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ABSTRACT: Cooking emissions represent a major source of air
pollution in the indoor environment and exhibit adverse health
effects caused by particulate matter together with volatile organic
compounds (VOCs). A multitude of unknown compounds are
released during cooking, some of which play important roles as
precursors of more hazardous secondary organic aerosols in indoor
air. Here, we applied secondary electrospray ionization high-
resolution mass spectrometry for real-time measurements of VOCs
and particles from cooking peanut oil in the presence of 300 ppbv
nitrogen oxides (NOx) generated by a gas stove in an indoor
environment. More than 600 compounds have been found during
and after cooking, including N-heterocyclic compounds, O-
heterocyclic compounds, aldehydes, fatty acids, and oxidation
products. Approximately 200 compounds appeared after cooking and were hence secondarily formed products. The most abundant
compound was 9-oxononanoic acid (C9H16O3), which is likely the product formed during the heterogeneous hydroxyl (OH) radical
oxidation of oleic acid (C18H34O2) or linoleic acid (C18H32O2). Real-time detection of an important number of organic compounds
in indoor air poses a challenge to indoor air quality and models, which do not account for this extremely large range of compounds.

1. INTRODUCTION

Combustion processes such as gas stove cooking represent
some of the most important temporal sources of air pollution
in the indoor environment. A large number of organic particles
and volatile organic compounds (VOCs) are released,1 many
of which exhibit adverse health effects.2−5 Cooking fumes
contain a wide range of compounds, such as alkanes, alkenes,
aldehydes, and fatty acids.6−10 Cooking also releases large
amounts of nitrogen oxides (NOx) and nitrous acid (HONO)
into the indoor air.11−14 Recently, it has been demonstrated
that HONO can be easily photodissociated in indoor air by the
ultraviolet (UV) fraction of sunlight filtered through the
windows15,16 and generate hydroxyl (OH) radicals at the level
of ∼106 cm−3.14,17 The compounds in cooking fumes can react
with highly reactive OH radicals, forming secondary organic
compounds. This is assumed to be similar to the formation of
secondary products by reactions of OH radicals with VOCs
and organic particles in the outdoor atmosphere, which is
known and has been experimentally verified.18−21 Some of
these secondary products have lower volatility and are more
toxic than the initially emitted VOCs.22 Real-time measure-
ments of compounds formed upon reaction of OH radicals
with primary emissions from cooking have been attracting
more attention in recent years,23,24 but only a few studies have

been reported to date.25 This can be partially explained by the
complexity of these reaction processes and also by the
limitations in the analytical tools.
Secondary electrospray ionization high-resolution mass

spectrometry (SESI-HRMS) is a novel ambient MS technique
and shows great potential in capturing the evolution of
compounds in real time.26 The application of SESI especially
favors the detection of reactive compounds, such as fatty acids,
aldehydes, ketones, etc.;27 furthermore, accurate identification
of compounds can be realized by HRMS. Recently, via
application of SESI-HRMS to real-time breath analysis, around
1000 breath compounds per subject have been measured and
unambiguously identified.28

In this study, SESI-HRMS was applied for the first time to
measure the primary emissions from cooking fumes and the
real-time evolutions of primary and secondary organic
compounds in an indoor environment. The literature suggests
that high levels of OH radicals can be produced upon
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photodissociation of HONO, which determine the oxidation
capacity of indoor air.14 Thus, the ultimate goal of this study is
to identify the secondarily formed products upon reaction of
OH radicals with the primarily emitted organic compounds in
the gas phase and particulate phase in the indoor air.

2. MATERIALS AND METHODS
2.1. Experimental Setup. Measurements were conducted

in a 23 m3 room with a window (0.99 m2) facing southeast at
our institute (Figure S1). The sunlight irradiated the room
through the window during certain periods of the day. Peanut
oil was heated in a pan on a natural gas stove (ZB-16M,
Iwatani) for ∼10 min, and then the gas stove was turned off.
Two fans were placed at two corners of the room (Figure S1)
to ensure the indoor air was homogeneously mixed during the
experiments. An air exchange rate of ∼0.6 h−1 was estimated
from the evolution of the carbon dioxide (CO2) from
combustion (details in the Supporting Information) applying
the procedure described elsewhere.14 The photostationary
state (PSS) approach17,29 was used to estimate the time
profiles of OH radical values. Details about the estimations of
OH radical values can refer to our previous work14, including
the measurements of spectral irradiance, NOx, HONO, and
ozone (O3). The measured O3 values during the campaign
were below 200 parts per trillion by volume (pptv), and
therefore, ozonolysis of alkenes as an OH source can be
neglected. A control experiment was performed under the
same condition but without cooking; each set of measurements
was repeated at least twice.
2.2. SESI-HRMS Analysis of Emissions. A homemade

SESI source was coupled to a high-resolution quadrupole
Orbitrap mass spectrometer (Thermo Scientific).30 Cooking
emissions were delivered through a 6.7 m long Teflon tube (4
mm inside diameter) at a rate of 1.4 L min−1. Samples without
pretreatment were introduced into the SESI-HRMS instru-
ment in real time for direct ionization (Figure S1).29

Compounds were detected at a time resolution of 1 s in fast
polarity-switching mode, and ESI voltages were set to 2.5 and
−2.5 kV. The scan range is m/z 50−500, and the mass
resolution is 140000 at m/z 255. The limit of detection (LOD)
and sensitivity of SESI-HRMS, sampling efficiency, and delay
of the 6.7 m sampling line were evaluated by using a set of gas
standards (details in Text S1 and Table S1). The LODs range
from pptv to parts per brillion by volume (ppbv), which agree
with the previous studies.31 The sampling efficiencies are 4−
28% and 14−49% for 2 and 20 ppbv standard compounds,
respectively. The sampling efficiencies vary greatly from
compound to compound, and thus we compared the signal
intensities only within individual compounds instead of
between compounds. Because <200 pptv O3 was detected in
this indoor environment, O3-induced heterogeneous chemistry
in the Teflon tubing can be neglected. Prior to measurements,
the mass spectrometer was calibrated with the commercial
standard calibration solutions (Thermo Scientific; details in
Text S1).
2.3. Data Analysis. The raw data from SESI-HRMS were

pretreated with a Python program named BreathFinder to
obtain a data matrix, including m/z values, signal intensities,
and time points of all of the ions detected (details in the
Supporting Information). Then, the data matrix was further
investigated by using cluster analysis in Matlab R2018b and
Kendrick Mass Defect (KMD) analysis.32 KMD analysis is
especially suitable for the data acquired by HRMS to show

visualized trends in the elemental compositions of complex
organic compounds.33 The Kendrick mass (KM) and KMD
are calculated as follows:

KM IUPAC mass (14/14.01565)= × (1)

KMD nominal KM exact KM= − (2)

where 14.01565 is the exact mass of the CH2 unit and 14 is the
nominal mass.
Thus, compounds that have the same general molecular

formula (e.g., CnH2nO2) but differ in the number of the base
units (such as CH2 groups) have identical KMD values and
thus lie on the same horizontal line in the plot of KM versus
KMD. The elemental composition of each compoupnd used in
KMD analysis was obtained using Xcalibur (version 4.2.28.14,
Thermo).
The enhancement ratio (ER) was used to evaluate the

enhancement of the signal intensity of a compound during
cooking; ER is calculated on the basis of the maximum signal
intensity of a compound and its signal intensity at the
beginning of the cooking experiment.

3. RESULTS AND DISCUSSION
3.1. Evolution of Cooking Emissions. By using SESI-

HRMS, an important number of reported compounds have
been detected, such as aldehydes, fatty acids, N-heterocyclic
compounds, and O-heterocyclic compounds (Figure S2).
Obvious differences were found between mass spectral
fingerprints before, during, and after cooking (Figure S3). To
determine how many groups of compounds were emitted from
cooking, 864 ions with intensities of ≥1 × 105 au captured in
real time were further investigated using cluster analysis. Six
groups (657 ions in total) characterized with different
chronological variations are presented in Figure 1, which
have not been observed in the control experiment (Figure S5).
In addition, to explore the evolution of primary emissions and
the formation of secondarily formed products, molecular
formulas were assigned to the ions detected (Tables S2−S7),

Figure 1. Cluster analysis of 864 ions with signal intensities of ≥1 ×
105 au during and after cooking. Six groups distinguished by cluster
analysis are numbered according to the order at which they reached
their peak levels and represented by different colors: group 1, green;
group 2, yellow; group 3, wine red; group 4, purple; group 5, blue;
group 6, orange; background, black. The normalized signal intensity is
presented by a color-coded scale; i.e., the signal intensity increases
from dark blue (normalized value of −3) to wine red (normalized
value of 3).
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and ER values were provided for some of these compounds
(Table S8). For example, compounds in group 1 (93 ions) are
characterized by reaching the peak level during cooking. Most
of the N-heterocyclic compounds, e.g., trimethylpyrazine (ER
= 3.0) and 3-methoxy-4-pyridine (ER = 3.2), were identified in
this group, which are consistent with the flavor components
with low boiling points in peanut oil during cooking.34,35

Compounds in groups 2 (97 ions) and 3 (208 ions) achieved
the maximum signal intensity around the time when the gas
stove was turned off. These two groups mainly contain
unsaturated aldehydes and O-heterocyclic compounds that are
formed by chemical processes involved in the oil heating,
inducing the breaking bonds of the fatty acids.4 Polyunsatu-
rated fatty acids such as linoleic acid (LA) can readily undergo
autoxidation36 and generate the unsaturated aldehyde deca-
dienal in peanut oil.37 2,4-Decadienal (ER = 155.1), which
exhibits the second highest signal intensity, is genotoxic to
human lung cells and increases the carcinogenic risk of
inhabitants.38−40 O-Heterocyclic compounds like 2-acetyl-5-
methylfuran (ER = 4.9) and 5-propyldihydro-2(3H)-furanone
(ER = 5.4) are flavor compounds found during thermal
processing of foods41 and thus can be used as tracers for
cooking emission.42

Most of the unsaturated and saturated fatty acids were
classified into groups 4 (101 ions) and 5 (82 ions). Oleic acid
(OA, C18H34O2) and palmitic acid (C16H32O2; ER = 106.8)
are the most abundant unsaturated fatty acid and saturated
fatty acid, respectively. It is noteworthy that OA was detected
in the particle phase and its peak level is ∼60% of the palmitic
acid signal intensity. Furthermore, the signal intensities of
unsaturated fatty acids decreased faster than those of saturated
fatty acids after the gas stove had been turned off (Figure S4).
This is reasonable because compared to saturated fatty acids,
unsaturated fatty acids are more easily oxidized by OH radicals
or O3 due to the reactions with the CC bond. The addition
of OH to the CC bond is found to be the dominant reaction
pathway for unsaturated compounds.43 The uptake coefficients
for the reactions of OH radicals with unsaturated compounds
are also much larger than those of the OH reactions with
saturated fatty acids.43 Moreover, both unsaturated and
saturated fatty acids contribute to the formation of SOA in
the indoor environment as they are established precursors of
SOA in the atmosphere.9,44 The compounds in group 6 (76
ions) represent a mixture of oxidation products and “back-
ground” compounds emerging from typical indoor materials
(furniture, walls, etc.) that were present in the air before the
experiments started. For example, the peak at m/z 60.0816 is
assigned to trimethylamine (TMA, C3H9N; ER = 54.7) and
might be the product of choline in the peanut oil through
thermal decomposition.45 TMA can potentially form SOA
during gas-phase reactions with OH radicals, O3, and
NO3.

46−48 The peak at m/z 133.1335 (C6H16ON2; ER =
95.3) shows a trend very similar to that of the TMA profile
(Figure S6), which might be a product from TMA. The NOx
mixing ratio reached ∼300 ppbv during cooking,14 which is
also comparable with the previous reports.11,12 For the
background compounds, the intensities decreased during
cooking and then returned to the initial level after cooking.
3.2. Formation of Secondary Compounds. A total of

526 ions were detected as new products resulting from
cooking, among which 229 ions were detected after cooking.
By using KMD analysis, a series of homologous series were
distinguished (Figure 2 and Figures S6−S8). Taking the ions

with odd m/z values for example, we identified 14 homologous
series of compounds containing a carbon atom (C), a
hydrogen atom (H), and an oxygen atom (O) (Figure 2).
Most of these compounds were found as fatty acids and their
oxidation products. For example, compounds on line 1 are
saturated fatty acids (CnH2nO2), and those on line 2 are
monounsaturated fatty acids (CnH2n−2O2).
Because the mechanism of heterogeneous OH oxidation of

OA has been well studied,43,49,50 all of the known intermediate
and final products were carefully examined. On the basis of the
accurate mass and isotopic pattern, LA, OA, and their
intermediate and final products have been distinguished
unambiguously, including C18H34O2 [m/z 281.2483, OA, line
2 (Figure 2)], C18H32O2 [m/z 279.2326, LA, line 4 (Figure
2)], C18H35O5 (m/z 330.2408), C18H35O4 (m/z 314.2459),
C18H34O3 [m/z 297.2429, line 5 (Figure 2)], C9H16O4 [m/z
187.0967, azelaic acid, AA, line 8; ER = 45.5 (Figure 2)], and
C9H16O3 [m/z 171.1017, 9-oxononanoic acid, 9-ON, line 5;
ER = 207.7 (Figure 2)]. Some compounds from line 10 (e.g.,
C18H34O5, m/z 329.2329) to line 14 (e.g., C18H32O6, m/z
343.2120) in Figure 2 are likely produced by addition of OH
to the CC bond of polyunsaturated fatty acids like LA.50

Temporal evolution profiles of these compounds have also
been captured in real time (Figure 3); among all of the
secondary products, 9-ON shows the highest signal intensity.
The temporal profiles of OA, LA, and OH radicals are similar
to each other, and meanwhile, the signal intensities of 9-ON
and AA increase continuously after cooking, implying that 9-
ON and AA are formed via the heterogeneous reaction of OH
with OA or LA. However, the possibility that AA and 9-ON
can also be formed by the reaction of OA or LA with O3 in
indoor air that exhibits higher ozone concentrations (in this
study, the O3 mixing ratio was <200 pptv) cannot be
excluded.51,52 To illustrate the importance of OH radical
reactions, we performed a simple calculation based on the
reactivity of O3 and OH radical on the particle surface50,53 to
compare the lifetimes of OA by reactions with OH radical and

Figure 2. CH2 KMD vs nominal KM of odd m/z values of ions
detected in the negative ion detection mode during cooking (orange
dots) and after cooking (blue dots). Ions found in the background
(gray dots) represent compounds observed in the control experi-
ments. The compounds that have the same general molecular formula
but different numbers of CH2 group appear on the same horizontal
line: line 1, CnH2nO2; line 2, CnH2n−2O2; line 3, CnH2nO3; line 4,
CnH2n−4O2; line 5, CnH2n−2O3; line 6, CnH2nO4; line 7, CnH2n−8O2;
line 8, CnH2n−2O4; line 9, CnH2n−4O4; line 10, CnH2n−2O5; line 11,
CnH2n−4O5; line 12, CnH2n−2O6; line 13, CnH2n−6O5; line 14,
CnH2n−4O6.
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O3 and removal of OA by air exchange with outdoor air. The
calculations show that the most important removal process for
OA is the reaction with the OH radical, because the effective
uptake coefficient was reported to be 1.72 ± 0.08, indicating
particle-phase secondary chain chemistry.50 Removal by
reactions with O3 would take ∼13 min (kfirst = 1.31 × 10−3

s−1),51 and removal by air exchange would take 1.6 h (taking
the average exchange rate calculated in this work of 1.7 × 10−4

s−1). The uptake coefficient of OH on LA is even higher than
that on OA (3.75 ± 0.18), and the reaction of O3 with LA (kfirst
= 4.4 × 10−4 s−1) is slower than that with OA, indicating that
the removal of OA and LA is driven by OH radical chemistry.
9-ON and AA are most likely formed through the OH
oxidation of OA, LA, or both simultaneously.
In conclusion, by using a novel real-time MS technique

SESI-HRMS, a number of primary cooking emissions and
secondary products formed upon reactions with OH radicals in
indoor air have been detected and identified. High-temporal
resolution data make it possible to monitor primary
compounds and their intermediate and final products during
and after cooking. In terms of OA, for example, 9-ON and AA,
two well-known SOA materials,44,54,55 were identified as
secondary products of OA due to OH reaction. We have
demonstrated that OH radical reactions occur indoors as
predicted in previous studies.17,22 We strongly recommend a
future model study to better predict the formation of
secondary products through reactions of O3 and OH with
primarily emitted organic compounds in indoor air; many
secondary products formed through OH radical reactions can
be even more toxic than the primarily emitted organic
compounds.2 This is especially important considering that a
recent model study56 predicted that although OH radicals
produced by HONO photolysis are located only in the sunlit
regions of the indoor environment, the oxidation products are
relatively well distributed in the entire room.
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