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Abstract. In this work we address the problem of solving ill-posed inverse problems in imaging where the prior
is a variational autoencoder (VAE). Specifically we consider the decoupled case where the prior is
trained once and can be reused for many different log-concave degradation models without retraining.
Whereas previous MAP-based approaches to this problem lead to highly non-convex optimization
algorithms, our approach computes the joint (space-latent) MAP that naturally leads to alternate
optimization algorithms and to the use of a stochastic encoder to accelerate computations. The
resulting technique (JPMAP) performs Joint Posterior Maximization using an Autoencoding Prior.
We show theoretical and experimental evidence that the proposed objective function is quite close to
bi-convex. Indeed it satisfies a weak bi-convexity property which is sufficient to guarantee that our
optimization scheme converges to a stationary point. We also highlight the importance of correctly
training the VAE using a denoising criterion, in order to ensure that the encoder generalizes well
to out-of-distribution images, without affecting the quality of the generative model. This simple
modification is key to providing robustness to the whole procedure. Finally we show how our joint
MAP methodology relates to more common MAP approaches, and we propose a continuation scheme
that makes use of our JPMAP algorithm to provide more robust MAP estimates. Experimental
results also show the higher quality of the solutions obtained by our JPMAP approach with respect
to other non-convex MAP approaches which more often get stuck in spurious local optima.

Key words. Image Restoration, Inverse Problems, Bi-convex Optimization, Bayesian Statistics, Generative
Models, Variational Auto-encoders

AMS subject classifications. 68U10, 65K10, 65D18, 68T05, 90C26, 90C25, 90C30,

1. Introduction. General inverse problems in imaging consist in estimating a clean image
x ∈ Rd from noisy, degraded measurements y ∈ Rm. In many cases the degradation model is
known and its conditional density

pY |X (y |x) ∝ e−F (x,y)
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continuous support throughout this project.

Funding: This work was funded by ECOS Sud Project U17E04, by the French-Uruguayan Institute of Math-
ematics and Interactions (IFUMI), by CSIC I+D 2018-256 (Uruguay) and by ANII (Uruguay) under Grant 11
FCE 1 2017 1 135458 and by the French Research Agency through the PostProdLEAP project (ANR-19-CE23-
0027-01). Computer experiments for this work ran on a Titan Xp GPU donated by NVIDIA, as well as on HPC
resources from GENCI-IDRIS (Grants 2020-AD011011641 and 2021-AD011011641R1).

†DMEL, CenUR RN, Universidad de la República, Salto, Uruguay (mgonzalez@unorte.edu.uy, http://dmel.
interior.edu.uy/mario-gonzalez/).
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is log-concave with respect to x. To illustrate this, let us consider the case where the negative
log-conditional is quadratic with respect to x

(1.1) F (x,y) =
1

2σ2
∥Ax− y∥2.

This boils down to a linear degradation model that takes into account degradations such as,
white Gaussian noise, blur, and missing pixels. When the degradation operator A is non-
invertible or ill-conditioned, or when the noise level σ is high, obtaining a good estimate of x
requires prior knowledge on the image, given by pX (x) ∝ e−λU(x). Variational and Bayesian
methods in imaging are extensively used to derive MMSE or MAP estimators,

(1.2) x̂map=argmax
x

pX|Y (x |y)=argmin
x

{F (x,y) + λU(x)}

based on (a) explicit hand-crafted priors like Tikhonov regularization [67], total variation
[59, 10, 43, 50] and its higher order [7] and non-local [25] variants, sparsity in a transformed
domain [21], or in redundant representations like wavelet frames or patch dictionaries [22], or
(b) learning-based priors like patch-based Gaussian mixture models [80, 74, 65].

Neural network regression. Since deep neural networks (NN) showed their superiority in
image classification tasks [37] researchers started to look for ways to use this tool to solve
inverse problems too. The most straightforward attempts employed neural networks as re-
gressors to learn a risk minimizing mapping y 7→ x from many examples (xi,yi) either agnos-
tically [20, 75, 77, 24, 62, 23] or including the degradation model in the network architecture
via unrolled optimization techniques [28, 12, 18, 26].

Implicitly decoupled priors. The main drawback of neural networks regression is that they
require to retrain the neural network each time a single parameter of the degradation model
changes. To avoid the need for retraining, another family of approaches seek to decouple
the NN-based learned image prior from the degradation model. A popular approach within
this methodology are Plug & Play (or PnP) methods. Instead of directly learning the log-
prior − log pX (x) = U(x) + C, these methods seek to learn an approximation of its gradient
∇U [5, 4] or proximal operator proxU [71, 45, 76, 11, 34, 60], by replacing it by a denoising
NN. Then, these approximations are used in an iterative optimization algorithm to find the
corresponding MAP estimator in Equation (1.2) or more generally some sort of consensus
equilibrium among the data fitting term and the priors [9].

Taking an apparently different approach Romano et al. introduced the regularization by
denoising (RED) algorithm [58] which uses a denoiser Dσ to construct an explicit regularizer
U(x) = 1

2x
T (x−Dσ(x)). Under certain conditions (see below) its gradient ∇U = I−Dσ can

be conveniently computed in terms of the denoiser, leading to a gradient descent scheme for
the associated MAP estimator, which is very easy to implement.

Explicitly decoupled generative priors. In another series of works pioneered by Bora et al. [6]
and followed by [63, 56, 46, 32, 30] the Plug & Play prior is explicitly provided by a generative
model, most often a generative adversarial network G that maps a latent variable z ∼ N (0, I)
to an image x = G(z) with the desired distribution pX as represented by the learning dataset.
More precisely these methods solve an optimization problem on the latent variable z

(1.3) ẑmap=argmin
z

{
F (G(z),y) +

1

2
α∥z∥2

}
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and the reconstructed image is provided by x̂map = G(ẑmap). As we show in the following
sub-section and in appendix B.1, this corresponds (when α = 1) to the Maximum A Posteriori
(MAP) estimator with respect to the z variable. In this work we adopt this framework with
some extensions that help avoid getting trapped in spurious critical points of the non-convex
objective function.

Empirical success of Plug & Play and RED. Plug & Play and RED approaches became very
popular because they allow to repurpose very powerful state of the art denoisers as regularizers
of a large family of inverse problems in a quite straightforward manner. They have been
successfully applied to many different problems in imaging and they have thus empirically
proven their superiority (in terms of achievable reconstruction quality with respect to more
classical regularization techniques), and opened the way for the solution of more difficult
inverse problems in imaging.

Theoretical questions. The success of Plug & Play and RED approaches largely outpaced
our understanding of why and when these techniques lead to algorithms that provably con-
verge to well-posed statistical estimators with well known properties. This is not surprising
because obtaining convergence guarantees for non-convex optimization problems under real-
istic conditions is quite challenging.

A notable exception where strong convergence results have been obtained is the particular
case of compressed sensing, where the rows of the degradation operator (or sensing matrix)
A are independent realizations of a zero-mean Gaussian distribution. For this problem, Hand
et al. [30, 32] show that the optimization objective (1.3) has almost no spurious stationary
points when the generator is assumed to be a random ReLU network with Gaussian weights.
As a consequence, a minor modification to the gradient descent algorithm in [6] converges
with high probability to the global optimum.

In this paper we are interested in more general inverse problems, where the sensing matrix
A is not necessarily random but deterministic and highly structured most often dictated by
our modeling of the acquisition device. In this more general setting the hypotheses of the
CS results are not necessarily satisfied, and the kind of convergence guarantees that could
be established for PnP algorithms with non-convex priors are much weaker (typically only
convergence to a stationary point or fixed point is provided, not necessarily a global optimum),
and most works concentrate in the implicit case, where the prior is not explicitly provided by
a generative model, but implicit in a denoising algorithm.

In such a case the actual prior is unknown, the existence of a density whose gradient or
proximal operator is well approximated by a neural denoiser is most often not guaranteed [57],
and the convergence of the algorithm is not guaranteed either unless the denoiser is retrained
with specific constraints like idempotence [29, 63], contractive residual [60] or exact, invertible,
smooth MMSE denoisers [73].

The effect of such training constraints on the quality of the denoisers and the associated
priors is yet to be explored in detail. But even when these constraints are satisfied, convergence
conditions can be quite restrictive, either (a) requiring the data-fitting term F to be strongly
convex [60] (thus excluding many important problems in computational imaging where A is
not full rank like interpolation, super-resolution, deconvolution with a non-invertible kernel
or compressive sensing), and/or (b) constraining the regularization parameter λ outside of its
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useful range [60, 73].1

Similarly, an early analysis of the RED approach [57] provides a convergence proof, but
only under quite restrictive conditions (locally homogeneous denoisers with symmetric Jaco-
bian) which exclude most state of the art denoisers like DnCNN, BM3D, NLMeans. A more
recent analysis of a stochastic variant of the RED algorithm [39] (called PnP-SGD) signifi-
cantly expands the family of denoisers that provide convergence guarantees, including DnCNN
and the doubly-stochastic variant of NLM [64]. These guarantees come, however, at the ex-
pense of a very small descent step which leads to a very computationally expensive algorithm
with slow convergence. In addition, the experiments with PnP-SGD show that this algorithm
is extremely sensitive to the initial condition, and it can be easily get stuck on spurious local
minima if not initialized very carefully.

Focus of this work. Very recent works focused on developing MAP estimation algorithms
with convergence guarantees under more realistic conditions. The convergence analysis of
the RED framework, and its RED-PRO variant was further refined under a demicontractive
condition for the denoiser [15]. This condition is, however, difficult to verify according to
Pesquet et al. [51] who provides an alternative convergence analysis framework based on
firmly non-expansive denoisers for which explicit training procedures exist [66]. In this work
we explore alternative new ways to bring theory and practice closer together, by proposing
novel Plug & Play algorithms to compute the MAP estimator of an inverse problem with
a neural regularizer. Unlike previous approaches which were based on implicit priors, or on
GAN-based explicit priors, our approach is based on an explicit generative prior that has
been trained as a Variational AutoEncoder (VAE). As we shall see later, the additional VAE
structure provides: (i) powerful mechanisms to avoid getting stuck in spurious local minima
of the associated non-convex functional, and (ii) convergence guarantees under much less
restrictive conditions on the inverse problem F and regularization parameter λ.

The next Section 1.1 reviews previous work on similar approaches to compute a MAP
estimator from a generative prior that was trained either as a VAE or a GAN. Section 1.2
briefly introduces our approach and how it relates to previous work. The section finishes with
an overview of the rest of the paper.

1.1. Maximum a Posteriori meets Generative Models. Our approach focuses on PnP
algorithms where the prior is provided by a generative model. For instance one could use
a generative adversarial network (GAN) to learn a generative model for X = G(Z) with
Z ∼ N(0, I) a latent variable. The generative model induces a prior on X via the push-
forward measure pX = G♯pZ , which following [48, section 5] can be developed as

pX (x) =
pZ
(
G−1(x)

)√
detS(G−1(x))

δM(x)

where S =
(
∂G
∂z

)T (∂G
∂z

)
is the squared Jacobian and the manifold M = {x : ∃z, x = G(z)}

represents the image of the generator G. With such a prior pX , the x-optimization (1.2)

1In [39] the PnP-ADMM and PnP-FBS algorithms introduced in [60, 73] are reported to converge in practice
quite far beyond the conditions of the theorem, but require (to obtain optimal performance) the regularization
parameter λ to be tuned to values that are far outside the region where convergence is guaranteed. Also, the
performance is significantly degraded if λ is constrained to the range where convergence is guaranteed.
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required to obtain x̂map becomes intractable (in general), for various reasons:
• the computation of detS,
• the inversion of G, and
• the hard constraint x ∈ M.

These operations are all memory and/or computationally intensive, except when they are
partially addressed by the use of a normalizing flow like in [31, 72].

Current attempts to use such a generative model as a prior, like the one proposed by Bora
et al. [6] for GANs, circumvent these difficulties by performing an optimization on z (in the
latent domain) instead of x. Instead of solving Equation (1.2), they solve

ẑmap = argmax
z

{
pY |X (y |G(z)) pZ (z)

}
= argmin

z

{
F (G(z),y) +

1

2
∥z∥2

}
,

(1.4)

by assuming a standard Gaussian prior. This problem is much more tractable, and the
corresponding x-estimate is obtained as

(1.5) x̂map−z = G(ẑmap).

As we show in appendix B.1, this new estimator does not necessarily coincide with x̂map

but it does correspond to the MAP-estimator of x after the change of variable x = G(z),
namely

x̂map−z = G

(
argmax

z

{
pZ|Y (z |y)

})
.

Since G is non-linear, this problem (or its equivalent formulation (1.4)) is highly non-convex
and difficult to solve with global optimality guarantees. Nevertheless, in the particular case
where A is a random Gaussian matrix (compressed sensing case) or when F is strongly convex,
recent work shows that the global optimum can be reached with linear convergence rates by
a small modification of a gradient descent algorithm [32, 30], or by an ADMM algorithm
with non-linear constraints [38, 2, 70]. To the best of our knowledge, these results do not
extend, however, to the more general case we are interested in here, where A is deterministic
and rank-deficient, and F is consequently not strongly convex. In this more general setting,
convergence guarantees for this optimization problem remain extremely difficult to establish,
as confirmed by experimental results presented in Section 3.

A common technique to solve difficult optimization problems like the one in Equation (1.4)
is to use (Half Quadratic) splitting methods

(1.6) x̂β = argmin
x

min
z

{
F (x,y) +

β

2
∥x− G(z)∥2 + 1

2
∥z∥2

}
︸ ︷︷ ︸

J1,β(x,z)

combined with a continuation scheme, namely:

(1.7) x̂map−z = lim
β→∞

x̂β.
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The convergence of the continuation scheme in the last line is a standard result in Γ-convergence
(see [17] and appendix C). The corresponding splitting algorithm is presented in Algorithm
1.1.

Algorithm 1.1 map-z splitting

Require: Measurements y, Initial condition x0, maxiter, kmax, {β0, . . . , βkmax}
Ensure: x̂ = G

(
argmaxz pZ|Y (z |y)

)
1: for k := 0 to kmax do
2: β := βk
3: for n := 0 to maxiter do
4: zn+1 := argminz J1,β(xn, z) // Nonconvex
5: xn+1 := argminx J1,β(x, zn+1) // Quadratic
6: end for
7: x0 := xn+1

8: end for
9: return xn+1

However, unlike most cases of HQS which include a linear constraint between the two
variables, this splitting algorithm still contains (line 4) a difficult non-convex optimization
problem2.

1.2. Proposed method: Joint MAPx,z. In this work we propose to address this challenge
by substituting the difficult non-convex sub-problem by a local quadratic approximation pro-
vided by the encoder of a variational autoencoder.

Indeed, as we show in Section 2, a variational autoencoder allows to interpret the splitting
Equation (1.6) as the negative logarithm of the joint posterior density pX,Z|Y (x, z |y). There-
fore, solving Equation (1.6) amounts to compute a joint mapx,z estimator that we denote by

x̂β
mapx,z

. Moreover if the same joint conditional density pX,Z|Y (x, z |y) is decomposed in a
different manner, it leads to an approximate expression that makes use of the encoder, and
is quadratic in z. If this approximation is good enough then the maximization of the joint
log-posterior becomes a bi-concave optimization problem or approximately so. And in that
case, an extension of standard bi-convex optimization results [27] shows that the algorithm
converges to a stationary point.

We also highlight the importance of correctly training the VAE in such a way that the
encoder generalizes well to noisy values of x outside of the support of pX (x). This can be
achieved by training the VAE to reconstruct their clean inputs with noise injected at the input
level, as proposed by Im et al. [33]. We observe that this modified training does not degrade
the quality of the generative model, but makes our quasi-bi-convex optimization procedure
much more robust.

Finally we show that a continuation scheme allows to obtain the mapz estimator as the
limit of a series of joint mapx,z optimizations. This continuation scheme, in addition to the
quasi-bi-convex optimization, and the initialisation heuristic provided by the denoising encoder

2In another context a primal-dual optimization algorithm was proposed to solve a similar optimization
problem [2], but this approach was not explored in the context where G is a generative model.
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leads to a much more robust non-convex optimization scheme which more often converges to
the right critical point than a straightforward gradient descent of the mapz model.

The remainder of this paper is organized as follows. In Section 2 we derive a model for
the joint conditional posterior distribution of space and latent variables x and z, given the
observation y. This model makes use of a generative model, more precisely a VAE with
Gaussian decoder. We then propose an alternate optimization scheme to maximize the joint
posterior model, and state convergence guarantees. Section 3 presents first a set of experiments
that illustrates the convergence properties of the optimization scheme. We then test our
approach on classical image inverse problems, and compare its performance with state-of-the-
art methods. Concluding remarks are presented in Section 4.

2. From Variational Autoencoders to Joint Posterior Maximization. Recently, some
generative models based on neural networks have shown their capability to approximate the
complex image distribution in a data-driven fashion. In particular, Variational Autoencoders
(VAE) [36] combine variational inference to approximate unknown posterior distributions of
latent variable models with the ability of neural networks to learn such approximations.

Consider a graphical model z → x in which we assume that a latent variable z is re-
sponsible of the observed image x. For example, in an image of a handwritten digit we can
imagine which digit is represented in the image, width, angle (and so on) as latent variables.
We choose a generative model

pθ(x, z) = pθ(x|z)pZ (z)

where pZ (z) is some simple distribution (which we can easily sample from) and pθ(x|z) is the
approximation of the probability distribution of x given z parameterized by a neural network
(with weights θ) known as stochastic decoder.

The intractability of pθ(x) =
∫
pθ(x|z)pZ (z) dz is related to the posterior distribution

pθ(z|x) by

(2.1) pθ(z|x) =
pθ(x|z)pZ (z)

pθ(x)
.

The variational inference approach consists in approximating this posterior with another
model qϕ(z|x) which, in our case, is another neural network with parameters ϕ, called a
stochastic encoder.

Following [36], we consider the Evidence Lower BOund (ELBO) as

(2.2) Lθ,ϕ(x) := log pθ(x)−KL(qϕ(z|x) || pθ(z|x)) ≤ log pθ(x)

where KL is the Kullback-Leibler divergence. Thus, given a dataset D = {x1, . . . ,xN} of
image samples, maximizing the averaged ELBO on D means maximizing log pθ(D) which is
the maximum likelihood estimator of weights θ and minimizing KL(qϕ(z|x) || pθ(z|x)) which
enforces the approximated posterior qϕ(z|x) to be similar to the true posterior pθ(z|x).

It can be shown [36] that the ELBO can be rewritten as

(2.3) Lθ,ϕ(x) = Eqϕ(z|x)[log pθ(x|z)]−KL(qϕ(z|x) || pZ (z)).
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The first term in (2.3) is a reconstruction loss similar to the one of plain autoencoders: it
enforces that the code z ∼ qϕ(·|x) generated by the encoder qϕ can be used by the decoder
pθ to reconstruct the original input x. The second term is a regularization term that enforces
the distribution qϕ(z|x) of the latent code z (given x) to be close to the prior distribution
pZ (z). It is common to choose an isotropic Gaussian as the prior distribution of the latent
code:

pZ (z) = N (z | 0, I) ∝ e−∥z∥2/2

and a Gaussian encoder qϕ(z|x) = N (z |µϕ(x),Σϕ(x)), so that the KL divergence in (2.3) is
straightforward to compute. For the decoder pθ(x|z) a Gaussian decoder is the most common
choice and as we will see we benefit from that.

2.1. Learning approximations vs. encoder approximations. In this work we construct
an image prior using a Variational Autoencoder (VAE). Like any machine learning tool VAEs
make different kinds of approximations. Let’s distinguish two types of approximations that
shall be important in the sequel:
Learning approximation: The ideal prior p∗X can only be approximated by our VAE due

to its architectural constraints, finite complexity, truncated optimization algorithms,
finite amount of data and possible biases in the data. Due to all these approximations,
after learning we have only access to an approximate prior pX ≈ p∗X . VAEs give
access to this approximate prior pX via a generative model: taking samples of a latent
variable Z with known distribution N (0, I) in Rl (with l ≪ d), and feeding these
samples through a learned decoder network, we obtain samples of X ∼ pX . The
approximate prior itself

(2.4) pX (x) =

∫
pθ(x|z) pZ (z) dz

is intractable because it requires computing an integral over all possible latent codes
z. However the approximate joint distribution is readily accessible

pX,Z (x, z) = pθ(x|z) pZ (z)

thanks to pX|Z (x | z) = pθ(x|z) which is provided by the decoder network.
Encoder approximation: In the previous item we considered the VAE as a generative

model without making use of the encoder network. The encoder network

p̃Z|X(z |x) := qϕ(z|x) ≈ pZ|X (z |x)

is introduced as an approximate way to solve the intractability of pZ|X (z |x) = pθ(z|x)
(which is related to the intractability of pθ(x) as observed in equation (2.1)).
Using the encoder network we can provide an alternative approximation for the joint
distribution

p̃X,Z(x, z) := qϕ(z|x) pX (x) ≈ pX,Z (x, z)

which shall be useful in the sequel.
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Put another way, the ideal joint distribution p∗X,Z is inaccessible, but can be approximated
in two different ways:

The first expression denoted pX,Z (x, z) only uses the decoder and is only affected by the
learning approximation

p∗X,Z(x, z) ≈ pX,Z (x, z) := pθ(x|z) pZ (z) .

The second expression denoted p̃X,Z(x, z) uses both encoder and decoder and is affected
both by the learning approximation and by the encoder approximation

pX,Z (x, z) ≈ p̃X,Z(x, z) := qϕ(z|x) pX (x)

In the following subsection we shall forget about the ideal prior p∗X and joint distribution
p∗X,Z which are both inaccessible. Instead we accept pX (with its learning approximations)
as our prior model which shall guide all our estimations. The approximation symbol shall
be reserved to expressions that are affected by the encoder approximation in addition to the
learning approximation.

2.2. Variational Autoencoders as Image Priors. To obtain the Maximum a Posteriori
estimator (MAP), we could plug in the approximate prior pX in equation (1.2), but this leads
to a numerically difficult problem to solve due to the intractability of pX . Instead, we propose
to maximize the joint posterior pX,Z|Y (x, z |y) over (x, z) which is equivalent to minimizing

(2.5)

J1(x, z) := − log pX,Z|Y (x, z |y)
= − log pY |X,Z (y |x, z) pθ(x | z)pZ (z)

= F (x,y) +Hθ(x, z) +
1

2
∥z∥2.

Note that the first term is quadratic in x (assuming (1.1)), the third term is quadratic in
z and all the difficulty lies in the coupling term Hθ(x, z) = − log pθ(x | z). For Gaussian
decoders [36], the latter can be written as

Hθ(x, z) =
1

2

(
d log(2π) + log detΣθ(z)

+ ∥Σ−1/2
θ (z)(x− µθ(z))∥2

)
.

(2.6)

which is also convex in x. Hence, minimization with respect to x takes the convenient closed
form:

argmin
x

J1(x, z) =
(
ATA+ σ2Σ−1

θ (z)
)−1

×
(
ATy + σ2Σ−1

θ (z)µθ(z)
)
.

(2.7)

Unfortunately the coupling term H and hence J1 is a priori non-convex in z. As a
consequence the z-minimization problem

(2.8) argmin
z

J1(x, z)
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is a priori more difficult. However, for Gaussian encoders, VAEs provide an approximate
expression for this coupling term which is quadratic in z. Indeed, given the equivalence

pθ(x | z) pZ (z) = pX,Z (x, z)

= pZ|X (z |x) pX (x)

≈ qϕ(z |x) pX (x)

(2.9)

we have that

(2.10) Hθ(x, z) +
1

2
∥z∥2 ≈ Kϕ(x, z)− log pX (x) .

where Kϕ(x, z) = − log qϕ(z |x). Therefore, this new coupling term becomes

Kϕ(x, z) = − logN (z;µϕ(x),Σϕ(x))

=
1

2

[
l log(2π) + log detΣϕ(x)

+ ∥Σ−1/2
ϕ (x)(z − µϕ(x))∥2

]
,

which is quadratic in z. This provides an approximate expression for the energy (2.5) that
we want to minimize, namely

(2.11) J2(x, z) := F (x,y) +Kϕ(x, z)− log pX (x) ≈ J1(x, z).

This approximate functional is quadratic in z, and minimization with respect to this variable
yields

(2.12) argmin
z

J2(x, z) = µϕ(x).

In the case of linear VAEs,

pZ (z) = N (z; 0, I)(2.13)

pX|Z (x | z) = N (x;Vθz + vθ,Σθ).(2.14)

It is easily shown that the posterior is also Gaussian [44], namely

(2.15) pZ|X (z |x) = N (z;MV T
θ (x− vθ),ΣθM) where M = (V T

θ Vθ +Σθ)
−1.

Hence, the linear encoder qϕ(z |x) that minimizes the ELBO is that of equation (2.15) so the
approximation (2.9) is exact and then J1 = J2.

2.3. Alternate Joint Posterior Maximization. The previous observations suggest to adopt
an alternate scheme to minimize − log pX,Z|Y (x, z |y) in order to solve the inverse problem.
We begin our presentation by a simple version of the proposed algorithm, which aims at man-
aging the case where the approximation of J1 by J2 is exact (at least in the sense given in
Assumption 1 below); then we propose an adaptation for the more realistic non-exact case
and we explore its convergence properties.

When J1 = J2 is a bi-convex function, Algorithm 2.1 is known as Alternate Convex
Search. Its behavior has been studied in [27, 1]. Here we shall consider the following (strong)
assumption, which includes the strictly bi-convex case (J1 = J2):
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Assumption 1. For any x, if z∗ is a global minimizer of J2(x, ·), then z∗ is a global mini-
mizer of J1(x, ·).

The proposed alternate minimization takes the simple and fast form depicted in Algo-
rithm 2.1, which can be shown to converge to a stationary point of J1 under Assumptions
1 and 2, as stated in Proposition 2.1 below. Note that the minimization in step 2 of Algo-
rithm 2.1 does not require the knowledge of the unknown term − log pX (x) in Equation (2.11)
since it does not depend on z.

Algorithm 2.1 Joint posterior maximization - exact case

Require: Measurements y, Autoencoder parameters θ, ϕ, Initial condition x0

Ensure: x̂, ẑ = argmaxx,z pX,Z|Y (x, z |y)
1: for n := 0 to maxiter do
2: zn+1 := argminz J2(xn, z) // Quadratic approx
3: xn+1 := argminx J1(x, zn+1) // Quadratic
4: end for
5: return xn+1, zn+1

The convergence analysis of the proposed schemes requires some general assumptions on
the functions J1 and J2 :

Assumption 2. J1(·, z) is convex and admits a unique minimizer for any z. Moreover, J1
is coercive and continuously differentiable.

The unicity of the minimizers of the partial function J1(·, z) can be dropped. In this case,
the proof of the convergence of Algorithm 2.1 has to be slightly adapted.

The convergence property of Algorithm 2.1 will be investigated in a wider framework
below (Proposition 2.1). Note that all the properties required in Assumption 2 are satisfied if
we use a differentiable activation function like the Exponential Linear Unit (ELU) [14] with
α = 1, instead of the more common ReLU activation function. More details can be found in
Appendix A.

2.4. Approximate Alternate Joint Posterior Maximization. When the autoencoder ap-
proximation in (2.11) is not exact (Assumption 1), the energy we want to minimize in Algo-
rithm 2.1, namely J1 may not decrease. To ensure the decay, some additional steps can be
added. Noting that the approximation provided by J2 provides a fast and accurate heuristic
to initialize the minimization of J1, an alternative scheme is proposed in Algorithm 2.2.

In Algorithm 2.2, gd is a gradient descent scheme such that for any starting point z0, the
output z+ satisfies

∂J1
∂z

(x, z+) = 0 and J1(x, z
+) ≤ J1(x, z0)

Hence, one can consider for instance a gradient descent scheme which finds a local minimizer
of J1(x, ·) starting from z0.

Our experiments with Algorithm 2.2 (Section 3.5) show that during the first few iterations
(where the approximation provided by J2 is good enough) z1 and z2 reach convergence faster
than z3. After a critical number of iterations the opposite is true (the initialization provided
by the previous iteration is better than the J2 approximation, and z3 converges faster).
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Algorithm 2.2 Joint posterior maximization - approximate case

Require: Measurements y, Autoencoder parameters θ, ϕ, Initial conditions x0, z0
Ensure: x̂, ẑ = argmaxx,z pX,Z|Y (x, z |y)
1: for n := 0 to maxiter do
2: z1 := argminz J2(xn, z) // Equation (2.12)
3: z2 := gdz J1(xn, z), starting from z = z1

4: z3 := gdz J1(xn, z), starting from z = zn
5: for i := 1 to 3 do
6: xi := argminx J1(x, z

i) // Equation (2.7)
7: end for
8: i∗ := argmini∈{1,2,3} J1(x

i, zi)

9: (xn+1, zn+1) := (xi∗ , zi∗)
10: end for
11: return xn+1, zn+1

These observations suggest that a faster execution, with the same convergence properties,
can be achieved by the variant in Algorithm 2.3, which avoids the costly computation of z2

and z3 when unnecessary. Hence, in practice, we will use Algorithm 2.3 rather than Algorithm
2.2. However, Algorithm 2.2 provides a useful tool for diagnostics. Indeed, the comparison of
the evaluation of J1(x

i, zi) for i = 1, 2, 3 performed in step 8 permits to assess the evolution
of the approximation of J1 by J2.

Algorithm 2.3 is still quite fast when J2 provides a sufficiently good approximation, since
in that case the algorithm chooses i∗ = 1, and avoids any call to the iterative gradient descent
algorithm. Even if we cannot give a precise definition of what sufficiently good means, the
sample comparison of Kϕ and Hθ as functions of z, displayed in Figure 3(a), shows that the
approximation is fair enough in the sense that it preserves the global structure of J1. The
same behavior was observed for a large number of random tests.

Note that Algorithm 2.1 is a particular instance of Algorithm 2.3 in the case where As-
sumption 1 holds, and n1 = n2 = 0 and if grad descent gives a global minimizer of the
considered function (in this case, the computation of z1, z2, are skipped and only z3 is
computed).

Proposition 2.1 (Convergence of Algorithm 2.3). Let {(xn, zn)} be a sequence generated by
Algorithm 2.3. Under Assumption 2 we have that:

1. The sequence {J1(xn, zn)} converges monotonically when n → ∞.
2. The sequence {(xn, zn)} has at least one accumulation point.
3. All accumulation points of {(xn, zn)} are stationary points of J1 and they all have the

same function value.

Proof. Since we are interested in the behaviour for n → ∞, we assume n > n2 in Algo-
rithm 2.3.

1. Since n > n2 the algorithm chooses i∗ = 3 and zn+1 = z3. According to the definition
of grad descent, one has

J1(xn, zn+1) ≤ J1(xn, zn)
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Algorithm 2.3 Joint posterior maximization - approximate case (faster version)

Require: Measurements y, Autoencoder parameters θ, ϕ, Initial condition x0, iterations
n1 ≤ n2 ≤ nmax

Ensure: x̂, ẑ = argmaxx,z pX,Z|Y (x, z |y)
1: for n := 0 to nmax do
2: done := FALSE
3: if n < n1 then
4: z1 := argminz J2(xn, z) // Equation (2.12)
5: x1 := argminx J1(x, z

1) // Equation (2.7)
6: if J1(x

1, z1) < J1(xn, zn) then
7: i∗ := 1 // J2 is good enough
8: done := TRUE
9: end if

10: end if
11: if not done and n < n2 then
12: z1 := argminz J2(xn, z)
13: z2 := gdz J1(xn, z), starting from z = z1

14: x2 := argminx J1(x, z
2) // Equation (2.7)

15: if J1(x
2, z2) < J1(xn, zn) then

16: i∗ := 2 // J2 init is good enough
17: done := TRUE
18: end if
19: end if
20: if not done then
21: z3 := gdz J1(xn, z), starting from z = zn
22: x3 := argminx J1(x, z

3) // Equation (2.7)
23: i∗ := 3
24: end if
25: (xn+1, zn+1) := (xi∗ , zi∗)
26: end for
27: return xn+1, zn+1

and by optimality one has

J1(xn+1, zn+1) ≤ J1(xn, zn+1).

Hence, since J1 is coercive (thus, lowerbounded), Statement 1 is straightforward.
2. Thanks to the coercivity of J1, the sequences {(xn, zn)} and {(xn, zn+1)} are bounded,

thus admit an accumulation point.
3. Using Fermat’s rule and the definition of grad descent, one has

∂J1
∂z

(xn, zn+1) = 0 and
∂J1
∂x

(xn+1, zn+1) = 0.

Let (x∗, z∗) be an accumulation point of {(xn, zn)}. By double extraction, one can find two
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subsequences such that

(xnj+1, znj+1) → (x∗, z∗) and (xnj , znj+1) → (x̂∗, z∗)

By continuity of ∇J1, one gets that

∂J1
∂z

(x̂∗, z∗) = 0 and
∂J1
∂x

(x∗, z∗) = 0

In particular, the convexity of J1(·, z∗) and Assumption 2 ensure that x∗ is a global minimizer
of J1(·, z∗). Besides, the inequalities proved in Point 1 above show that

J1(x
∗, z∗) = J1(x̂

∗, z∗) = lim
n→∞

J1(xn, zn)

that is, x̂∗ is also a global minimizer of J1(·, z∗). Since J1(·, z∗) has a unique minimizer, one
has x̂∗ = x∗, and

∂J1
∂z

(x∗, z∗) = 0

namely (x∗, z∗) is a stationary point of J1. Note that we have also proved that xnj and xnj+1

have same limit.

Remark 2.2. Note that if n1 = n2 = ∞ we cannot assume that i∗ = 3. In that case
statements 1 and 2 are still valid but the third statement is not. The reason is that for
i∗ ∈ {1, 2} we cannot guarantee the chain of inequalities

J1(xn+1, zn+1) ≤ J1(xn, zn+1) ≤ J1(xn, zn)

but only
J1(xn+1, zn+1) ≤ J1(xn, zn).

This is consistent with the design of the algorithm where iterations n < n2 serve as an heuristic
to guide the algorithm to a sensible critical point. However, convergence to a critical point is
only guaranteed by the final iterations n > n2.

2.5. MAP-z as the limit case for β → ∞. If one wishes to compute the map-z estimator
instead of the joint map-x-z from the previous section, one has two options:

1. Use your favorite gradient descent algorithm to solve equation (1.4).
2. Use Algorithm 2.3 to solve a series of joint map-x-z problems with increasing values

of β → ∞ as suggested in Algorithm 1.1.
In the experimental section we show that the second approach most often leads to a better

optimum.
In practice, in order to provide a stopping criterion for Algorithm 1.1 and to make a sensible

choice of β-values we reformulate Algorithm 1.1 as a constrained optimization problem

argmin
x,z : ∥G(z)−x∥2≤ε

F (x,y) +
1

2
∥z∥2.

The corresponding Lagrangian form is

(2.16) max
β

min
x,z

F (x,y) +
1

2
∥z∥2 + β

(
∥G(z)− x∥2 − ε

)+
and we use the exponential multiplier method [68] to guide the search for the optimal value
of β (see Algorithm 2.4)
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Algorithm 2.4 map-z as the limit of joint map-x-z.

Require: Measurements y, Tolerance ε, Rate ρ > 0, Initial β0, Initial x0, Iterations 0 ≤
n1 ≤ n2 ≤ nmax

Ensure: argminx,z : ∥G(z)−x∥2≤ε F (x,y) + 1
2∥z∥

2.
1: β := β0
2: x0, z0 := Algorithm 2.3 starting from x = x0 with β, n1, n2, nmax.
3: converged := FALSE
4: k := 0
5: while not converged do
6: xk+1, zk+1 := Algorithm 2.3 starting from x = xk with β and n1 = n2 = 0
7: C = ∥G(zk+1)− xk+1∥2 − ε
8: β := β exp(ρC)
9: converged := (C ≤ 0)

10: k := k + 1
11: end while
12: return xk, zk

3. Experimental results.

3.1. Baseline algorithms. To validate our approach, we perform comparisons on several
inverse problems with the following algorithms:

• CSGM (Bora et al. [6]) directly computes the z − map estimator as defined in Equa-
tion (1.4) using gradient descent. We run CSGM using the decoder of a VAE as
generator G starting at random z0. In addition, as Bora et al. note that random
restarts are important for good performance, we also compute the best result (as mea-
sured by (1.4)) among m = 10 different random initializations z0 and refer to this
variant as mCSGM.

• PULSE [46] is very similar to CSGM but restricts the search of the latent code z to
the sphere of radius

√
l, arguing that it concentrates most of the probability mass of

a Gaussian distribution N (0, I) on a high-dimensional space Rl.
• PGD-GAN [63] performs a projected gradient descent of F (x,y) wrt x:{

wk = xk − ηAT (Axk − y)
xk+1 = G(argminz ∥wk − G(z)∥).(3.1)

• In addition, we implement the splitting method of Algorithm 1.1 which is a simple
continuation scheme for the z −map estimator of Equation (1.4).

For a fair comparison we run all algorithms on the same prior, i.e. the same generator network
G = µθ where µθ is the decoder mean from the VAE model that we trained for JPMAP.

3.2. Inverse problems. Here, we briefly describe the inverse problems y = Ax + η, η ∼
N (0, σ2I) to be considered for validating our approach:

• Denoising : A = I and σ large.
• Compressed Sensing : the sensing matrix A ∈ Rq×d has Gaussian random entries
Aij ∼ N (0, 1/q), where q ≪ d is the number of measurements.
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• Interpolation: A is a diagonal matrix with random binary entries, so masking a per-
centage p of the image pixels.

• (Non-blind) Deblurring : Ax = h ∗ x where h is a known convolution kernel.
• Super-resolution: A is a downsampling/decimation operator of scaling factor s.

3.3. AutoEncoder and dataset. In order to test our joint prior maximization model we
first train a Variational Autoencoder like in [36] on the training data of MNIST handwritten
digits [40].

The stochastic encoder takes as input an image x of 28× 28 = 784 pixels and produces as
an output the mean and (diagonal) covariance matrix of the Gaussian distribution qϕ(z|x),
where the latent variable z has dimension 8. The architecture of the encoder is composed of
3 fully connected layers with ELU activations (to preserve continuous differentiability). The
sizes of the layers are as follows: 784 → 500 → 500 → (8 + 8). Note that the output is of size
8 + 8 in order to encode the mean and diagonal covariance matrix, both of size 8.

The stochastic decoder takes as an input the latent variable z and outputs the mean
and covariance matrix of the Gaussian distribution pθ(x|z). Following [16] we chose here
an isotropic covariance Σθ(z) = γ2I where γ > 0 is trained, but independent of z. This
choice simplifies the minimization problem (2.8), because the term detΣθ(z) (being constant)
has no effect on the z-minimization. The architecture of the decoder is also composed of 3
fully connected layers with ELU activations (to preserve continuous differentiability). The
sizes of the layers are as follows: 8 → 500 → 500 → 784. Note that the covariance matrix is
constant, so it does not augment the size of the output layer which is still 784 = 28×28 pixels.

We also trained a VAE on CelebA [42] images cropped to 64 × 64 × 3, with latent di-
mension ranging from 64 to 512. We choose a DCGAN-like [54] CNN architecture as encoder
and a symmetrical one as decoder with ELU activations, batch normalization and isotropic
covariance as before. For more details, see the code3.

We train these architectures using PyTorch [49] with batch size 128 and Adam algorithm
for 200 epochs with learning rate 0.0001 and rest of the parameters as default.

3.4. Need to train the VAE with a denoising criterion. It should be noted that when
training our Variational Autoencoder we should be more careful than usual. Indeed in the
most widespread applications of VAEs they are only used as a generative model or as a way to
interpolate between images that are close to M, i.e. the image of the generator µθ. For such
applications it is sufficient to train the encoder µϕ, Σϕ on a training set that is restricted toM.

In our case however, we need the encoder to provide sensible values even when its input x
is quite far away from M: the encoder has to actually fulfill two functions at the same time:

1. (Approximately) project x to its closest point in M, and
2. compute the encoding of this projected value (which should be the same as the encod-

ing of the original x.

3Code available at https://github.com/mago876/JPMAP.

https://github.com/mago876/JPMAP
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(a) Denoising (b) Compressed Sensing (c) Interpolation

Figure 1. Evaluating the quality of the generative model as a function of σDVAE. On (a) Denoising (Gauss-
ian noise σ = 150), (b) Compressed Sensing (∼ 10.2% measurements, noise σ = 10) and (c) Interpolation (80%
of missing pixels, noise σ = 10). Results of both algorithms are computed on a batch of 50 images and initial-
ising on ground truth x∗ (for CSGM we use z0 = µϕ(x

∗)).

(a) Denoising (b) Compressed Sensing (c) Interpolation

Figure 2. Evaluating the effectiveness of JPMAP vs CGSM as a function of σDVAE (same setup of Figure 1).
Without a denoising criterion σDVAE = 0 the JPMAP algorithm may provide wrong guesses z1 when applying
the encoder in step 2 of Algorithm 2.2. For σDVAE > 0 however, the alternating minimization algorithm can
benefit from the robust initialization heuristics provided by the encoder, and it consistently converges to a better
local optimum than the simple gradient descent in CSGM.

Traditional VAE training procedures do not ensure that the encoder generalizes well to
x ̸∈ M. In order to ensure this generalization ability we adopt the training procedure of
the DVAE (Denoising VAE) proposed by Im et al. [33], which consists in adding various
realizations of zero-mean Gaussian noise of variance σ2

DVAE to the samples x presented to the
encoder, while still requiring the decoder to match the noiseless value, i.e. we optimize the
parameters in such a way that

(3.2) µθ(µϕ(x̃)) ≈ x

where x̃ = x+ σDVAEε and ε ∼ N (0, I) for all x in the training set and for many realizations
of ε.

More specifically, if we take a corruption model p(x̃ |x) like above, it can be shown [33]
that

(3.3) L̃θ,ϕ(x) = Ep(x̃|x)

[
Eqϕ(z|x̃)[log pθ(x|z)]−KL(qϕ(z|x̃) || pZ (z))

]
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(a) Encoder approxima-
tion

(b) Decoded exact opti-
mum

(c) Decoded approx. opti-
mum

(d) Difference (b)-(c)

Figure 3. Encoder approximation: (a) Contour plots of − log pθ(x|z) + 1
2
∥z∥2 and − log qϕ(z|x) for a

fixed x and for a random 2D subspace in the z domain (the plot shows ±2Σ
1/2
ϕ around µϕ). Observe the

relatively small gap between the true posterior pθ(z|x) and its variational approximation qϕ(z|x). This figure
shows some evidence of partial z-convexity of J1 around the minimum of J2, but it does not show how far is z1

from z2. (b) Decoded exact optimum x1 = µθ

(
argmaxz pθ(x|z)e

1
2
∥z∥2

)
. (c) Decoded approximate optimum

x2 = µθ (argmaxz qϕ(z|x)). (d) Difference betweeen (b) and (c).

is an alternative ELBO of (2.3). In practice, using Monte Carlo for estimating the expectation
Ep(x̃|x) in (3.3), we only need to add noise to x before passing it to the encoder qϕ during
training, as mentioned in (3.2).

Our experiments with this denoising criterion confirm the observation by Im et al. [33]
that it does not degrade the quality of the generative model, as long as σDVAE is not too large
(see Figure 1). As a side benefit, however, we obtain a more robust encoder that generalizes
well for values of x that are not in M but within a neighbourhood of size ≈ σDVAE around
M. This side benefit, which was not the original intention of the DVAE training algorithm
in [33] is nevertheless crucial for the success of our algorithm as demonstrated in Figure 2.
The same figure shows that as long as σDVAE ≥ 5 its value does not significantly affect the
performance. In the sequel we use σDVAE = 15.

3.5. Effectiveness of the encoder as a fast approximate minimizer. Proposition 2.1
shows that the proposed alternate minimization scheme in Algorithm 2.3 converges to a sta-
tionary point of J1. And so does the gradient descent scheme in [6]. Since both algorithms
have to deal with non-convex energies, they both risk converging to spurious local minima.
Also both algorithms solve essentially the same model when the variance γ of the coupling
term tends to zero.

If our algorithm shows better performance (see next subsection), it is mainly because it re-
lies on a previously trained VAE in two fundamental ways: (i) to avoid getting trapped in spu-
rious local minima and (ii) to accelerate performance during the initial iterations (n < nmin).
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(a) Energy evolution, initializing with N (0, I). (b) Distance to the optimum at each iteration of (a).

Figure 4. Effectiveness of the encoder approximation: We take x0 from the test set of MNIST and minimize
J1(x0,z) with respect to z using gradient descent from random Gaussian initializations z0. The blue thick curve
represents the trajectory if we initialize at the encoder approximation z1 = argminz J2(x0,z) = µϕ(x0). (a):
Plots of the energy iterates J1(x0,zk). (b): ℓ2 distances of each trajectory with respect to the global optimum
z∗. Conclusion: Observe that the encoder initialization allows much faster convergence both in energy and in
z, and it avoids the few random initializations that lead to a wrong stationary point different from the unique
global minimizer.

These two features are only possible if the autoencoder approximation is good enough and
if the encoder is able to provide good initializations for the non-convex z- optimization sub-
problem in line 13 of Algorithm 2.3.

Figures 3 and 4 illustrate these two properties of our VAE. We do so by selecting a ran-
dom x0 from MNIST test set and by computing z∗(z0) := gdz J1(x0, z) with different initial
values z0. These experiments were performed using the ADAM minimization algorithm with
learning rate equal to 0.01. Figure 4(a) shows that z∗(z0) reaches the global optimum for
most (but not all) initializations z0. Indeed from 200 random initializations z0 ∼ N (0, I),
195 reach the same global minimum, whereas 5 get stuck at a higher energy value. However
these 5 initial values have energy values J1(x0, z0) ≫ J1(x0, z

1) far larger than those of the
encoder initialization z1 = µϕ(x0), and are thus never chosen by Algorithm 2.3. The encoder
initialization z1 on the other hand provides much faster convergence to the global optimum.

In addition, this experiment shows that we cannot assume z-convexity: The presence
of plateaux in the trajectories of many random initializations as well as the fact that a few
initializations do not lead to the global minimum indicates that J1 may not be everywhere
convex with respect to z. However, in contrast to classical works on alternate convex search,
our approach adopts weaker assumptions and does not require convexity on z to prove con-
vergence in Proposition 2.1.

In Figure 4(b) we display the distances of each trajectory to the global optimum z∗ (taken
as the median over all initializations z0 of the final iterates z∗(z0)); note that this optimum
is always reached, which suggests that z 7→ J1(x0, z) has a unique global minimizer in this
case. Finally, Figure 3 shows that the encoder approximation is quite good both in the latent
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Figure 5. Evolution of Algorithm 2.4. In this interpolation example, JPMAP starts with the initialization
in (a). During first iterations (b) − (d) where βk is small, xk and G(zk) start loosely approaching each other
at a coarse scale, and xk only fills missing pixels with the ones of G(zk) (in particular the noise of y is still

present). By increasing βk in (e)− (f) we enforce ∥G(zk)− xk∥2 ≤ ε. Here we set ϵ =
(

3
255

)2
d, that is, MSE

of 3 gray levels.

space (Figure 3(a)) and in image space (Figures 3(b) and 3(c)). It also shows that the true
posterior pθ(z|x) is pretty close to log-concave near the maximum of qϕ(z|x).

3.6. Image restoration experiments. Choice of x0: In the previous section, our valida-
tion experiments used a random x0 from the data set as initialization. When dealing with an
image restoration problem, Algorithms 2.2 and 2.3 require an initial value of x0 to be chosen.
In all experiments we choose this initial value as ATy.

Choice of n1 and n2: After a few runs of Algorithm 2.2 we find that in most cases, during
the first 10 or 20 iterations z1 decreases the energy with respect to the previous iteration,
and this value depends on the inverse problems (for example, for denoising is smaller than
for compressed sensing). But after at most 150 iterations the autoencoder approximation is
no longer good enough and we need to perform gradient descent on zn in order to further
decrease the energy. Based on these findings we set n1 = 25 and n2 = 150 in Algorithm 2.3 for
all experiments. Note that we could also choose n1 = n2 = nmax, since in all our experiments
we observed that the algorithm auto-regulates itself, evolving from i∗ = 1 in the first few
dozen iterations to i∗ = 3 when it is close to convergence. Choosing a finite value for n1 and
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(a) Denoising (PSNR) (b) Denoising (LPIPS)

(c) Compressed Sensing (PSNR) (d) Compressed Sensing (LPIPS)

(e) Interpolation (PSNR) (f) Interpolation (LPIPS)

Figure 6. Denoising, Compressed Sensing and Interpolation: Evaluating the effectiveness of Algorithm 2.3
(fixed β) and Algorithm 2.4 for different values of ϵ =

(
α

255

)2
n, with σDVAE = 15 (metrics were computed

on a batch of 100 test images). For PSNR, higher is better and for LPIPS, lower is better. For comparison
we provide the results of the baselines introduced in Section 3.1 (namely, Algorithm 1.1, CSGM [6], mCSGM
(CSGM with restarts), PGD-GAN [63] and PULSE [46].)
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(a) Deblurring (PSNR) (b) Deblurring (LPIPS)

(c) Super-resolution (PSNR) (d) Super-resolution (LPIPS)

Figure 7. Deblurring and Super-resolution: Evaluating the effectiveness of Algorithm 2.3 (fixed β) and

Algorithm 2.4 for different values of ϵ =
(

α
255

)2
n, with σDVAE = 15 (metrics were computed on a batch of 100

test images). For PSNR, higher is better and for LPIPS, lower is better. For comparison we provide the results
of the baselines introduced in Section 3.1 (namely, Algorithm 1.1, CSGM [6], mCSGM (CSGM with restarts),
PGD-GAN [63] and PULSE [46].)

n2 is only needed to ensure that i∗ = 3 when n → ∞, which is a necessary condition to prove
statement 3 of Proposition 2.1.

Figure 5 shows the evolution of xk and G(zk) from Algorithm 2.4 in an interpolation
example. Here we can see how the exponential multiplier method in Equation (2.16) updates
the values of βk to ensure ∥G(zk)− xk∥2 ≤ ε.

Figures 6 and 7 show the results of denoising, interpolation, compressed sensing, de-
blurring and super-resolution experiments on MNIST for different degradation levels using
the proposed algorithm (JPMAP) and the baseline algorithms introduced in section 3.1. The
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(a) Interpolation (p = 75) (b) Example run

(c) Interpolation (p = 90) (d) Example run

Figure 8. Time/PSNR comparison between mCSGM and JPMAP. Left: Confidence intervals (for a batch
of 100 random experiments) for PSNR vs computing time for both algorithms on the interpolation problem with
p% of missing pixels with noise std σ = 10/255. Right: Detailed view of one of the 100 random experiments
on the left. Blue lines represent m = 10 random restarts of CSGM and the orange line is the PSNR of the best
zk at iteration k of mCSGM as measured by (1.4).

metrics used are PSNR and LPIPS4 [78] mean ± its standard error computed over 100 random
experiments for each problem. Figure 9 displays the images of 10 representative interpolation
and deblurring experiments from the hundreds of experiments summarized in figures 6 and 7.

These results show that JPMAP outperforms all other baseline algorithms in terms of
PSNR and LPIPS when random restarts are not allowed. When 10 random restarts are
allowed for CSGM, but not for JPMAP, then both algorithms (JPMAP and mCSGM) show
a similar global performance: JPMAP tends to provide a slightly better result than mCSGM
except for the most extremely ill-posed interpolation, super-resolution and compressed sensing
experiments (when available measurements are less than 10% the number of pixels). In that
case mCSGM outperforms JPMAP by an equally small margin. The latter case can be
explained by the fact that the encoder (which is used by JPMAP but not by CSGM) struggles

4MNIST images were zero-padded to 32× 32 because LPIPS does not accept 28× 28 images.
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(a) Results on interpolation

(b) Results on deblurring.

Figure 9. Experimental results on MNIST. Comparison of JPMAP with the baseline algorithms described
in Section 3.1. (a) Some selected results from the interpolation experiment with 80% of missing pixels and
Gaussian noise with σ = 10/255. From top to bottom: original image x∗, corrupted image y, and the results
computed by CSGM, mCSGM, PGD-GAN, PULSE, Algorithm 1.1 and JPMAP. (b) Same as (a) from the
deblurring experiment with kernel size 3× 3 and Gaussian noise with σ = 10/255. Conclusion: Our algorithm
performs generally better than the baseline algorithms, although in some cases it falls behind mCSGM.
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(a) Results of interpolation on CelebA. (b) Reconstructions µθ(µϕ(x)) .

Figure 10. (a) Some preliminary results on CelebA: 80% of missing pixels, noise std σ = 10/255. From top
to bottom: original image x∗, corrupted image x̃, restored by CSGM [6], restored image x̂ by our framework.
(b) Reconstructions µθ(µϕ(x)) (even columns) for some test samples x (odd columns), showing the over-
regularization of data manifold imposed by the trained vanilla VAE. As a consequence, − log pZ|Y (z |y) does
not have as many local minima and then a simple gradient descent yields almost the same result as JPMAP
(except on third column of (a)).

to generalize to images x which are very far away fromM (the range of the generator). Indeed,
in Section 3.4 we trained the VAE’s encoder to generalize to M+ n where n ∼ N (0, σ2

DVAEI)
and σDVAE = 15/255. This value is optimal for moderately ill-posed problems, but more
extreme problems may require larger values of σDVAE or a coarse to fine scheme, where a
coarse VAE (with large σDVAE) is used during the first few iterations and a finer VAE (with
smaller σDVAE) is used later until convergence. Finally one may consider using random restarts
for both JPMAP and CSGM for a more fair comparison.

Figure 8 performs a more detailed comparison between JPMAP and mCSGM, which also
considers running times of both algorithms. For the stopping criteria used in our experi-
ments, one run of JPMAP requires roughly as much time as mCSGM (with m = 10 restarts).
In addition for moderately ill-posed problems (like interpolation of 75% missing pixels see
subfigures (a) and (b)) where JPMAP’s performance beats mCSGM, we can observe that
JPMAP also converges much faster to that solution. For more extremely ill-posed problems
(like interpolation of 90% missing pixels, see subfigures (c) and (d)) the opposite is true.

In the case of CelebA, we did not observe as much difference between JPMAP and CSGM
as on MNIST. In Figure 10(a) the restorations on an interpolation problem (80% of missing
pixels) are very similar to each other, but blurry. Also, although this problem is very ill-
posed, both algorithms impressively find a solution z∗ very close to the code µϕ(x) of the
ground truth image x, except for the third column where CSGM converges to a local minimum.

We hypothesize that, as CelebA is a substantially more complex dataset than MNIST,
a simple model like vanilla VAE is over-regularizing the manifold of samples (underfitting
problem). In particular, because of the spectral bias [55] the learned manifold perhaps only
contains low-frequency approximations of the true images as we can see in the reconstructions
µθ(µϕ(x)) of test samples (see Figure 10(b)). This may cause the posterior pZ|Y (z |y) to
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have fewer local minima. With more realistic generative models such as VDVAE [13] or
NVAE [69], which better represent the true data manifold, we expect the objective function
− log pZ|Y (z |y) to exhibit a much larger number of local minima, thus making it more difficult
to optimize by a simple gradient descent scheme. In that situation the proposed JPMAP
method would more clearly show its advantages.

4. Conclusions and Future work. In this work we presented a new framework to solve
inverse problems with a convex data-fitting term and a non-convex regularizer learned in the
latent space via variational autoencoders. Unlike similar approaches like CSGM [6], PULSE
[46] and PGD-GAN [63] which learn the prior based on generative models, our approach is
based on a generalization of alternate convex search to quasi-bi-convex functionals. This quasi-
bi-convexity is the result of considering the joint posterior distribution of latent and image
spaces. As a result, the proposed approach provides convergence guarantees that extend to
a larger family of inverse problems. Experiments on denoising, interpolation, deconvolution,
super-resolution and compressed sensing confirm this, since our approach gets stuck much less
often in spurious local minima than CSGM, PGD-GAN or PULSE, which are simply based
on gradient descent of a highly non-convex functional. This leads to restored images which
are significantly better in terms of PSNR and LPIPS.

JPMAP vs related Plug & Play approaches. When compared to other decoupled plug & play
approaches that solve inverse problems using NN-based priors, our approach is constrained in
different ways:

(a) In a certain sense our approach is less constrained than existing decoupled approaches
since we do not require to retrain the NN-based denoiser to enforce any particular property
to ensure convergence: Ryu et al. [60] requires the denoiser’s residual operator to be non-
expansive, and Gupta et al. [29], Shah and Hegde [63] require the denoiser to act as a projector.
The effect of these modifications to the denoiser on the quality of the underlying image prior
has never been studied in detail and chances are that such constraints degrade it. Our method
only requires a variational autoencoder without any further constraints, and the quality and
expressiveness of this prior can be easily checked by sampling and reconstruction experiments.
Checking the quality of the prior is a much more difficult task for Ryu et al. [60], Gupta et al.
[29], Shah and Hegde [63] which rely on an implicit prior, and do not provide a generative
model.

(b) Unlike [60] which requires the data-fitting term F (x) to be strongly convex to ensure
convergence, our method admits weakly convex and ill-posed data-fitting terms like missing
pixels, compressed sensing and non-invertible blurring for instance.

(c) On the other hand our method is more constrained in the sense that it relies on a
generative model of a fixed size. Even if the generator and encoder are both convolutional
neural networks, training and testing the same model on images of different sizes is a priori not
possible because the latent space has a fixed dimension and a fixed distribution. As a future
work we plan to explore different ways to address this limitation. The most straightforward
way is to use our model to learn a prior of image patches of a fixed size and stitch this model
via aggregation schemes like in EPLL [80] to obtain a global prior model for images of any
size. Alternatively we can use hierarchical generative models like in [35, 69] or resizable ones
like in [3, 72], and adapt our framework accordingly.
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map-x or map-z or joint map-x-z. In this work we explored and clarified the tight rela-
tionships between joint map-x-z estimation, splitting and continuation schemes and the more
common map-z estimator in the context of inverse problems with a generative prior. On the
other hand map-x estimators (which are otherwise standard in bayesian imaging) remained
largely unexplored in the context of generative priors, due to the optimization challenges
they impose, until the recent work of Helminger et al. [31], Whang et al. [72] showed that
a normalizing flow-based generative model allows to overcome those challenges and deems
this problem tractable. Similarly Oberlin and Verm [47] use Glow (an invertible normaliz-
ing flow) to compare synthesis-based and analysis-based reconstructions. Yet an extensive
comparison of the advantages and weaknesses of these three families of estimators under the
same prior model is still missing, and so is the link between these MAP estimators and the
analysis/synthesis-based estimators in [47]. This will be the subject of future work.

Extension to higher dimensional problems. The present paper provides a first proof of con-
cept of our framework, on a very simple dataset (MNIST) with a very simple VAE. More
experiments are needed to verify that the framework preserves its qualitative advantages on
more high-dimensional datasets (like CelebA, FFHQ, etc.), and a larger selection of inverse
problems.

Generalizing our proposed method to much higher dimensional problems implies training
much more complex generative models which can match the finer details and higher com-
plexity of such data. We can still use over-simplified generative models in those cases, but
our preliminary experiments suggest that in that situation, not only do we obtain relatively
poor reconstructions, but the objective function associated to the map-z problem presents
less spurious local-minima: as a consequence our proposed joint map-x-z is overkill in that
configuration, and does not present such a great competitive advantage.

The big challenge of generalizing our proposed method to much higher dimensional prob-
lems is then to train sufficiently detailed and complex generative models. And in this area
VAEs traditionally lagged behind GANs in terms of quality of the generated samples, the
former producing in general more blurred samples. Nevertheless some studies [61] show that
VAEs and Normalizing Flows produce more accurate representations of the probability distri-
bution. In the medium term our work should be able to benefit from recent advances in VAE
architectures [13, 69, 16], and adversarial training for VAEs [52, 53, 79] that reach GAN-quality
samples with the additional benefits of VAEs. These extensions are however non-trivial, since
these VAEs have a huge number of parameters and they need to be retrained or fine-tuned
using a denoising criterion (see section 3.4 and [33]) for our method to work properly. In
addition, the latent space of the most competitive VAEs is much larger than the image space,
which may reduce its regularization capabilities.

As an alternative, GAN-based generative models can be augmented with a denoising
encoder network [19], and Normalizing Flows can also act as projectors or denoising VAEs if
we split the latent space to separate the data manifold from its complement, as suggested in
[8, 41]. In combination with relaxation techniques, such augmented GANs or specially tailored
Flows may provide SOTA priors that fit our quasi-bi-convex optimization framework.

Towards stronger convergence guarantees under weaker conditions.. The proposed Algo-
rithm 2.4 bears strong similarities with ADMM with non-linear constraints as introduced
by Valkonen et al. [70, 2] and analyzed by Latorre-Gómez et al. [38]. Latorre-Gómez result
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provides very strong convergence guarantees (linear convergence rates to a global optimum),
but requires the data fitting term to be strongly convex or to satisfy a restricted strong con-
vexity property. Our result, on the other hand, provides much weaker convergence guarantees
(convergence to a stationary point), but does not require strong convexity. Further exploring
these connections might hopefully lead to something closer to the best of both worlds.
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[39] Rémi Laumont, Valentin De Bortoli, Andrés Almansa, Julie Delon, Alain Durmus, and
Marcelo Pereyra. On Maximum-a-Posteriori estimation with Plug & Play priors and sto-
chastic gradient descent. sep 2021. URL https://hal.archives-ouvertes.fr/hal-03348735.

[40] Yann Lecun, Leon Bottou, Yoshua Bengio, and P. Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998. ISSN
00189219. doi: 10.1109/5.726791.

http://arxiv.org/abs/2009.04583
http://arxiv.org/abs/1812.04176
https://openreview.net/forum?id=Hk99zCeAb
https://openreview.net/forum?id=Hk99zCeAb
https://papers.nips.cc/paper/2019/hash/4559912e7a94a9c32b09d894f2bc3c82-Abstract.html
https://papers.nips.cc/paper/2019/hash/4559912e7a94a9c32b09d894f2bc3c82-Abstract.html
https://hal.archives-ouvertes.fr/hal-03348735


SOLVING INVERSE PROBLEMS BY JOINT POSTERIOR MAX WITH AUTOENCODING PRIOR 31

[41] Yang Liu, Saeed Anwar, Zhenyue Qin, Pan Ji, Sabrina Caldwell, and Tom Gedeon.
Disentangling Noise from Images: A Flow-Based Image Denoising Neural Network. may
2021. URL https://arxiv.org/abs/2105.04746v1.

[42] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes
in the wild. In Proceedings of International Conference on Computer Vision (ICCV),
December 2015.

[43] Cécile Louchet and Lionel Moisan. Posterior expectation of the total variation model:
Properties and experiments. SIAM Journal on Imaging Sciences, 6(4):2640–2684, dec
2013. ISSN 19364954. doi: 10.1137/120902276.

[44] James Lucas, George Tucker, Roger Grosse, and Mohammad Norouzi. Don’t blame the
ELBO! A linear VAE perspective on posterior collapse. In Advances in Neural Informa-
tion Processing Systems, volume 32, nov 2019. URL https://arxiv.org/abs/1911.02469.

[45] Tim Meinhardt, Michael Moller, Caner Hazirbas, and Daniel Cremers. Learning proximal
operators: Using denoising networks for regularizing inverse imaging problems. In (ICCV)
International Conference on Computer Vision, pages 1781–1790, 2017. doi: 10.1109/
ICCV.2017.198. URL http://openaccess.thecvf.com/content iccv 2017/html/Meinhardt
Learning Proximal Operators ICCV 2017 paper.html.

[46] Sachit Menon, Alexandru Damian, Shijia Hu, Nikhil Ravi, and Cynthia Rudin. PULSE:
Self-Supervised Photo Upsampling via Latent Space Exploration of Generative Models.
Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, pages 2434–2442, 2020. ISSN 10636919. doi: 10.1109/CVPR42600.2020.
00251.

[47] Thomas Oberlin and Mathieu Verm. Regularization via deep generative models: an
analysis point of view. jan 2021. URL http://arxiv.org/abs/2101.08661.

[48] George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, and
Balaji Lakshminarayanan. Normalizing Flows for Probabilistic Modeling and Inference.
2019.

[49] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary
DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic dif-
ferentiation in pytorch. 2017.

[50] Marcelo Pereyra. Proximal Markov chain Monte Carlo algorithms. Statistics and Com-
puting, 26(4):745–760, jul 2016. ISSN 0960-3174. doi: 10.1007/s11222-015-9567-4. URL
http://dx.doi.org/10.1007/s11222-015-9567-4.

[51] Jean-Christophe Pesquet, Audrey Repetti, Matthieu Terris, and Yves Wiaux. Learning
Maximally Monotone Operators for Image Recovery. 2020. URL http://arxiv.org/abs/
2012.13247.

[52] Yunchen Pu, Weiyao Wang, Ricardo Henao, Liqun Chen, Zhe Gan, Chunyuan Li, and
Lawrence Carin. Adversarial symmetric variational autoencoder. In (NIPS) Advances in
Neural Information Processing Systems, pages 4331–4340, 2017.

[53] Yunchen Pu, Weiyao Wang, Ricardo Henao, Liqun Chen, Zhe Gan, Chunyuan Li, and
Lawrence Carin. Adversarial symmetric variational autoencoder. In (NIPS) Advances in
Neural Information Processing Systems, volume 2017-Decem, pages 4331–4340, 2017.

[54] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation
learning with deep convolutional generative adversarial networks. arXiv preprint

https://arxiv.org/abs/2105.04746v1
https://arxiv.org/abs/1911.02469
http://openaccess.thecvf.com/content_iccv_2017/html/Meinhardt_Learning_Proximal_Operators_ICCV_2017_paper.html
http://openaccess.thecvf.com/content_iccv_2017/html/Meinhardt_Learning_Proximal_Operators_ICCV_2017_paper.html
http://arxiv.org/abs/2101.08661
http://dx.doi.org/10.1007/s11222-015-9567-4
http://arxiv.org/abs/2012.13247
http://arxiv.org/abs/2012.13247
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Appendix A. Properties of J1. In this section, we establish that the objective function
J1 fulfills the assumptions required to prove the convergence of Algorithm 3, namely

• J1(·, z) is convex for any z;
• J1(·, z) has a unique minimizer for any z;
• J1 is coercive;
• J1 is continuously differentiable;

We recall that

J1(x, z) =
1

2σ2
∥Ax− y∥2︸ ︷︷ ︸
F (x,y)

+
1

2

(
Zθ(z) + ∥Σ−1/2

θ (z)(x− µθ(z))∥2
)

︸ ︷︷ ︸
Hθ(x, z)

+
1

2
∥z∥2

where

Zθ(z) = d log(2π) + log detΣθ(z)

Thus, it is the sum of three non-negative terms.

A.1. Convexity and unicity of the minimizer of J1(·, z). Let z be fixed. Then there
exists a constant C ∈ R such that ∀x

J1(x, z) =
1

2σ2
∥Ax− y∥2 + ∥Σ−1/2

θ (z)(x− µθ(z))∥2 + C

Being the sum of two quadratic forms, J1(·, z) is obviously twice differentiable. Its gradient
is given by

∂J1
∂x

(x, z) =
1

σ2
AT (Ax− y)

+ 2 (Σ
−1/2
θ (z))T

(
Σ

−1/2
θ (z)(x− µθ(z))

)
)

and its Hessian is

HessxJ1(x, z) =
1

σ2
ATA+ 2 (Σ

−1/2
θ (z))TΣ

−1/2
θ (z)

Since Σθ(z) = γ2I the Hessian is positive definite (without the need to assume that A is full
rank), and we have that

Lemma A.1. J1(·, z) is strictly convex for any z.

An immediate consequence is the unicity of the minimizer of the partial function J1(·, z).
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A.2. Coercivity of J1.

Lemma A.2. J1 is coercive.

Proof. First, let us note that J1 is the sum of three non-negative terms. If it was not
coercive, then we could find a sequence (xk, zk) → ∞ such that J1(xk, zk) is bounded. As a
consequence all three terms are bounded. In particular the last term ∥zk∥ is bounded, which
means that xk → ∞. From Property 1, {µθ(zk)} and {Σθ(zk)} are bounded for bounded
{zk}. Now, from the definition of the second term of J1, we get that, {µθ(zk)} and {Σθ(zk)}
being bounded and xk going to ∞ yield that Hθ(xk, zk) goes to infinity, while being bounded.
This leads to a contradiction and thus proves that J1 is coercive.

A.3. Regularity of J1. In the sequel we adopt the common assumption that all neural
networks used in this work are composed of a finite number d of layers, each layer being
composed of: (a) a linear operator (e.g. convolutional or fully connected layer), followed by
(b) a non-linear L-Lipschitz component-wise activation function with 0 < L < ∞.

Therefore we have the following property:

Property 1. For any neural network fθ with parameters θ having the structure described
above:
There exists a constant Cθ such that ∀u,

∥fθ(u)∥2 ≤ Cθ∥u∥2.

Concerning activation functions we use two kinds:
• continously differentiable activations like ELU, or
• continuous but non-differentiable activations like ReLU

Hence, by composition, we have that

Lemma A.3. For continuously differentiable activation functions, J1 is continuously differ-
entiable.

Appendix B. MAP-x and MAP-z for deterministic generative models. Assume that the
stochastic γ-generative model is

pXγ |Zγ
(x | z) = N (G(z), γ2I)

meaning that when γ → 0
pX|Z (x | z) = δ(x− G(z))

We now analyze the map-z and map-x estimators for the limit case when γ = 0. This is
what we call a deterministic generative model, and it includes GANs for instance.

B.1. MAP-z. By definition the map-z estimator is obtained by maximising the posterior
with respect to z:

ẑmap−z = argmax
z

{
pZ|Y (z |y)

}
= argmax

z

{
pY |Z (y | z) pZ (z)

}
.

(B.1)
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In the last line we used Bayes rule to rewrite this posterior in more simple terms. However,
this expression still involves the unknown conditional pY |Z (y | z).
Let us express this maximization in terms of pY |X (y |x).

To do so we recall the relation between the conditionals and the joint:

(B.2) pY |Z (y | z) pZ (z) = pY,Z (y, z) = pZ|Y (z |y) pY (y)

We can also compute the joint distribution pY,Z (y, z) by marginalization on a third ran-
dom variable X:

pY,Z (y, z) =

∫
pX,Y,Z (x,y, z) dx

=

∫
pY |X,Z (y |x, z) pX|Z (x | z) pZ (z) dx

=

∫
pY |X (y |x) δ(x− G(z))pZ (z) dx

= pY |X (y |G(z)) pZ (z)

(B.3)

The third line follows from our graphical model Z → X → Y which implies that once we
know X = x, then Z provides no additional information, therefore

pY |X,Z (y |x, z) = pY |X (y |x) .

The last line follows simply from the integration on x of a delta function.
From equations (B.2) and (B.3) we can derive an expression of pZ|Y (z |y) in terms of

pY |X (· | ·) and the generator G namely:

pZ|Y (z |y) = 1

pY (y)
pY |X (y |G(z)) pZ (z)

This proves the main result of this section:

Proposition B.1 (map-z estimator for deterministic generative models). Assume we have
• a deterministic generative model where X = G(Z) and
• an inverse problem characterised by the log conditional distribution log pY |X (y |x) =
−F (x,y).

Then the map-z estimator is computed as x̂map−z = G(ẑmap−z) where

ẑmap−z = argmax
z

{
pY |X (y |G(z)) pZ (z)

}
= argmin

z
{F (G(z),y)− log pZ (z)} .

(B.4)
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B.2. MAP-x. The map-x estimator is obtained by maximizing the posterior with respect
to x. The generative model induces a prior on X via the push-forward measure pX = G♯pZ ,
which following [48, section 5] can be developed as

pX (x) =
pZ
(
G−1(x)

)√
detS(G−1(x))

δM(x)

where S =
(
∂G
∂z

)T (∂G
∂z

)
is the squared Jacobian and the manifold M = {x : ∃z, x = G(z)}

represents the image of the generator G.
With such a prior pX , the x-optimization (1.2) required to obtain x̂map becomes intractable

(in general), for various reasons:
• the computation of detS,
• the inversion of G, and
• the hard constraint x ∈ M.

These operations are are all memory and/or computationally intensive, except when they are
partially addressed by the use of a normalizing flow like in [31, 72].

Appendix C. Joint MAP-x-z, Continuation Scheme and convergence to MAP-z.
The functional J1,β introduced in Equation 1.6 can be seen from two different perspectives.
From a machine learning perspective it corresponds to the joint log-posterior J1 in the

case where Σθ(z) =
1
β I and µθ = G, namely:

J1,β(x, z) =
1

2σ2
∥Ax− y∥2︸ ︷︷ ︸
F (x,y)

+
β

2
∥x− µθ(z))∥2︸ ︷︷ ︸

Hθ(x, z) = φβ(x, z)

+
1

2
∥z∥2 + Cβ

From an optimization standpoint it can be considered as an inexact penalisation procedure:
We want to solve the constrained problem

min
(x,z)∈C

F (x,y) +
1

2
∥z∥2︸ ︷︷ ︸

=J1,0(x,z)

with C = {(x, z) | x = µθ(z)} whose solution provides the map-z estimator

(C.1) (x∗, z∗) ∈ argmin
(x,z)∈C

J1,0(x, z).

To do so, we introduced the family of unconstrained problems

min
x,z

J1,β(x, z)
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and their corresponding minimizers

(x̂β, ẑβ) ∈ argmin
x,z

J1,β(x, z)

which for β = 1
γ2 provide the map-x-z estimator.

We can show that the map-x-z estimator converges to the map-z estimator when β → ∞
(or equivalently γ → 0).

Proposition C.1. The unconstrained functional tends to the constrained functional plus the
constraint:

(C.2) J1,β(x, z)
β→∞−−−→ J1,∞(x, z) = F (x, z) + ιx=µθ(z)(x, z) +

1

2
∥z∥2

and the unconstrained minimizers tend to the constrained minimizer as β → ∞:

(C.3) lim
β→∞

(x̂β, ẑβ) ∈ argmin
(x,z)∈C

J1,0(x, z) = argmin
x,z

J1,∞(x, z).

Proof. The pointwise convergence of φβ to ιx=G(z) as β goes to ∞ is straightforward.
Let us first prove that for any sequence (βn)n that goes to ∞, the quantity ∥x̂βn −G(ẑβn)∥

goes to zero. Otherwise, for any ε > 0, there exists a subsequence (βnj )j such that ∥x̂βn −
G(ẑβn)∥ > ε. In this case, for any z, one has by optimality

J1,0(G(z), z) = J1,βnj
(G(z), z) ≥ J1,βnj

(x̂βnj
, ẑβnj

) > J1,0(x̂βnj
, ẑβnj

) +
βnj

2
ε2

As a result, the nonnegative quantity J1,0(x̂βnj
, ẑβnj

) goes to −∞, which leads to a contra-

diction. Thus, one has x̂∞ = G(ẑ∞) for any limit point (x̂∞, ẑ∞) of (x̂βn , ẑβn). Assume that
J1,0(x̂∞, ẑ∞) > J1,0(x

∗, z∗). Since

J1,βn(x̂βn , ẑβn) ≤ J1,βn(x
∗, z∗) = J1,0(x

∗, z∗) < J1,0(x̂∞, ẑ∞)

this leads to another contradiction.

The previous result motivates Algorithm 1.1.
Consider Algorithm 1.1 in the ideal case (maxiter=∞) where the internal loop converges.

Proposition C.2 (Convergence of Algorithm 1.1). Let (xk
∞, zk

∞)k be a sequence generated by
Algorithm 1.1 when maxiter=∞. If (zk

∞)k is bounded, then any limit point of (xk
∞, zk

∞)k is in
C. Moreover, any limit point of (zk

∞)k is a stationary point of

(C.4) f(z) = F (G(z),y) +
1

2
∥z∥2

Proof. Note that, for any k, (xk
∞, zk

∞) is a limit point of the sequence generated by the
k-th subloop in Algorithm 1.1 if it does not converge. Let (βk)k a sequence that converges to
∞. Let k ∈ N. We consider the sequence (xk

n, z
k
n)n generated by

∀n ∈ N, zk
n+1 ∈ argmin

z
J1,βk

(xk
n, z) and xk

n+1 = argmin
x

J1,βk
(x, zk

n+1)
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with xk
0 = xk−1

∞ . Since J1,βk
corresponds to a particular instance of J1, and since Algorithm

1.1 can be seen asymptotically as a particular instance of Algorithm 2.3, one can use all the
results established in Proposition 2.1. In particular, the sequence (xk

n, z
k
n)n admits a limit

point (xk
∞, zk

∞) and we have

∂J1,βk

∂x
(xk

∞, zk
∞) =

∂J1,0
∂x

(xk
∞, zk

∞) + βk(x
k
∞ − G(zk

∞)) = 0

and
∂J1,βk

∂z
(xk

∞, zk
∞) =

∂J1,0
∂z

(xk
∞, zk

∞) + βk(DG(zk
∞))∗(G(zk

∞)− xk
∞) = 0

By convexity, xk
∞ is the (unique) minimizer of J1,βk

(·, zk
∞).

Assume that the sequence (zk
∞)k is bounded. By optimality, one has

min J1,0 ≤ J1,0(x
k
∞, zk

∞) ≤ J1,βk
(xk

∞, zk
∞) ≤ J1,βk

(G(zk
∞), zk

∞) = J1,0(G(z
k
∞), zk

∞)

Since (J1,0(G(z
k
∞), zk

∞))k is bounded, so is (J1,0(x
k
∞, zk

∞))k. By coercivity, the sequence

(xk
∞, zk

∞)k is also bounded. Then it admits a limit point denoted (x̂∞, ẑ∞). Let (x
kj
∞, z

kj
∞)j be

a convergent subsequence of limit (x̂∞, ẑ∞). Let us assume that x̂∞ ̸= G(ẑ∞). Then, there
exists a > 0 and j0 ∈ N such that

∀ j ≥ j0, ∥xkj
∞ − G(z

kj
∞)∥2 > a

Hence, one has

J1,βkj
(x

kj
∞, z

kj
∞) ≥ J1,0(x

kj
∞, z

kj
∞) + βkj a ≥ min J1,0 + βkj a −→

j→+∞
∞

which leads to a contradiction. This proves that x̂∞ = G(ẑ∞). Otherwise said, (xk
∞−G(zk

∞))k
goes to zero.

Since we have for any k

∂J1,0
∂x

(xk
∞, zk

∞) + βk(x
k
∞ − G(zk

∞)) = 0

the continuity of
∂J1,0
∂x ensures that

(
∂J1,0
∂x (x

kj
∞, z

kj
∞)
)
j
converges; thus, so is (βkj (x

kj
∞−G(z

kj
∞)))j .

Then there exists λ∗ ∈ Rd such that

∂J1,0
∂x

(x
kj
∞, z

kj
∞) = −βkj (x

kj
∞ − G(z

kj
∞)) −→

j→+∞
λ∗ =

∂J1,0
∂x

(x̂∞, ẑ∞)

and
∂J1,0
∂z

(x
kj
∞, z

kj
∞) = −βkj (DG(z

kj
∞))∗(G(z

kj
∞)− x

kj
∞) −→

j→+∞
−(DG(ẑ∞))∗(λ∗)

Note that f(z) = J1,0(G(z), z). One can check that f is differentiable and that

∇f(z) = (DG(z))∗
(
∂J1,0
∂x

(G(z), z)

)
+

∂J1,0
∂z

(G(z), z)

Hence, we have proved that
∇f(ẑ∞) = 0

Conclusion: If (zk
∞)k is bounded, any limit point of (zk

∞)k is a stationary point of (C.4).
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In general, we can only prove that the limit points of the sequences generated by Algorithm
1.1 are stationary points of C.4. However, if the growth of β is sufficiently slow, then we obtain
the optimality of the limit points. Indeed, given that, in Algorithm 1.1, each subloop is an
exact BCD scheme, one has for any n and any j

∀ z, J1,βkj
(xn−1, zn) ≤ J1,βkj

(xn−1, z)

By considering the subsequence (xnℓ
, znℓ

), which converges to x
kj
∞, z

kj
∞ (we recall that xnℓ

and
xnℓ−1 have same limit), we can prove that

∀ z, J1,βkj
(x

kj
∞, z

kj
∞) ≤ J1,βkj

(x
kj
∞, z)

that is, z
kj
∞ is a minimizer of J1,βkj

(x
kj
∞, ·). Hence, we have

∀ z, J1,0(x
kj
∞, z

kj
∞) +

βkj
2

∥xkj
∞ − G(z

kj
∞)∥2 ≤ J1,0(x

kj
∞, z) +

βkj
2

∥xkj
∞ − G(z)∥2

Assume that βkj∥x
kj
∞ − x̂∞∥2 −→

j→+∞
0. By letting j to ∞, we get that, for any z such that

G(z) = x
kj
∞,

J1,0(x̂∞, ẑ∞) ≤ J1,0(x̂∞, z) + lim
j→+∞

βkj
2

∥xkj
∞ − x

kj
∞∥2 = J1,0(x̂∞, z)

that is, ẑ∞ is a minimizer of J1,0(x̂∞, ·) + χC(x̂∞, ·). By definition of f , this also means that
ẑ∞ is a minimizer of f . However, one has to note that the growth control for β depends on
the convergence speed of xk

∞, which cannot be estimated.
Algorithm 2.4 is a particular (truncated) case of Algorithm 1.1 with an adaptive choice of

β that does not need to go to ∞.

Proposition C.3 (Convergence of Algorithm 2.4).

Proof. Let us write the Lagrangian of the problem solved in Algorithm 2.4:

∀λ ≥ 0, L(x, z;λ) = J1,0(x, z) + λ (∥x− G(z)∥2 − ε)

KKT conditions ensure that any solution (x∗, z∗) of the constrained problem is associated to
at least one Lagrange multiplier λ∗ ≥ 0 such that

∂L
∂(x, z)

(x∗, z∗;λ∗) = 0 =

(
∂J1,0
∂x (x∗, z∗) + 2λ∗ (x∗ − G(z∗))

∂J1,0
∂z (x∗, z∗) + 2λ∗ (DG(z∗))∗(x∗ − G(z∗))

)
According to the calculus above, this proves that (x∗, z∗) is a stationary point of J1,2λ∗ . Note
that, if λ∗ = 0, then (x∗, z∗) is a minimizer of J1,0. Otherwise, one has ∥x∗ − G(z∗)∥2 = ε.

Hence, if we consider Algorithm 1.1 with the update rule for βk as in Algorithm 2.4 and
a stopping rule saying that the iterations stop as soon as, for any given k,

∥xk
∞ − G(zk

∞)∥2 ≤ ε

there are two possible cases:
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1. case λ∗ = 0: then (xk
∞, zk

∞) is a solution of the constraint problem iff∇J1,0(x
k
∞, zk

∞) =
0 (that is, xk

∞ = G(zk
∞));

2. case λ∗ > 0: unless ∥xk
∞ − G(zk

∞)∥2 exactly equals ε, (xk
∞, zk

∞) is not a solution of
the constraint problem

However, in general, (xk
∞, zk

∞) is a solution of the following constraint problem

min
∥xk

∞−G(zk
∞)∥2≤ε̃

J1,0(x, z)

with ε̃ = ∥xk
∞ − G(zk

∞)∥2 ≤ ε. Hence, if we stop the iterations when ∥xk
∞ − G(zk

∞)∥2 ≤ ε, we
will get a solution of

min
∥xk

∞−G(zk
∞)∥2≤ε̃

J1,0(x, z), ε̃ ≤ ε

which provides an error control as well.
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