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Abstract—Over-parameterization of neural networks is a well
known issue that comes along with their great performance.
Among the many approaches proposed to tackle this problem,
low-rank tensor decompositions are largely investigated to com-
press deep neural networks. Such techniques rely on a low-rank
assumption of the layer weight tensors that does not always
hold in practice. Following this observation, this paper studies
sparsity inducing techniques to build new sparse matrix product
layers for high-rate neural networks compression. Specifically, we
explore recent advances in sparse optimization to replace each
layer’s weight matrix, either convolutional or fully connected, by
a product of sparse matrices. Our experiments validate that our
approach provides a better compression-accuracy trade-off than
most popular low-rank-based compression techniques.

Index Terms—neural networks, compression, sparsity

I. INTRODUCTION

The success of neural networks in the processing of struc-
tured data is in part due to their over-parametrization, which
plays a key role in their ability to learn rich features from
data [1]. Unfortunately, this also makes most state-of-the-art
models too large to store and impossible to operate on devices
with limited resources or that cannot integrate a GPU [2].
This problem has led to a popular line of research: “neural
networks compression”, which aims at building models with
few parameters while preserving their accuracy.

Many popular matrix and tensor decomposition methods
including Singular Value Decomposition (SVD), CANDE-
COMP/PARAFAC (CP) and Tucker are used to address the
problem of model compression by a low-rank approximation
of the neural network’s weights after learning. Few of these
methods are proposed for dense layers first [3] and extended
to convolutional layers [4]–[6]. But these methods rely on
low rank assumption that may be too strong. More recently
the Tensor-Train (TT) decomposition is proposed to compress
both dense and convolutional layers [7] and achieved extreme
compression rates, yet at the price of impractical downsides
that we detail in Section II-C.

Other compression methods include unstructured pruning
techniques that we review in more details in Section II-C and
structured pruning techniques that reduce the inner hidden di-
mensions of the network by completely removing neurons [8].
According to the recent paper [9] however, these techniques
are more akin to Neural Architecture Search than network
compression. Finally, quantization-based compression maps
the columns of the weight matrices in the network to a subset

Fig. 1: Diagram of the PSM compression of a dense layer.

of reference columns with lower memory footprint [10]. These
two latter families of compression techniques are out of the
scope of this paper as they are not necessarily incompatible
with sparsity and low-rank based compression techniques,
which are our focus of interest here.

We are specifically interested in high-rate compression of
a neural network by efficiently factorizing its layers’ weight
matrices, as products of sparse factors. There are two main
reasons for exploring this line of research.

First, while the most well known approaches for layer
decomposition make low-rank assumption on the layer weight
tensors, this assumption may not hold in practice. As we
show experimentally, the Tucker and SVD based techniques
are indeed unable to reach high compression rates for standard
architectures including both convolutional and fully connected
layers, such as VGG19 or ResNet50.

Second, products of sparse factors are known to enable fast
computation without any low rank assumption. Fast operators
like the Hadamard and the Fourier transforms are well known
low complexity linear transforms. Recall that a standard linear
operator (i.e. a matrix) from RD to RD has time and space
complexities of O(D2) but the Hadamard and the Fourier
transforms can be expressed in the form of a product of logD
sparse matrices, each having O(D) non-zero values [11], [12].
These linear operators, called fast-operators, thus have time
and space complexities lowered to O(D logD).

Interestingly while every factor in a product may include
only few non-null parameters, their product can still represent
high-rank matrices, up to a full rank matrix. A product of
such sparse matrices with a given sparsity budget, i.e.number
of non zero values, is strictly more expressive than a single



matrix with the same budget [11]. This interesting feature
inspired several works based on the idea that sparse matrix
product representations of existing fast-transforms could be
learned [11]. [12], [13] aim at computing such sparse product
approximations of any matrix in order to accelerate learning
and inference. Even though these methods are originally
designed to recover the logD factors corresponding to a fast-
transform, they can be used to find an approximate factoriza-
tion with Q < logD sparse matrices, hence enabling even
more computation speed-up.

Our contributions are as follows. We introduce a general
two step framework for neural network compression. First, we
rely on a procedure that approximates every layer with a PSM-
layer by factorizing the layers’ weights into a product of sparse
factors (see Figure 1 for an example on a dense layer). Second
the resulting PSM-net, built by cascading all these PSM-
layers, is refined with standard gradient descent. We provide
an extensive evaluation of the recently proposed palm4MSA
algorithm [12] for the approximation of an orginal layer
(dense or convolutional) with a PSM-layer. We investigate
the behaviour of our approach and the impact of the PSM-
layer learning procedure on the overall result, with respect to
accuracy and compression rate. We compare our approach and
its variants with state of the art compression methods on well
known deep architectures learned on standard benchmarks.
Our experimental results show that layers’ weights may be
factorized into very few sparse matrices while preserving
accuracy, hence achieving very high compression rates.

II. LEARNING SPARSE MATRIX PRODUCTS FOR NETWORK
COMPRESSION

This section describes the proposed method for compressing
all layers’ weights of a pretrained network. First, the linear
transform operations involved in fully-connected and convo-
lutional layers is detailed. We also show how propagation in
both types of layer is cast as a matrix product. Then, the NN
compression framework is described. Finally, a few known
neural network compression techniques are reviewed; some of
them are shown to be particular cases of our framework.

A. Weight matrix as a product of sparse matrices

Fully-connected and convolutional layers are based on the
computation of linear operations. In a fully-connected layer,
the output z ∈ RD′

is simply given by z = a(Wx) where a
is a non-linear activation function. W ∈ RD′×D is the weight
matrix of the layer and x ∈ RD is the output of the preceding
layer. The linear operation in a convolutional layer may be
represented as a doubly-block Toeplitz matrix [14]. Another
way to perform the operation is to employ reshaping operators
to represent the linear operator as a dense matrix applied to
all the patches extracted from the input [15]. Thus, we can
cast the compression of dense and convolutional layers as the
same problem of approximating a matrix with a product of
sparse matrices. Note that we later rely on this feature in next
section. More formally, let rS : RH×W×C 7→ RHW×CS2

be
the reshape operation that creates the matrix of all vectorized

patches of size (height and width) S2 on an input image with
C channels. The matrix of F filters W ∈ RCS2×F can then be
applied to these patches (transformed with rS) to produce the
output of the convolutional layer in a matrix shape. Finally,
a second reshape operator t : RHW×F 7→ RH×W×F is
applied on this feature map matrix to recover the tensor output
of the convolutional layer Z ∈ RH×W×F . Altogether, the
convolution operation can be written as Z = a(t(rS(X )W))
where a is some non-linear activation function and X is
the output 3-D tensor of the preceding layer. We preserve
simplicity in notation here, assuming without loss of generality
that the stride used by rS is equal to 1 and that the input
tensor is padded with bS2 c zeros vertically and horizontally.
The whole process is depicted in Figure 2.

Fig. 2: Description of the reshape operations and locally linear
transformations computed in the convolutional layers. The
grey box represent the S×S receptive field of the convolution
filters at the black dot coordinate. The white squares in the
second step correspond to the zero padding of the input. Note
that the scale isn’t respected in the two middle steps.

Our general idea is to replace the weight matrix of every
layer with a product of Q sparse matrices Si. Consider a dense
layer whose weight matrix W ∈ RD′×D is expressed as a
product of sparse matrices

∏Q
i=1 Si, then the ouput of the

layer given an input vector x ∈ RD (e.g.output of previous
layer), may be expressed as:

z = a

((
Q∏
i=1

Si

)
x

)
. (1)

Assuming a sparsity level equal to K, i.e. every line and
column contain approximately K non null values, this reduces
the storage and the computational complexity from O(DD′)
to O(QK min(D,D′)). As an illustration in our experiments
we used Q ≤ 3 and K ≤ 20.

Similarly for a convolutional layer, given an input tensor
X ∈ RH×W×C , and assuming a sparsity level K, the output
of the layer Z ∈ RH×W×F may be approximated as:

Z = a

(
t

(
rS (X )

Q∏
i=1

Si

))
, (2)

where ||Si||0 = O(K ×min(S2C,F )) so that the time
complexity of the layer is reduced from O(HWCS2F ) to
O(HWQK ·min(CS2, F )) and the space complexity from
O(CS2F ) to O(QK ·min (CS2, F )).



B. Full Neural Network Compression

The full compression procedure is summarized in Algo-
rithm 1. First, each layer is compressed independently from
the others through its approximation as a product of sparse
matrices using a compression algorithm PSM (Product of
Sparse Matrices). Such an algorithm takes as inputs a weight
matrix, the number of sparse matrices Q to find, a sparsity
level K, and returns a series of sparse matrices from which a
PSM-layer is built.

Algorithm 1 Full compression procedure

Require: A Dataset (X,Y), a pretrained NN base_network,
a factorization algorithm PSM, Q the number of sparse
factors, K the requested sparsity level

Ensure: A PSM_network with PSM layers
PSM_network ← create_empty_network()
for all layer ∈ base_network.layers do
W← layer.get_weights()
{Si}Qi=1 ← PSM(W, Q,K)

PSM_layer ← create_PSM_layer({Si}Qi=1)
PSM_network.add(PSM_layer)

end for
finetune_network(PSM_network,X,Y)

This first step requires approximating each weight matrix
W (of a dense or a convolutional layer) as a product of sparse
factors, which is cast as the following optimization problem:

PSM(W, Q,K) = arg min
{Si∈EKi }Qi=1

∥∥∥∥∥W −
Q∏
i=1

Si

∥∥∥∥∥
2

F

(3)

where Q is the number of factors and EKi is the set of
admissible solutions for the factor Si, (i.e. that have the right
dimensions and contain approximately K non null values in
any row and any column) Although this problem is non-
convex, non-differentiable, and the computation of a global
optimum can not be ascertained, the palm4MSA algorithm
proposed in [12] is able to learn such a factorization by
finding a local minimum of the objective in Eq. (3) with
convergence guarantees. This algorithm is the one chosen in
our implementation of the method. Note that we later study
the impact of using palm4MSA as the compression algorithm
by comparing with alternative compression strategies.

In a second step of the algorithm, once every layer’s weight
matrix is approximated by a product of sparse matrices and
each layer is transformed in a PSM-layer, all PSM layers
are assembled in a compressed NN, a PSM-net, which is
refined to optimize the initial task objective while the sparsity
support of all factors is kept fixed. Although it does not
appear in Algorithm 1, while all dense and convolutional
layers are transformed into PSM layers, all other layers of
the base_network, such as activation functions, batch
normalizations are left unchanged in the PSM-net.

C. Related work

Popular matrix or tensor decomposition methods in-
cluding Singular Value Decomposition (SVD), CANDE-
COMP/PARAFAC (CP) and Tucker have been investigated
for model compression through low-rank approximation of a
neural network’s weight tensors after learning. The work in [3]
describes a method based on SVD to compress weight matrices
in fully connected layers. Other works [4]–[6] generalize this
idea to convolutional layers and then reduce the memory
footprint of convolution kernels by using higher-order low-
rank decompositions such as CP or Tucker decompositions.

Besides, the Tensor-Train (TT) decomposition has been
proposed to compress both dense and convolutional layers
after a pre-training step [7]. This approach may achieve very
high compression rates and appears as one major solution
for NN compression. Yet an impractical downside makes the
method [16] unable to scale to large architectures with medium
to large TT ranks. More specifically, in a TT format, all the
elements of a M -order tensor are expressed by a product of
M matrices whose dimensions are determined by the TT-
ranks (R0, R1, . . . , RM ). For each of the M dimension of
the initial tensor, the corresponding matrices are stacked into
an order 3 tensor called a “core” of the decomposition. Hence,
the layer weight is decomposed as a set of M cores of
small dimensions. The work [7] uses this tensor representation
to factorize fully connected layers. They first reshape the
matrix of weights into an M -order tensor, then apply the TT
decomposition. By choosing sufficiently small Rm values, this
technique offers a high compression ratio on extremely wide
ad hoc neural architectures. Other work [15] adapts this idea
to convolutional layers. However, the current formulation of
such TT convolutional layer involves the multiplication of all
input values by a matrix of dimension 1×R1. This causes an
inflation of R1 times the size of the input in memory (see Table
I), which makes the available implementation [16] unusable
for recent wide convolutional networks at inference time (see
missing values in Table IV).

Lenet VGG19 Resnet50

Other compressions 1,024 65,536 262,144

Tensortrain R=6 K=4 2,304 393,216 1,572,864
Tensortrain R=10 K=4 3,840 655,360 2,621,440
Tensortrain R=14 K=4 5,376 917,504 3,670,016

TABLE I: Size of hidden layer representations for one input
sample in the forward propagation step of various deep models
using TT layer decomposition. Tensortrain is the only com-
pression strategy that induces such an inflation of each sample
size during execution. Values correspond to data sample from
the MNIST dataset for Lenet and CIFAR100 for VGG19
and Resnet50.

Some techniques based on inducing sparsity in neural
connections, e.g. zeroing single weights in layer tensors, can
be seen as particular cases of our method. The simplest
approach is to remove the weights with lowest magnitude



until a given sparsity ratio is reached, followed by finetuning.
Such method can be seen as the particular case of ours when
only one factor is used to approximate weight matrices, i.e.
Q = 1. In the experiment section, we show that this method
does not allow high compression rate without significant
degradation of the accuracy. The work [17] similarly proposes
to iteratively remove connections and finetune the remaining
weights, achieving better classification performance. Others
sparsity inducing techniques exist [18], [19], however these
do not seem to offer much improvements in general settings
[20].

The idea of replacing layers by sparse factorization is also
explored for specific structures. Deep Fried Convnets
[21] propose to replace dense layers of convolutional neural
networks by the Fastfood approximation [22]. This ap-
proximation is a product of diagonal matrices, a permutation
matrix, and a Hadamard matrix, which can itself be expressed
as a product of logD sparse matrices [11]. Fastfood
approximation [21] thus provides a product of sparse factors
that is a particular and a more constrained case of our general
framework. In fact, the Hadamard matrix imposes a strong
structural constraint on the factorization, which might not be
suitable for all layers of a deep architecture.

The term sparse decomposition used in [23] for network
compression refers to products between dense and sparse
matrices to represent the weights of the convolution kernels in
a network. Finally, the work [24] proposes a similar framework
to ours, along with a regularization strategy to learn the
sparsity in the sparse factors. However, the method does not
allow for more than two sparse factors and the compression of
the convolutional layers is not considered reducing its scope
and applicability.

III. EXPERIMENTS

Section III-A details the experimental settings and parame-
ters to ensure reproducibility. We provide an in depth analysis
of our method in Section III-B. Finally, we compare our
method with state-of-the-art baselines in Section III-C.

A. Experimental settings

The analysis focuses on the image classification task. We in-
vestigate the compression of standard architectures (pretrained
models) with our approach and with a few state of the art
methods. All methods are evaluated by measuring both the
compression ratio and the accuracy of compressed models.
We first provide implementation details and datasets details,
then we present the baselines and the hyperparameters chosen
to make the comparison as fair as possible.

a) Datasets and investigated Architectures: Experiments
are performed on four standard image classification datasets
of varying difficulty: MNIST [25], SVHN [26], CIFAR10,
CIFAR100 [27]. We investigate compression of few famous
architectures including Lenet [25], VGG19 [28], Resnet20
and Resnet50 [29]. Details on datasets and neural architec-
tures may be found in Table II.

b) Competing baselines: Baselines and variants of our
approach are now presented. In all cases the methods are
applied on the same pre-trained models and all compressed
models are fine-tuned after compression. The following meth-
ods are evaluated:

• Low-rank factorization methods, including
Tensor-Train decomposition [7], [15] (TT) and a hybrid
method that we propose exploiting Tucker decomposition
[6] for the compression of convolutional layers and SVD
[3] for dense layers (Tucker-SVD).

• Two different sparsity inducing pruning
techniques. The first one is a simple magnitude
based projection of weight matrices on a sparse support.
This method is a particular case of our model where
only one sparse factor is required and is named “Hard
pruning” (HP). The second method, named Iterative
pruning (IP) is the iterative strategy proposed in [17],
which refines magnitude based projection with finetuning
steps.

• Our method PSM (i.e. Algorithm 1 with palm4MSA as
the compresion algorithm) and two variants designed to
gain more insight on its behaviour:

– PSM random: A sparse factorization with random
sparsity support and weights randomly initialized
using the procedure described in Section III-A;

– PSM re-init: The sparsity support is obtained
by running Palm4MSA but the weights are ran-
domly reset following the procedure described in
Section III-A.

Note that we did not include Deep Fried convnets in
our comparison, since this method is built to compress only
fully connected layers. Our attempts to apply Deep Fried to
convolutional layers yielded poor results, making the method
unusable on most state of the art architectures.

c) Hyper-parameters: We looked for fair comparison by
choosing hyper-parameters according to literature if available
else by grid search.
Palm4MSA algorithm: the stopping criteria is the same as

[13]: 300 iterations or a relative change between two iterations
below 10−6. We use the projection method from [12]. With K
being the desired level of sparsity, the method ensures that on
average each sparse factor contains at least K non-zero values
per row and per column and at most 2K.

Tensor-Train decomposition: we chose M = 4 cores for
the decomposition of any tensor, which offers the best perfor-
mance/compression trade-off in the original paper [7]. In the
experiments, various maximum rank values R are evaluated.

Hybrid Tucker and SVD decomposition: the rank of the
Tucker decomposition is automatically detected by the Vari-
ational Bayes Matrix Factorization method (VBMF), as ex-
plained in [6]. The rank of the SVD in the dense layers is
chosen such that only a certain percentage (specified in the
experiments) of the singular values are kept.

Fine-tuning: Lenet network is finetuned with the
RMSProp optimizer and 100 learning epochs. VGG19 and



Nom Input shape # classes Train size Validation size Test size NN models

MNIST (28× 28× 1) 10 40 000 10 000 10 000 Lenet
SVHN (32× 32× 3) 10 63 257 10 000 26 032 VGG19

CIFAR10 (32× 32× 3) 10 50 000 10 000 10 000 VGG19
CIFAR100 (32× 32× 3) 100 50 000 10 000 10 000 VGG19, Resnet50, Resnet20

TABLE II: Datasets: attributes and investigated NN models.

Resnet networks are fine-tuned with Adam [30] optimizer
and 300 and 200 epochs respectively. For each compression
method and configuration, the best learning rate is chosen
using the classification error on a validation sample after 10
iterations, with learning rate values in {10−3, 10−4, 10−5}.
Standard data augmentation is applied: translation, rotation and
flipping of the images.

d) Implementation details: The code is written in Python,
including the palm4MSA algorithm (the code is available
on github12). NNs are implemented with Keras [31] and
Tensorflow [32]. Due to the lack of efficient implementa-
tion of computation with sparse matrices in Tensorflow, we had
to redefine the implementations of the dense matrix product
and convolution from Keras.

To implement PSM-convolution layers, we rebuild the con-
volution kernel from the product of sparse matrices. Then
this convolution kernel is directly used as a weight tensor
in the Tensorflow function conv2d for fast computation.
When needed, the initialization of the weights of PSM layers
must be adapted to the reduced number of connections in
the layer. We thus adapt the initializations Xavier [33] and
He [34] to the initialization of sparse matrices. Specifically, the
first sparse factor is initialized using the He method because
ReLU activation function is applied yielding not zero-centered
values. The subsequent sparse factors are initialized using the
Xavier method since the absence of non-linearity between
factors make the inner-activations be zero-centered.

The TT decomposition is performed by applying the de-
composition function matrix_product_state, provided
by the Tensorly library [35], on the tensors obtained on the
pre-trained networks.

To implement the iterative pruning method from [17],
the prune_low_magnitude function from the library
tensorflow_model_optimization [32] is used. With
this method, the pruning and the refinement of weights are
combined by progressively removing the connections during
the learning process until the desired percentage of pruning is
obtained.

B. Analysis of the method

We first provide an in-depth analysis of our method to
validate the use of Palm4MSA for the decomposition of layer’s
weight matrices into products of sparse matrices. Then, we
study the impact of hyper-parameters Q and K on model
accuracy and on compression rate.

1Code for the PSM-nets project: https://github.com/lucgiffon/psm-nets
2Code for the Palm4MSA algorithm: https://github.com/lucgiffon/qkmeans

Vgg19 Resnet20 Resnet50

Base 0.67 0.73 0.76

PSM Q=2 K=2 0.46 0.56 0.67
PSM re-init. Q=2 K=2 0.42 0.53 0.57
PSM random Q=2 K=2 0.44 0.48 0.41

PSM Q=2 K=14 0.64 0.69 0.72
PSM re-init. Q=2 K=14 0.57 0.63 0.63
PSM random Q=2 K=14 0.58 0.62 0.62

PSM Q=3 K=2 0.42 0.57 0.67
PSM re-init. Q=3 K=2 0.32 0.48 0.51
PSM random Q=3 K=2 0.39 0.29 0.47

PSM Q=3 K=14 0.62 0.70 0.72
PSM re-init. Q=3 K=14 0.31 0.60 0.58
PSM random Q=3 K=14 0.51 0.60 0.59

TABLE III: Classification performance on CIFAR100 ob-
tained with neural network models compressed by 3 variations
of layer decomposition into sparse matrix products: PSM, PSM
re-init, and PSM random. Q is the number of factors in
the decomposition, K the sparsity level.

Fig. 3: Relative error approximation by layers using
Palm4MSA for VGG19 architecture pre-trained on the
CIFAR100 dataset. "C" stands for "Conv2D", "D" for
"Dense" and "S" for "Softmax". "C1", correspond to the first
layer of the network then the layers are ordered from left to
right until the last fully connected layer "S".

a) Approximation error: The quality of the Palm4MSA
approximation of the original weight matrices is evaluated, as
well as its influence on the final performance of the method.
We report results obtained on the compression of VGG19
trained on CIFAR100 as an illustration. Figure 3 shows the
approximation error between the product of Q sparse factors
W̃ :=

∏Q
q=1 Sq and the original weight matrix W for every



layer. The error is computed as the normalized Froebenius
distance between the original and the approximated matrices:
error = ‖W − W̃‖2F /‖W‖2F .

We observe that the approximation error of palm4MSA
algorithm may be quite high for some of the layers. Yet
looking at Table III, we observe that the fine tuning step allows
recovering original accuracy (i.e. the one of the uncompressed
network) in most cases. Figure 3 further shows that a higher
K, (i.e. the minimum number of non-zero values per row and
per column) yields better approximation and usually a better
accuracy as well (see Table III).

High approximation errors in Figure 3 suggest that
Palm4MSA may not be well adapted for the task. In order
to investigate this deeper, we provide results for two variants
of our methods: PSM-random and PSM-reinit methods.
More precisely, we want to evaluate (I) the relevance of the
sparsity support found by Palm4MSA through comparison of
our approach to PSM-random and (II) the relevance of the
learned weights by comparing our approach to PSM-reinit.

The results reported in Table III show first that the network
compressed using the Palm4MSA method obtains the best
performance in classification with all the tested combina-
tions of sparsity level K and number of factors Q. Overall
PSM-reinit and PSM-random perform significantly worse
than our main approach and most of the time reach similar
results.

This finally reinforce the idea that palm4MSA is able to
recover some unknown underlying structure in the weight
matrices even though the overall approximation error is high.

b) Sparsity level and the number of factors: Figure 4
and Table III show the performance of our models obtained
with various sparsity levels K and numbers of factors Q.
We observe that the number of factors seems to have a
rather limited effect on the quality of the performance, while
sparsity level is a more determining factor of the quality of
the approximation.

C. Comparative study

Figure 4 reports comparative results obtained on standard
benchmark datasets with well known architectures. The main
observations are now presented.

a) Reliability: First of all, the behaviour of the baseline
methods seems to depend on the experiment. For instance,
TT performance varies depending on the chosen rank, see
rank 10 in figure 4-(b). Iterative Pruning technique performs
badly on MNIST. Moreover, these baselines are not always
manageable in practice, e.g. no results are available for TT on
Resnet compression, see below. On the contrary, we observe
more stable performances with regards to the choice of hyper-
parameters and a systematic very low variance for our method.

b) Comparison to low rank decomposition techniques:
Our approach significantly outperforms the Tucker-SVD
method in any case. Indeed, this low rank decomposition meth-
ods cannot reach high compression regime, without degra-
dation of the accuracy of the network. On the contrary, the
TT formulation can achieve higher compression rates than

Tucker, as observed in past works. TT offers better results than
Tucker decomposition and performs similarly or above our
method in some cases. Yet, the method has drawbacks. First,
very strong variance is observed in several cases, especially
for high compression rates (see results in figures 4-(b) to 4-
(d) on SVHN, CIFAR10-100). Second, the implementation
provided by authors does not provide any results, when the
product of the number of filters and the TT rank is large. In
particular, we are unable to run experiments on models such
as Resnet20 and Resnet50 because the memory footprint
is increased considerably to the extent that the batch become
impossible to store in memory during the execution of the
wider convolutional layers of these networks (Table I and
figures 4-(e) and 4-(f)).

c) Comparison with pruning techniques: In the “Hard”
pruning case, the compressed network perform very poorly.
This confirms that a sparse factorization with more than one
factor is beneficial. When applying the procedure of [17],
however, the magnitude based pruning method conserves good
accuracy while removing up to 98% of the connections from
the model, except for the MNIST dataset. While our approach
significantly outperforms the Hard pruning technique in any
case, Iterative pruning [17] can lead to significantly higher
performance compression in high compression settings than
our approach, this is particularly the case with Resnet models
on CIFAR100 (figures 4-(e) and 4-(f)). In other settings on
Resnet and for compressing other models, this technique has
similar performance vs compression trade-off to our method.
Since the Hard pruning technique can be viewed as a special
case of our method, results suggest that an iterative-like
extension of our method could reach even better results, which
is a perspective of this work.

d) Compression rates that preserve accuracy: Table IV
displays the highest compression rates obtained with the dif-
ferent methods while preserving the accuracy with a maximum
of 5 percents decrease in accuracy. The main observations are:

• Our approach PSM-net significantly outperforms the
Tucker-SVD in any case.

• Our method may compete with the tremendous compres-
sion rates obtained with Tensor-train observed on
small to medium scaled problems, i.e. small architectures
(e.g. LeNet) or bigger architectures (e.g. VGG19) trained
on simple data (hence enabling strong compression rates).

• On larger scaled problems the Tensor-train method
could not reach an accuracy below 5 percents, this is
why N/A is reported in some cases, since it would have
required using higher TT ranks but this caused memory
overflow problems (see Section II-C). On such cases our
approach allows reaching up to ×20 compression rates.

• The PSM-nets are comparable with the Iterative
Pruning approach, yielding higher compression rate in
the case of the VGGG19 networks but lower for Resnet
ones.



Fig. 4: Accuracy (y-axis) as a function of the log of the number of parameters (x-axis) for compressed versions of standard pretrained models
on several datasets, obtained with various compression methods. The number of parameters include dense and convolutional layers weights
only. The PSM models have Q sparse factors with a sparsity level K. The Tucker-SVD hybrid uses 10% or 20% of the singular values
in dense layers. The R value for Tensortrain (TT) method refers to the maximum rank of the cores in the decomposition. Note that
the TT method requires too much memory to obtain any result on the Resnet architectures. Finally, the Iterative Pruning (IP) and Hard
pruning (HP) approaches prune 95% or 98% of the Base’s number of weights. Base stands for the uncompressed pretrained model.



MNISTLenet SVHNVgg19 CIFAR10Vgg19 CIFAR100Vgg19 CIFAR100Resnet20 CIFAR100Resnet50

CR ↓ ∆ ↑ CR ↓ ∆ ↑ CR ↓ ∆ ↑ CR ↓ ∆ ↑ CR ↓ ∆ ↑ CR ↓ ∆ ↑

PSM network 23.30 0.00 103.82 0.04 70.66 0.05 22.39 0.03 14.56 0.04 24.03 0.04
Tensortrain 31.98 0.00 292.32 0.02 116.10 0.05 N/A N/A N/A N/A N/A N/A
Tucker-SVD 3.78 0.03 8.74 0.02 8.99 0.03 7.84 0.05 3.18 0.04 4.80 0.05
Iterative Pruning 25.85 0.03 45.61 0.02 45.61 0.04 19.28 0.02 18.72 0.04 42.86 0.04

TABLE IV: Summary of the compression rates (CR) and accuracy loss (∆) for different compression strategies. The highest
compression rates are reported for a loss (with respect to the accuracy of the uncompressed model) below 0.05 accuracy.
Values are not available for Tensor-train on CIFAR100 because such results would require too large TT ranks that yield
memory inflation.

IV. CONCLUSION

This paper presents a new approach to compress dense
and convolutional layers of a pretrained neural network. Our
method is based on the decomposition of weight matrices into
products of sparse matrices. Unlike common decomposition
methods, our method does not make any assumptions on the
rank of the weight matrices and allows high compression
rates while maintaining accuracy. For instance, we were able
to compress a VGG19 network around 30×, or a Resnet50
network 20×, while losing only 1 to 5 percents of accuracy.
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