, vol. 9, no. 1, p. 3149, Dec. 2019, issn: 2045-2322. doi: 10.1038/s41598-019-39773-3.

[51] G. Malécot, “Mathématiques de l’hérédité,” 1948.

19

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted February 10, 2021. ; https://doi.org/10.1101/2020.09.28.316869doi: bioRxiv preprint

https://doi.org/10.1186/s12862-018-1272-4
http://benhaller.com/slim/SLiM_Manual.pdf
http://benhaller.com/slim/SLiM_Manual.pdf
https://doi.org/10.1534/genetics.106.069088
https://doi.org/10.1534/genetics.106.069088
https://doi.org/10.1093/molbev/msz038
https://doi.org/10.1038/ncomms5544
https://doi.org/10.1093/infdis/jis605
https://doi.org/10.1186/gb-2007-8-5-r71
https://doi.org/10.1534/genetics.109.104042
https://doi.org/10.1534/genetics.109.104042
https://doi.org/10.1017/S0016672399003870
https://doi.org/10.1093/molbev/msr249
https://doi.org/10.1007/s10592-005-9100-y
https://doi.org/10.1371/journal.ppat.1002745
https://doi.org/10.1038/s41598-019-39773-3
https://doi.org/10.1101/2020.09.28.316869
http://creativecommons.org/licenses/by/4.0/

Supplementary Material

Supplementary Figures

Parents:

Juveniles:

re
p=

1rep=0

is_HGT: Yes

1
1

0.5 0.5

Fitness

0.5
0.5

is_HGT: Yes 0.5

1

0.5

Pool of individuals for next
generation

SLiM simulation :
- Forward simulation
- Bacterial recombination

- wide range of possible scenarios

- No neutral mutation
- Tree recording

msprime simulation
- Burn-in through
recapitation

- neutral mutation overlay

SNP data
- of a sampled
population

- other outputs
possible

12 3

A

B

Time

tree mutation
Ne

bacteria
100000100

100001000

100001000

101000100

010100010

010100001

010100001

010100000

Bacteria

Chromosome

1st generation

Fitness-based
mortality

HGT transfer

Figure S1: Schema of the nonWF simulation process described in this study. This schema is a
visual companion to section 2.2 Simulation protocol, and is not self sufficient. (A) Step 1© :
forward simulation with SLiM of a population of bacteria with Ne individuals. The population
at the time of sampling (on the right-hand side) will not have coalesced; here, for example, there
are still three ancestors at the first generation (darker circles) and no single most recent common
ancestor. Step 2©: burn-in with msprime by recapitation of the tree sequence. The recapitation
coalesces remaining branches back in time, acting as a burn-in period for the forward simulation.
Then we can overlay neutral mutations on the fully coalesced tree sequence. Step 3©: output SNP
data for further analysis. Other types of data may be output, such as a VCF file, or a .trees tree
sequence file. Panel (B) provides a simplified depiction of the reproduction process. Each parent
produces two juveniles, and some of them will receive gene fragments (thicker chromosomal
segments) from other parents by HGT. Parents that are going to receive HGT are drawn from
a binomial distribution with the HGT rate as the probability (HGTrate parameter, L. 36 in the
bacterial reproduction code snippet). The first position of the recombining fragment is drawn
uniformly along the chromosome, and the second position is drawn from a geometric distribution
with the mean tract length parameter (tractlen parameter, L. 50). The fitness is then adjusted by
density-dependent selection, causing mortality (red crosses), such that on average the population
size remains constant at equilibrium (see Regulating the population size’s code snippet, L. 81- 92).

20

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted February 10, 2021. ; https://doi.org/10.1101/2020.09.28.316869doi: bioRxiv preprint

https://doi.org/10.1101/2020.09.28.316869
http://creativecommons.org/licenses/by/4.0/

1 2 3 4 5 10 25 50 100
Rescaling Factor

100

101

102

103

104

105

CP
U

tim
e

(s
)

Burn-in
WF
nonWF

1 2 3 4 5 10 25 50 100
Rescaling Factor

FastSimBac
ms

Forward

Figure S2: Computing time as in Figure 1, but split between the burn-in and forward simulation
components of the total simulation time.

0

1

2

3

4

5

No
rm

al
ize

d
co

un
t i

.
i/

RF = 1
WF
nonWF

FastSimBac
ms

RF = 2 RF = 3

0

1

2

3

4

5

No
rm

al
ize

d
co

un
t i

.
i/

RF = 4 RF = 5 RF = 10

0.2 0.4 0.6 0.8
Frequency of derived allele

0

1

2

3

4

5

No
rm

al
ize

d
co

un
t i

.
i/

RF = 25

0.2 0.4 0.6 0.8
Frequency of derived allele

RF = 50

0.2 0.4 0.6 0.8
Frequency of derived allele

RF = 100

Figure S3: The normalized Site Frequency Spectrum (SFS) for different rescaling factors. The
shaded area represents one standard deviation (mean ± std). The horizontal line at 1 is the
expected normalized SFS and the black line represents the expected standard deviation, both
under the WF model. Parameters used: chromosome size: 2Mb; µ = ρ = 1.53 × 10−9; Ne =
140k; 20000 generations. Rescaling does not affect the shape of the SFS and it matches that of
the expected horizontal line at 1, is not different across rescaling factors, and is similar to the SFS
obtained with the coalescent simulators.

21

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted February 10, 2021. ; https://doi.org/10.1101/2020.09.28.316869doi: bioRxiv preprint

https://doi.org/10.1101/2020.09.28.316869
http://creativecommons.org/licenses/by/4.0/

100
101
102
103
104

CP
U

tim
e

(s
)

WF nonWF

/10
1k

/10
10k

/10
20k

/10
45k

/10
70k

/10
140k

/10
1400k 1k 10k 20k 45k 70k 140k 1400k

10
1k

10
10k

10
20k

10
45k

10
70k

10
140k

10
1400k

= 1.53.10 9 ; = 12.2kb

102

103

M
em

or
y

(M
B)

Figure S4: Computing time for different numbers of forward-simulated generations, with three
different recombination rates. Ne=140 000, λ = 12200bp and RF=25.

0

1

2

3

4

5

No
rm

al
ize

d
co

un
t

i.
i/

1k (1/140 Ne)
WF
nonWF

FastSimBac
ms

10k (1/14 Ne) 20k (1/7 Ne) 45k (~1/3 Ne) 70k (1/2 Ne) 140k (Ne)

/10

1400k (10 Ne)

0

1

2

3

4

5

No
rm

al
ize

d
co

un
t

i.
i/

0.2 0.4 0.6 0.8
Frequency of derived

allele

0

1

2

3

4

5

No
rm

al
ize

d
co

un
t

i.
i/

0.2 0.4 0.6 0.8
Frequency of derived

allele

0.2 0.4 0.6 0.8
Frequency of derived

allele

0.2 0.4 0.6 0.8
Frequency of derived

allele

0.2 0.4 0.6 0.8
Frequency of derived

allele

0.2 0.4 0.6 0.8
Frequency of derived

allele

0.2 0.4 0.6 0.8
Frequency of derived

allele

10

Figure S5: The normalized Site Frequency Spectrum (SFS) for different numbers of forward-
simulated generations and recombination rates. The number of generations are indicated on the
top of each column (e.g. 1k is 1,000 generations, and corresponds in unit of Ne to 1/140-th of Ne).
The shaded areas represent standard deviation. The black lines represent the expected standard
deviation for the Wright-Fisher model without recombination. Ne=140 000, λ = 12200bp and
RF=25.

22

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted February 10, 2021. ; https://doi.org/10.1101/2020.09.28.316869doi: bioRxiv preprint

https://doi.org/10.1101/2020.09.28.316869
http://creativecommons.org/licenses/by/4.0/

0.05

0.10

0.15

0.20

0.25

0.30

0.35

r2

1k (1/140 Ne)

WF
nonWF
fsb
ms

WF_noRec
nonWF_noRec
fsb_noRec
ms_noRec

10k (1/14 Ne) 20k (1/7 Ne) 45k (~1/3 Ne) 70k (1/2 Ne) 140k (Ne)

/10

1400k (10 Ne)

0.05

0.10

0.15

0.20

0.25

0.30

0.35

r2

101 102 103 104 105

distance (bp)

0.05

0.10

0.15

0.20

0.25

0.30

0.35

r2

101 102 103 104 105

distance (bp)
101 102 103 104 105

distance (bp)
101 102 103 104 105

distance (bp)
101 102 103 104 105

distance (bp)
101 102 103 104 105

distance (bp)
101 102 103 104 105

distance (bp)

10

Figure S6: Linkage disequilibrium for WF and nonWF simulations with various numbers of
forward-simulated generations and recombination rates (ρ). The number of generations are
indicated on the top of each column (e.g. 1k is 1,000 generations, and corresponds in unit of Ne to
1/140-th of Ne). Ne=140 000, λ = 12200bp and RF=25. The horizontal dashed line is the expected
r2 with free recombination when sampling 20 individuals (1/20). The shaded areas represent
standard error of the mean; the standard deviation is 10 times larger (since we have 100 samples),
as shown in figure S7 below.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

r2

1k (1/140 Ne)

WF
nonWF
fsb
ms

WF_noRec
nonWF_noRec
fsb_noRec
ms_noRec

10k (1/14 Ne) 20k (1/7 Ne) 45k (~1/3 Ne) 70k (1/2 Ne) 140k (Ne)

/10

1400k (10 Ne)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

r2

101 102 103 104 105

distance (bp)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

r2

101 102 103 104 105

distance (bp)
101 102 103 104 105

distance (bp)
101 102 103 104 105

distance (bp)
101 102 103 104 105

distance (bp)
101 102 103 104 105

distance (bp)
101 102 103 104 105

distance (bp)

10

Figure S7: Same Figure as supplementary figure S6, but with shaded areas representing standard
deviation instead of standard error of the mean.

Annexes

Demonstration of 5.N rule to reach mutation-drift equilibrium

Following Malecot’s derivation on heterozygosity [51], we have Ht, the heterozygosity at time t,
which can be expressed as follows:

(1 −Ht) = (1 − 2µ)[
1
N

+ (1 −
1
N

)(1 −Ht−1)]

where basically, two individuals are identical at the previous generation (homozygosity, 1−Ht) if
they coalesced (1/N) or if they were already identical and did not coalesce ((1− 1/N)(1−Ht−1)). In
both cases, no mutation should occur ((1 − µ)2

∼ (1 − 2µ)).
Rearranging the previous equation leads to:

Ht = Ht−1(1 − 2µ)(1 −
1
N

) + 2µ

23

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted February 10, 2021. ; https://doi.org/10.1101/2020.09.28.316869doi: bioRxiv preprint

https://doi.org/10.1101/2020.09.28.316869
http://creativecommons.org/licenses/by/4.0/

We can calculate the probability of heterozygosity at the equilibrium:

H∗ = H∗(1 − 2µ)(1 −
1
N

) + 2µ

H∗ =
2Nµ

2Nµ + 1 − 2µ

H∗ ∼
2Nµ

2Nµ + 1
=

θ
θ + 1

Ht is an arithmetic-geometric sequence of the form aHt−1 + b that can thus be expressed as

Ht = at(H0 − r) + r

where a = (1 − 2µ)(1 − 1
N), b = 2µ and r = b

1−a .

Because |a| < 1, Ht converges towards r; i.e., r is H∗, hence

Ht
−H∗

H0 −H∗
= at

This ratio tends toward 0 as Ht gets closer to the equilibrium. We want to estimate t99, the
expected waiting time until the ratio falls down to 0.01, meaning that the heterozygosity is 99%
closer to the equilibrium than when we started, i.e.,

Ht99 −H∗

H0 −H∗
= at99% = 0.01

From this we get:

t99% =
ln(0.01)

ln(a)

Because ln(a) = ln((1 − 2µ)(1 − 1
N)) ≈ −1

N for small µ and large N, t99% simplifies to

t99% ≈ −Nln(0.01) = −4.6N

Thus after 5N generations the heterozygosity has almost reached its equilibrium, having pro-
gressed more than 99% of the way toward it, whatever the value of H0 (the initial heterozygosity).

24

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted February 10, 2021. ; https://doi.org/10.1101/2020.09.28.316869doi: bioRxiv preprint

https://doi.org/10.1101/2020.09.28.316869
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Methods, simulator and data
	Key concepts and definitions
	Horizontal gene transfer, recombination, and circularity
	Burn-in
	Simulation rescaling

	Simulation protocol
	Forward simulation
	Recapitating and adding neutral mutations

	Simulations performed
	Simulating Bacteria on a Petri dish with antibiotic

	Results
	Impact of rescaling
	Impact of recombination
	Simulating bacterial growth on a Petri dish with antibiotic

	Discussion

