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Abstract. Tensors may be seen as multidimensional arrays that gener-
alize vectors and matrices to more than two dimensions. Among tensor
decompositions, we are especially interested in the Canonical Polyadic
(CP) tensor decomposition, which is important in numerous real-world
applications, for its uniqueness and ease of interpretation of its factor
matrices. In this research, we propose a new Canonical Polyadic (CP)
model based on the Accelerated Proximal Gradient (PG) algorithm and
through the introduction of a regularization function that incorporates
the previous iterations; using a new strategy capable of efficiently con-
ducting this incorporation. Simulation results demonstrate the better
performance of the proposed approach in terms of accuracy and rapid-
ity compared to other algorithms in the literature, especially when the
swamp phenomenon occurs.

Keywords: Canonical Polyadic Decomposition, Tensor, Non-convex Op-
timization, Accelerated Proximal gradient, Low-rank approximation.

1 INTRODUCTION

In a large variety of applications, it is necessary to deal with quantities with
multiple indices. These quantities are often expressed as tensors. Generally, a
tensor is treated as a mathematical object that possesses the properties of multi-
linearity when changing the coordinate system [1]. For our purposes, it will be
sufficient to see a tensor of order N as a multidimensional array in which every
element is accessed via N indices. For instance, a first-order tensor is a vector,
which is simply a column of numbers, a second-order tensor is a matrix, a third-
order tensor appears as numbers arranged in a rectangular box (or a cube, if all
modes have the same dimension), etc. In this present article, we focus mainly
on tensors of order higher than two since they possess properties which are not
enjoyed by matrices and vectors.

Among tensor decompositions, we shall be mainly interested in the so-called
Canonical Polyadic (CP) decomposition [2], rediscovered forty years and named
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Parafac [3] or Candecomp [4]. As pointed out in [5],[6], the acronym ”CP” de-
composition can conveniently stand for either “Canonical Polyadic” or “Can-
Decomp/Parafac”, and we shall follow this terminology. The CP decomposition
has been used in various fields, such as Chemometrics [7, 8], Telecommunications
[9–11], and also in other newer fields, such as data science, machine learning [12]
and big data [14, 13]. The most attractive characteristic of the CP decomposi-
tion is its essential uniqueness for orders strictly higher than two [15, 16], which
enables parameter identification.

There are many algorithms for calculating CP decomposition. The most pop-
ular in the literature is the Alternating Least Squares (ALS) originally proposed
in [4], which is an iterative optimization process that estimates the factor ma-
trices alternately through individual updates of each matrix while keeping the
others fixed. Hence the system to be solved is then transformed to three simple
least square (LS) sub-problems. The ALS algorithm is designed to converge to-
wards a local minimum under mild conditions [33]. However, the ALS algorithm
is very sensitive to initialisation in some cases, and may suffer from swamp
phenomena [19], where the error between two consecutive iterations does not
decrease, resulting in a very low convergence rate. Various versions of the ALS
algorithm [20, 10, 21, 6] have been proposed in the literature to reduce the slow
convergence of the ALS algorithm. These versions improved the ALS algorithm
speed but were still unable to overcome difficult case of swamp problem. Recent
works [11, 22, 23] have demonstrated that the introduction of appropriate con-
straints would avoid these issues. The proposition in [23] is a direct modification
of the ALS ; Alternating way ; based on the Dykstra projection algorithm on all
correlation matrices, while in proposals [11, 22], which consist in simultaneously
estimating factor matrices ; All-in-ones way ; through a coherence constraint
on these factor matrices, such methods have proven to be efficient and stable
for calculating the CP decomposition in normal and also in difficult cases when
estimated factors are close to collinear, i.e., swamp problem arises.

In the present work, we propose an algorithm to improve both the accuracy
and the convergence speed of Canonical Polyadic (CP) decomposition especially
in the difficult case of the swamp. This algorithm is based on proximal methods
[24] and through the introduction of a regularization function that penalizes the
difference between the current and previous factor iterates using a new strategy
capable of efficiently monitoring this regularization. We shall be particularly
interested in the Accelerated Proximal Gradient (APG) algorithm, as it satisfies
the assumptions of our CP decomposition formulation problem.

The rest of the paper is organized as follows. In the next section, we present
some notations and definitions for tensors. In section 3 we describe properties
of the CP decomposition as well as some general definitions about proximal
mapping. In Section 4 we introduce our new optimization algorithm. In Section
5 we deal with analysis of the simulation results and finally Section 6 concludes
the paper.
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2 NOTATIONS AND DEFINITIONS

Let us begin by introducing some key notations and definitions that will be used
in this document. Tensors are denoted by calligraphic letters, e.g., T , matrices
are denoted by boldface capital letters, e.g., M, vectors are denoted by boldface
lowercase letters, e.g., a and Scalars are denoted by lowercase letters, e.g., a.
In addition, the pth column of matrix A is denoted by ap, the pth element of a
vector a is denoted by ap, the entry of a matrix A in position (i, j) is denoted
by Aij and the entry of a tensor T in position (i, j, k) is denoted by Tijk.

Definition 1 The outer product of two vectors a ∈ CI and b ∈ CJ defines a
matrix M ∈ CI×J

M = a⊗ b = abT

Similarly, the outer product of three vectors a ∈ CI , b ∈ CJ and c ∈ CK
produces a third order decomposable tensor T ∈ CI×J×K :

T = a⊗ b⊗ c (1)

In Equation (1) above, ⊗ represents the tensor outer product, so that entry
(i, j, k) of tensor T is defined by the product

Tijk = aibjck.

A tensor T ∈ CI×J×K is said to be rank-1 (also referred to as a decomposable
tensor [25]) if each of its elements can be represented as : Tijk = aibjck, in other
words, if it can be expressed as the outer product of three vectors, which will be
denoted in a compact form as in (1).

Definition 2 The scalar product between two tensors with the same size, X , Y
∈ CI×J×K , is defined as:

〈X ,Y〉 =

I∑
i=1

J∑
j=1

K∑
k=1

X∗i,j,kYi,j,k (2)

where∗ stands for the complex conjugation.

Definition 3 The Frobenius norm ‖.‖F of a tensor T ∈ CI×J×K is derived from
the scalar tensor product:

‖T ‖F =
√
〈T , T 〉 =

√
(
∑
i,j,k

| Tijk |2) (3)

Consequently, the quadratic distance between two tensors X and Y of the same
size I × J ×K can be determined by the quantity:

‖X − Y‖2F (4)
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Definition 4 Let T ∈ CI×J×K be a tensor, then vec{T } ∈ CIJK×1 represents
the column vector defined by :[

vec{T }
]
i+(j−1)I+(k−1)IJ = Tijk (5)

3 CP-DECOMPOSITION AND PROXIMAL
ALGORITHMS

A tensor of order N is a mathematical entity defined on a product between N
linear spaces, and once the bases of these spaces are fixed, then the tensor may
be represented by a N -way array of coordinates [25].

To simplify writing, we will use the term ”tensor” in a restricted sense, i.e.,
as a three-dimensional array of complex numbers (i.e., N = 3). However, the
generalization to Nth order tensors, N ≥ 3, is straightforward. Let’s consider
a tensor X of order 3 with size I × J ×K, its CP-decomposition is defined as
follows:

X =

R∑
r=1

λrD(r), (6)

X =

R∑
r=1

λr(ar ⊗ br ⊗ cr), (7)

where λ = [λ1, λ2, ..., λR] is a vector containing the scaling factors λr and the
three matrices A= [a1,a2, ...,aR] ∈ CI×R, B= [b1,b2, ...,bR] ∈ CJ×R and
C= [c1, c2, ..., cR] ∈ CK×R are referred to as “factor matrices”. When R is
minimal, then it is called the rank of X , and we refer to the above expression as
the Canonical Polyadic Decomposition (CPD) of X [1].

3.1 Low rank

Although the tensor of interest is of low rank, it is frequently necessary to look
for a low-rank (e.g. rank R) approximation of the observed tensor due to the
presence of noise. In the latter case, the observed tensor is indeed generally of
generic rank, strictly larger than R [25]. In the low-rank approximation problem
[9], the goal is to minimize an objective function Υ of the form:

Υ (A,B,C;λ) =
∥∥∥X − X̂∥∥∥2

F

=

∥∥∥∥∥X −
R∑
r=1

λr (ar ⊗ br ⊗ cr)

∥∥∥∥∥
2

F

(8)

Alternatively, the minimization of (8) can be expressed using vectorization prop-
erty where x = vec{X} as:
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min
x̂
Υ (x̂) = min

A,B,C,λ

∥∥∥∥∥x−
R∑
r=1

λr(ar � br � cr)

∥∥∥∥∥
2

F

(9)

where symbol � represents the Kronecker product [26].

3.2 Coherence

Let H be a Hilbert space endowed with the scalar product 〈a,b〉 = aHb, and
A ⊆ H be a finite set of elements ai with unit norm. The coherence of A is
expressed as the the maximum absolute value of the cross-correlations between
the columns of A:

µ(A) = max
i6=j
|aHi aj | (10)

3.3 Conditioning of the problem

One of the attractive properties of tensors of order greater than two, N > 2, lies
in the uniqueness of their CP decomposition, contrary to matrix decompositions
[3] [26][10] (the decomposition of a matrix into a sum of rank-one matrices also
exists, but it is not unique, unless some strong constraints are imposed, such as
orthogonality or non-negativity).

From the definition of CP decomposition, it is obvious that the decomposition
(7) is insensitive to:

– Permutation of the rank-1 terms, which refers to the permutation indeter-
minacy.

– Scaling of vectors ar, br and cr, provided the product of the scaling factors
is equal to 1, which corresponds to the scaling indeterminacy.

In numerical algorithms, it is useful to fix indeterminacies. For instance,
columns of factor matrices can be normalized and their norm stored in scaling
factor λ [26]. Another approach described in [9] and used in this study involves
the calculation of the optimal value of the scaling factor λ to correctly control
the conditioning of the problem. For that purpose, and for given matrices A, B
and C, the optimal value λo minimizing the error Υ is determined by cancelling
the gradient of (8) w.r.t. λ, which then results in the linear system:

Gλo = s (11)

where G is the Gram matrix of size R×R defined by:

Gpq = (ap � bp � cp)
H(aq � bq � cq)

and s is the R-dimensional vector defined by:

sr = ΣijkTijkAirBjrCkr.

Note that entries of G can preferably be obtained by:

Gpq = aHp aq · bHp bq · cHp cq.
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3.4 Proximal mapping

Proximal mapping are now powerful and reliable optimization tools, leading to
a wide range of algorithms, such as the proximal point algorithm, the proximal
gradient algorithm, and many other algorithms involving linearization and/or
splitting. These methods have been used effectively in unconstrained CP decom-
position, which can ensure that the CP converges to a fixed point [33, 18]. We
shall be particularly interested in the Accelerated Proximal Gradient (APG) al-
gorithm [33], as it satisfies the assumptions of our CP decomposition formulation
problem.

Given a function G, the proximal mapping (or proximal operator) [27] maps
an input point x to the minimizer of G restricted to small proximity to x. The
definition of the proximal operator is recalled hereafter.

Definition The proximal map of a point x ∈ RN under a proper and closed
function G (with parameter θ > 0):

proxθG(x) = minimize
y∈RN

G(y) +
1

2θ
‖x− y‖22 (12)

admits a unique solution, which is denoted by proxθG(x).

The operator proxθG : RN −→ RN thus defined is the prox-operator of G,
and the parameter θ controls the stretch to which the proximal operator maps
points towards the minimum of G, with larger values of θ associated with mapped
points near the minimum, and smaller values giving a smaller movement towards
the minimum [27].

The proximal mapping gets really handy for composite problem when the
minimization has the form of Υ +G with Υ convex and differentiable and G con-
vex with ”simple” proximal mapping, i.e. its prox-operator admits a closed form
[27]. Recent work has expanded these proximal methods to general non-smooth
and non-convex problems. Among these works, one can find those in [24, 28, 29],
where a monotonic descent of the objective value is imposed to ensure conver-
gence, while on the other hand, the works in [30, 31] which introduce a generic
method for non-smooth non-convex problems based on Kurdyka Lojasiewicz
theory.

This general composite problem can be solved with one of the proximal meth-
ods mentioned above, but the one that reply to the assumptions of our specific
problem (15), and which is the main proposal in this paper, is the accelerated
proximal gradient method. A natural strategy of this method is firstly to reduce
the value of Υ by using unconstrained iterative optimization methods such as
descent methods or Newton’s method, followed by the reduction of the value
of G by applying the prox-operator of G (using the same step-size) and repeat
until convergence to a minimizer (under some further conditions). This strategy
yields the following iteration:
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x(k+1) = proxθ(k)G(x(k) + θ(k)d(k)) (13)

This last strategy describes the general principle of the iterative proximal
method. In our present paper, we exploit the rigorous argument provided in
[24] proving that the limit point of the sequence generated by the accelerated
proximal gradient algorithm is the critical point of the objective function (8).

4 PROPOSED METHOD

4.1 Problem formulation

In contrast to the alternative approach where factor matrices are estimated al-
ternately. Our approach addresses the CP decomposition problem through a
variational approach in which all factor matrices are estimated simultaneously.
In other words, we are looking for a solution to an optimization problem and
more precisely to a minimization problem in which the function to be minimized
is composed of two terms: one related to the properties of the noise, called the
”data fidelity term” which is defined in (8) by the cost function Υ , and the
other related to the a priori information on model parameters, called ”regular-
ization”, which is currently defined as a regularization function that penalizes
the difference between the current and previous factor iterates and which will be
represented by G. In [32], several numerical examples show that this regulariza-
tion can help the algorithm to keep distance from the degenerate swamps, i.e.,
the degenerate regions where convergence is slow, in addition, it has also been
shown in [33] that the limit point obtained from the regularized CP decomposi-

tion (15) is a critical point of the original minimization problem
∥∥∥X − X̂∥∥∥2

F
.

As indicated in (9), for the sake of simplicity, columns of factor matrices are
contained in a single vector x = vec{[AT ,BT ,CT ]}, thus the objective to be
minimized then has the following form:

F(x) = Υ (x)︸ ︷︷ ︸
Fidelity

+ G(x)︸︷︷︸
Regularization

. (14)

And can be explicitly written as:

F(x) = min
x̂k

‖x− x̂k‖2F + ηn ‖x̃k−1 − x̂k‖2F , (15)

where x̃k−1 is the predecessor version of xk in the previous iteration and ηn
is a penalty weight that controls the sharpness of the penalty, which decreases
through iterations. In this paper, we exploit the convergence analysis of the
proposed method in [24] using the accelerated proximal gradient (APG) as a
solution to the optimization problem defined in (15).

The general principle of the proposed approach is summarized in Algorithm
1 and detailed in the following paragraphs, where there are essentially two basic
steps:
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– A gradient step associated with the data fidelity term (denoted by the func-
tion Υ ).

– A proximal step related to the penalty term (denoted by the function G).

4.2 Gradient step

This step improves the approximate solution, focusing only on the data fidelity
- independently of the penalty function.

Two other steps are also involved in these stages: (i) First, we calculate

the direction of the descent direction d(k) of Υ , leading to the direction of the
steepest decrease, determined as follows:

d(k) = −∇Υ (x(k)) (16)

where gradient expressions required to determine the direction of descent d(k)

are of the form:

∂Υ

∂A
= 2AMA − 2NA (17)

with

MA
pq

def
= ΣjkλpBjpCkpC

∗
kqB

∗
jqλ
∗
q

NA
ip
def
= ΣjkTijkB

∗
jpC

∗
kpλ
∗
p

(18)

The gradients expressions w.r.t B and C are similar.
(ii) The second stage involves the determination of the step-size ρ(k) accord-

ing to the chosen direction d(k). Among numerous methods of searching for a
good step-size, Backtracking, is extensively used. It depends on two parameters
α and β, with 0 < α < 0.5 and 0 < β < 1. Now, the idea is to start with a
sufficiently large step-size ρ(k) (e.g. ρ = 1) at the beginning, and then reduce it
as ρ← ρ ∗ β, until the following Armijo condition [34] is verified:

Υ (x(k) + ρ(k)d(k)) < Υ (x(k)) (19)

To conclude, the gradient step can be resumed as follows:

z(k) = x(k) + ρ(k)d(k). (20)

4.3 Proximal step

Since the preceding step concerns only the data fidelity term Υ , the proximal
step is expected to readjust the general search direction based on the penalty
function G. For this, we apply the proximal algorithm to the previous point
arising from the preceding step of the gradient, i.e. z(k), as follows:

z(k+1) = proxρ(k)G(x(k) + ρ(k)d(k)) = proxρ(k)G(z(k))

= arg min
x

(G(x) +
1

2ρ(k)
‖x− z(k)‖22)︸ ︷︷ ︸

H(x)

(21)
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This step indicates that proxG(z(k)) is a point that compromises between min-

imizing G and being near to z(k).
Now it remains to calculate the exact proximal operator of G. For this, the

gradient of the function H is set to zero which gives us the closed form of the
proximal operator for our regularized function G.

Gradient of H The gradient of H takes the form:

∇H(x) = 0 =⇒ ∇G(x) +
1

ρ(k)
(x− z(k)) = 0

=⇒ −2 ∗ ηn(x̃k−1 − x) +
1

ρ(k)
(x− z(k)) = 0,

(22)

then, with a simpler calculation, the analytical form of the proximal for our
regularized function G would be of the following form:

proxρ(k)G(z(k)) =

1
ρ(k) z

(k) + 2 ∗ ηnx̃k−1
1
ρ(k) + 2 ∗ ηn

. (23)

Momentum The Accelerated Proximal Gradient (APG) algorithm will then ex-
trapolate the point vk by a combination of the current point and the previous
point as :

vk = z(k+1) + γk(z(k+1) − xk),

where γk is the momentum that is adapted to each iteration and through
a monitor that also ensures the descent property F(x(k+1)) < F(x(k)) ; it is
defined, for t∈ (0,1), as follows:

xk+1 =

{
zk+1, γk ← tγk if F(zk+1) < F(vk)

vk, γk ←
γk
t

otherwise.
(24)

5 RESULTS AND DISCUSSIONS

In this section, we present the simulations results of the proposed method using
two scenarios: (i) the first one, which represents the normal case where factor
matrices are uncorrelated, while in (ii) the second scenario which is a specific
case where the swamp problem needs to be addressed, i.e., the factor matrices
are highly correlated in all three matrices.

To see the advantage of the proposed algorithm, we compare it to three other
CPD algorithms: i) the Alternating Least Squares (ALS) [4], ii) the Levenberg-
Marquardt (LM) [6] and iii) the unconstrained version with gradient (UG) [35].

Besides, we evaluate the performance of each algorithm according to two
criteria, namely accuracy and CPU time.

Note that all algorithms are initialized at each simulation with the same
starting points and share common stopping criteria which are as follows:
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Algorithm 1: Accelerated Proximal gradient (APG) with adaptive mo-
mentum to minimize (15)

Initialize (A0,B0,C0) to matrices with unit-norm columns, γ0, η0. ;
Calculate the optimal scaling factor λ∗ by solving (11): G0λ

∗ = s0 ;
for k ≥ 1 and subject to a stopping criterion do

1. Gradient Step
(a) Compute the descent direction d(k) as the

gradient according to (16) w.r.t. xk:
d(k) = −∇f(xk)

(b) Calculate a step-size ρk using the backtracking method such:
Υ (xk + ρkd

(k)) < Υ (xk)
(c) Update

zk = xk + ρkd
(k)

2. Proximal Step

(a) Compute the proximal operator of g at zk using (23) such as:
zk+1 = proxρ(k)G(zk)

(b) Momentum
vk = z(k+1) + γk(z(k+1) − xk)

(c) Monitor

xk+1 =

{
zk+1, γk ← tγk if F(zk+1) < F(vk)

vk, γk ←
γk
t

otherwise.

3. Extract the three blocks of xk+1: Ak+1, Bk+1

and Ck+1

4. Normalize the columns of Ak+1, Bk+1 and Ck+1

5. calculation of the optimal scaling factor λ∗

using (11) such as: Gλ∗ = s

end
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(i) The maximum number of iterations is fixed at 103.
(ii) Reconstruction error which is the magnitude of the difference between the
current tensor and the original tensor.

5.1 Scenario 1

In this first scenario, we randomly generate a three-dimensional tensor of size
10×20×30 with rank 8 and with mutual coherences µ(A) = µ(B) = µ(C) = 0.5.
Note that in this first setting, η is initialized to 0.5, and is divided by 100 when
Υ (x) is reduced by less than 10−4. Figure 1 illustrates the reconstruction error
as a function of the number of iterations, from which it can clearly be observed
that in the normal case, the ALS algorithm remains the most efficient of all
the algorithms followed by the proposed algorithm then the LM algorithm and
finally the unconstrained algorithm which requires more iterations to reach an
accuracy of 10−15.

To ensure a detailed comparison, we evaluated the CPU time of these al-
gorithms, by analysing the results of Table 1, we can still see that the ALS
algorithm remains the fastest of all these algorithms. In addition, the proposed
accelerated proximal gradient algorithm also maintains its efficiency in terms of
CPU time compared to the LM and UG algorithms.

Table 1. CPU time (in seconds). For a tensor of size 10× 20× 30 and rank 8 up to a
precision of 10−15 and results with 100 random initializations.

Algorithms CPU time (in seconds)

ALS 1.47
LM 2.45
UG 5.41
proposed 2.33

5.2 Scenario 2

In this second scenario, we randomly generate a tensor of size 4×3×6 with rank
4 and with mutual coherences µ(A) = µ(B) = µ(C) = 0.99. Note that in this
second setting, η is initialized to 1, and is divided by 10 when Υ (x) is reduced by
less than 10−4. Figure 2 and table 2 show that the ALS algorithm requires more
iterations and more machine time to reach an accuracy of 10−12, we can clearly
see that the objective function stays in a value and does not decrease for a long
time, this slowed convergence, characterized by a flat curve in the error plot,
refers to the swamp phenomenon. On the other hand, the proposed algorithm
can reduce the swamp by taking about half the number of iterations and CPU
time to achieve the same accuracy.

From these simulation results, one can observe the impact of the penalty
through the accelerated proximal gradient algorithm in the accuracy of the re-
sults. This makes the proposed algorithm a better choice to ensure both the
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iterations
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Fig. 1. Reconstruction error (8) as a function of the number of iterations. For a tensor
of size 10×20×20 with rank 8 and with mutual coherences µ(A) = µ(B) = µ(C) = 0.5.
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accuracy and the convergence speed of the CP decomposition in the difficult
case of swamp phenomenon.

iterations
0 200 400 600 800 1000

‖
T

−
T̂
‖
2

10
-15

10
-10

10
-5

10
0

10
5

ALS
LM
UG
proposed

Fig. 2. Reconstruction error (8) as a function of the number of iterations. For a tensor
of size 4× 3× 6 with rank 4 and with mutual coherences µ(A) = µ(B) = µ(C) = 0.99.

6 Conclusions

We have designed a method for calculating the Canonical Polyadic decompo-
sition based on the Accelerated Proximal Gradient algorithm and through the
introduction of a regularization function that penalizes the difference between
the current and previous factor iterates using a new strategy capable of efficiently
monitoring this regularization. We performed a complete comparison based on
computer experiments, which proved the good performance of the proposed al-
gorithm in terms of accuracy and convergence speed, compared to other iterative
algorithms, especially when the swamp phenomenon occurs.
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