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On the circumcenters of triangular orbits in elliptic

billiard

Corentin FIEROBE, Ecole Normale Supérieure de Lyon, Unité de Mathématiques
Pures et Appliquées, UMR, CNRS 5669, 46, allée d’'Ttalie, 69364 Lyon Cedex 07,
France

Abstract

On an elliptic billard, we study the set of the circumcenters of all tri-
angular orbits and we show that this is an ellipse. This article follows [18],
which proves the same result with the incenters, and [6], which among others
introduces the theory of complex reflection in the complex projective plane.
The result we present was found at the same time by Ronaldo Garcia in an
article to appear in American Mathematical Monthly (no preprint available).
His proof uses completely different methods of real differential calculus.
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1 Overview of the problem

The famous great theorem of Poncelet, ¢f [1] and [15], asserts that if there exists
an n-sided polygon inscribed in a conic IC; and circumscribed about an other one
KCc, then there are infinitely many such polygons, and you can find such one for



each point of KC; chosen to be one of its vertices. A classical proof of it can be
found in [1]. [9] and [19] give a way to prove it using complex methods.

It has a lot of consequences (see [1], [3]), especially in billard theory, since it
gives a condition to the existence of particular n-periodical orbits in conics. In
particular, given an ellipse £, one can find a confocal ellipse 7 to &€, such that each
triangular orbit on £ is circumscribed about it; and conversely one can complete
each tangent line to 7y to a triangular orbit of £.

We study here the set of circumcenters, which are the centers of the circum-
scribed circles, of all triangular orbits in such an elliptic billard £. We want to
prove the following:

Theorem 1.1. The setC of the circumcenters of all triangular orbits of the billiard
within an ellipse is also an ellipse.

Remark 1.2. Theorem 1.1 is obvious in the particular case where the ellipse is a
circle, because then the set of circumcenters is reduced to a single point. Thus,
from now on we will assume that the ellipse is not a circle.

There are many other results similar to theorem 1.1. Dan Reznik discovered
experimentally the same result for the incenters of triangular orbits, see the video
[16] and the github page [17] written with Jair Koiller. Romaskevitch (see [18])
confirmed these observations by proving them and her proof widely inspired ours.
Tabachnikov and Schwartz, in [20], proved that the loci of the centers of mass
(and of an other particular point) of a 1-parameter family of Poncelet n-gons in
an ellipse is an ellipse homothetic to the previous one. They also mention that a
similar result was proved by Zaslawski, Kosov and Muzafarov for the orthocenters
([21], reference from [20]). And Garcia (see [5]) uses explicit calculations to prove
that the loci of incenters and orthocenters of triangular orbits are ellipses, and
describes them precisely.

Before going into details, we give here a brief summary of the proof, which is
inspired by [18], and in which we use the same complex methods. We consider
a projective complexified version of C, denoted by é, which turns out to be an
algebraic curve as a consequence of Remmert proper mapping theorem, see [10] p.
34. Then we show that the intersection of the complex curve C with the foci line of
the boundary ellipse £ is reduced to two points, each one of them corresponding to
a single triangular orbit. Further algebraic arguments on the intersection type of
C with the foci line of £ allow to conclude that it is a conic, using Bezout theorem.
It’s then easy to check that C is an ellipse since its real part is bounded.

As explained, one considers the projective complex Zariski closure of the ellipse
& and a complexified version of C, C. In order to define € and to prove the first
statement concerning the intersection with the foci line, we study an extension of
the reflection law and of the triangular orbits to complex domain, as in [18], and
we use some of the results contained in the later article such as Proposition 2.14.
Complex reflection law and complex planar billiards were introduced and studied
by A. Glutsyuk in [6] and [7]. See also [8] where they were applied to solve the
two-dimensional Tabachnikov’s Commuting Billiard conjecture and a particular
case of two-dimensional Plakhov’s Invisibility conjecture with four reflections.



In [2] section ITI, a billiard reflection law was defined in purely projective terms
using polar duality with respect to quadrics. Their definition makes sense in
any dimension and over any number field (R, C, ...). However, the definition
of [2] is given only for billiards within quadrics, but it can be adapted to any
smooth hypersurface except at certain points, as we will prove in Subsection 2.4.
Later a complex reflection law in two dimensions was introduced in another way
by Glutsyuk [6, 7] which also takes into account these exceptional points. In
dimension 2 and in the complex case, the two definitions coincide as we will prove
in Subsection 2.4. The author follows Glutsyuk’s definition in this work.

Section 2 is devoted to the complex reflection law and to complex orbits in a
complexified ellipse: in Subsection 2.1, we introduce the complex reflection law;
Subsection 2.2 recalls some results about complexified conics; we further define
what is a triangular complex orbit in Subsection 2.3; then, in Section 3 we
introduce the definition and we study properties of complex circumscribed circles
to such orbits: Proposition 3.6 is the main result of this section. Finally, Section
4 is devoted to the proof of Theorem 1.1, using previous results.

2 Complex triangular obits on an ellipse

2.1 Complex reflection law

Considering an affine chart whose coordinates will be denoted by (z,y), we have
the inclusion R? € C? ¢ CP?, and CP? = C?LC,,, where C, is the line at infinity.
As introduced and explained in [6], and studied in [18], the reflection law in R?
can be extended to CP? by considering the complexified version of the euclidean
squared metric, that is the quadratic form

Q(z,w) = 22 + w?

which is a non degenerate quadratic form on C2?. In a similar way to the eu-
clidean case, it leads to construct a notion of symmetry in C2. It has two isotropic
subspaces - which by definition are spaces where the quadratic form vanishes iden-
tically - of dimension 1 : namely Fy := C(1,i) and F; := C(1,—i). Since both
spaces F7 and F; are contained in their orthogonal spaces, the definition of sym-
metry of a line with respect to F; or F; cannot be introduced as in the usual
euclidean way. A similar notion of symmetry with isotropic spaces is studied in
[12] and [4] in pseudo-Euclidean and pseudo-Riemannian cases.

Definition 2.1 ([6], definition 1.2). Define the isotropic points at infinity (or
cyclic points) to be either I = [1:4:0] or J =[1: —i: 0]. A line in CP? is said to
be isotropic if it contains either I or J, and non-isotropic if not. Notice that the
line at infinity is automatically isotropic.

Definition 2.2 ([6], definition 2.1). The symmetry with respect to a line L C C?
is defined as follows:

e Case 1: L is non-isotropic. The symmetry acting on C? is the unique non-
trivial complex isometric involution (for the above quadratic form) fixing the
points of the line L. It induces the same symmetry acting on lines.



e Case 2: L is isotropic. We define the symmetry of lines through a finite
point x € L: two lines [ and I’ which contain z are called symmetric if there
are sequences (Lp)n, (In)n, (II)n of lines through points z, so that L, is
non-isotropic, I, and I/, are symmetric with respect to Ly, I, — I, I, = ',
L, — L and z,, — x.

We recall now lemma 2.3 [6] which gives an idea of this notion of symmetry in
the case of an isotropic line through a finite point.

Lemma 2.3 ([6], lemma 2.3). If L is an isotropic line through a finite point x
and l, I’ are two lines which contain x, then | and !’ are symmetric with respect to
L if and only if either | = L, orl' = L.

This complex reflection law allows to talk about complex billiard orbits on the
ellipse, as it will be done in subsection 2.3. Before studying those orbits, it is
necessary to introduce some geometric notions about projective conics.

2.2 Preliminary results on complexified conics

One needs to present here useful results on confocal conics. They can be found in
[1] and [13]. [6] also cites them in subsection 2.4. This section allows to understand
some links between an ellipse and its Poncelet ellipse of triangular orbits, when
both are complexified. Thus, by conic (resp. ellipse) we mean here the complex
projective closure of a real regular conic (resp. ellipse). This choice of definition
is due to the fact that the ellipse in which we study billard orbits is a real ellipse.
Later, in order to define circumscribed circle (see section 3), we will understand
conics as general complex conics (not just complexified real ones).

Proposition 2.4 ([1] subsection 17.4.2.1). A conic is a circle if and only if some
of the points I or J belong to it. Furthermore, if a conic is a circle, then both I
and J belong to it.

In fact, a circle has two isotropic tangent lines intersecting at its center (see
the following propositions).

Proposition 2.5 ([1] subsection 17.4.3.1). A focus f of a conic lies in the inter-
section of two isotropic tangent lines to the conic.

Proposition 2.6 ([13], p. 179). Two complezified confocal ellipses have the same
tangent isotropic lines, which are four isotropic lines taken with multiplicities: one
pair intersecting at a focus, and the other one - at the other focus.

This brings us to the following redefinition of the foci:

Definition 2.7 ([1] subsection 17.4.3.2). The complex foci of an ellipse are the
intersection points of its isotropic tangent lines.

Remark 2.8. The complex projective closure of a real ellipse has four complex foci,
including two real ones.

Corollary 2.9. A conic has at most four dinstinct finite isotropic tangent lines,
each two of them intersecting either at a focus, or at an isotropic point at infinity.



2.3 Complex orbits

We have enough material at this stage to study complex triangular orbits. See [6],
definition 1.3, for a more general definition of periodic orbits.

Definition 2.10 ([6], definition 1.3). A non-degenerate triangular complex orbit
on a complex conic £ is an ordered triple of points A, As, A3 on £ so that for
all 4, one has A; # A;y1, the tangent line T4, is non isotropic, and the complex
lines A;A;+1 and A;A;_1 are symmetric with respect to T4, (with the obvious
convention Ay := Az and Ay := A;). A side of a non-degenerate orbit is a complex
line AiAi+1~

Remark 2.11. The vertices of a non-degenerate orbit are not collinear since a line
intersects the ellipse in at most two points.

Remark 2.12. As explained in [7], the reflection with respect to a non-isotropic
line permutes the isotropic directions I and J. This argument implies that a
non-degenerate triangular orbit has no isotropic side.

We will also study the limit orbits of the above defined orbits, which will be
called degenerate orbits.

Definition 2.13 ([6]). A degenerate triangular complex orbit on a complex conic
£ is an ordered triple of points in £ which is the limit of non-degenerate orbits
and which is not a non-degenerate orbit. We define the sides of a degenerate orbit
as the limits of the sides of the non-degenerate orbits which converge to it. If
Aj = Ajy1, then it is natural to define the side A;A;,1 as the tangent line T4, €.

Proposition 2.14 ([18], lemma 3.4). A degenerate triangular orbit of an ellipse
& has an isotropic side A which is tangent to £, and two coinciding non-isotropic
sides B.

During the proof, it will be convenient to distinguish two types of orbits : the
ones with no points at infinity, and the others, with at least one point at infinity:

Definition 2.15. An infinite triangular complex orbit on a complex conic £ is an
orbit which has at least one vertex on the line at infinity. The orbits with only
finite vertices are called finite orbits.

Proposition 2.16. An infinite orbit is not degenerate, and has exactly one vertex
at infinity.

Proof. Suppose two vertices, a, 3, of the orbit are at infinity. Then, af is the
line at infinity. But the tangent T to the ellipse £ in f is not isotropic, and
the line at infinity reflects to itself through the reflection by T3. Hence, the orbit
is {a, 8} = Co N &, which should be a degenerate orbit. But it cannot be a
degenerate orbit by Proposition 2.14 since the tangent lines to its vertices «, 8 are
not isotropic. Thus, only one vertex lies at infinity.

Therefore, if it is a degenerate orbit, it has two vertices, «, 3, corresponding
by Proposition 2.14 to two sides, A which is isotropic and tangent to the ellipse
in «, and B which is a line containing « and . Since the tangency points of



isotropic tangent lines are finite, « is finite. Thus £ is infinite (because the orbit
is supposed infinite). Then B and the tangent line T3€ to the ellipse in § are
collinear (since they have the same intersection point at infinity). But both are
stable by the complex reflection by T, hence T3¢ = B which is impossible since
B is not tangent to the ellipse. O

2.4 Digression: reflection law on a quadric (); with respect
to another quadric ()

In [2] section III, the authors define the reflection law inside a quadric ¢ with
respect to another quadric Q2 in R™ using polar considerations. They use this
definition to prove what they call the Full Poncelet’s Theorem:

Theorem 2.17 (Chang, Crespi, Shi, see [2]). Let Q1,...,Qm be confocal quadrics
i R™ and x122 ... 2, be a polygon such that x; lie on QQ; and the successive sides
T, 17, m satisfy the usual reflection law. Then all the sides of the polygon are
tangent to a confocal quadric Q. Furthermore, for these quadrics Q1,...,Qm,Q,
there is an (n — 1)-parameters family of polygons satifying the same property.

Their definition of reflection has a natural extension to other fields k than R,
and we would like to compare it when k = C to the complex reflection law which
is described in Subsection 2.1. We are really grateful to the referee who suggested
us to read the above-mentionned article.

In the real case one can define locally an inside and an outside of a quadric
Q@ (since a real hypersurface of R™ locally separates a small ball centered at its
points into two domains). Therefore one can define an orientation on incident and
reflected rays, so that the reflected ray is directed to the side where the incident
ray arrived from. But in complex spaces this is not the case anymore, and in the
following descriptions we will omit any considerations on orientations of rays.

Consider the field K = R or C and let @ be a non-degenerate quadric in P™(k).
For any hyperplane v C P"(k) one can define its pole z with respect to Q (see [2]
for more details). Now suppose @1 and Q2 are two quadrics. If € @1, one can
consider the tangent space u = T, (1 to @1 at x, and denote by z its pole with
respect to Q.

Definition 2.18 (section III of [2] without orientations). Note u = T,@Q; and
suppose that z ¢ u. Let ¢; and ¢5 be two lines intersecting () at = transversaly.
We say that £1 and ls satisfy the law of reflection at x on Q1 about Qo if the lines
{1, {5, xz are contained in a plane P, and if the lines ¢1, ¢35, xz, P Nwu form a
harmonic set.

As explained in [2], when k = R and Q; and Q2 are two confocal quadrics (the
definition of confocal quadrics is recalled below, see formula (1)), this definition is
the same as the usual billiard reflection. We would like to show that this result
holds in the case when )7 and ()2 are complex confocal quadrics, namely that
genericaly two lines ¢1 and {5 intersecting at a point x € Q1 satisfy the law of
reflection at x about Q2 (as in Definition 2.18) if and only if they are symmetric
by the complex reflection law at x (as defined in Subsection 2.1).



..)» we choose a standard affine chart U = {z, = 1} c CP".

Consider the complex quadratic form Q = ZZ;S dz} on C™ which can be seen as

a quadratic form on U ~ C™.

Proposition 2.19. Let QQ1, Q2 be two distinct confocal quadrics in CP", x €
Q1NU, u=T,Q1 and z be the pole of u with respect to Q3. Then in the chart U,
u and xz are orthogonal for Q.

Remark 2.20. We believe this result is well-known by specialists and can be shown
using elementary results of polar geometry, but we were unable to find any proof
of it. This result is also true in the real case, but we haven’t found any proof of
it, even in [2] where it is also mentionned without any proof.

Proof. Any point in CP" can be written as the projection = (z¢ : ... : x,) of a
point & € C"*1. We suppose that Q; = {¢; = 0} for i = 1,2 where ¢, g2 are the
quadratic forms defined for all x = (zg,...,z,) by
n—1 a:2 n—1 1‘2
— Tk _ 2 d — k.2 1
q(z) 2 T,  an q2(x) kz_;) P (1)

with aq,...,a,, A being complex numbers such that a; # 0 and ax + X # 0. Write
M (respectively Ms) the diagonal (n+ 1) X (n 4 1) matrix whose diagonal coeffi-
cients are the agl (respectively the (ax+A)~1), k = 0...n, and —1. Both matrices
My and My are such that ¢;(z) = (x|M;z) and the bilinear form associated to ¢;
is b;(z,2") = (x| M;z’), where we set (z|y) = > 1_, xyk. Note that for any matrix
M one has (z|My) = (M7Tz|y) where M7 is the transpose of M. Therefore, for a
T € Q1 NU, the equation of Tz(Q; is given by the set of all § verifying

0=bi(z,y) = (Mizly) = (Miz|My " May) = (My " Myx|May) = by(My ' Mz, ).

Hence the pole of u = Tz(@; with respect to Qo is the point z where z =
My ' M;z. Now the diagonal forms of the matrices allow to compute easily that
z= M2_1M1x = x + \u where

Zo Tn—1
U = (,..., ,0).
ao Un—1

Therefore xz is the line containing x and directed by u. Now the vector subspace
of C™ ~ U parallel to T3Q1 N U is defined by the equation ZZ;S Zedyr = 0

ak
which is the equation of the @Q-orthogonal space to u. Hence xz and TzQ; are

@-orthogonal. 0
3

Choose n = 2, consider a standard affine chart C2 C CP2. On this chart define
the same quadratic form Q(z,w) = z? +w? as in subsection 2.1. Let C be a conic
and x € C. Proposition 2.19 implies the following

Corollary 2.21. The Q-normal line to the tangent line u = T,C to C is the line
xz, where z is the pole of u with respect to any confocal conic C' to C.



Yet if two lines £ and ¢, intersect at x, they are symmetric with respect to
u (for the complex reflection law as defined in Subsection 2.1) if and only if the
lines ¢1, ¢35, u and the @Q-normal line to C' at x form a harmonic set. Note that if
u is an isotropic tangent line to C, then u and its @-normal line through x are the
same, and the above mentionned result on harmonic sets makes no sense. But in
the other case we have the

Corollary 2.22. If u =T,C is not an isotropic tangent line to C, then two lines
{1 and £y through x are symmetric with respect to u for the complex reflection law
introduced in Subsection 2.1 if and only if £1 and ls satisfy the law of reflection at
C about any confocal conic C' (Definition 2.18).

Therefore Definition 2.18 coincide with the complex reflection law introduced
in Subsection 2.1 in the case when the reflection takes place on a conic, at a point x
satisfying a generic condition of non-isotropy of its tangent line. From Proposition
2.19 we deduce a way to extend Definition 2.18 to any smooth hypersurface I'
which needs not to be a quadric.

Definition 2.23. Let I' € CP" be a germ of C'-smooth hypersurface at a point
x € CP". Consider a quadric @1 containing x and such that 7,01 = u. We say
that two lines ¢; and ¢y through x are CCS-symmetric with respect to u if and
only if £; and /5 satisfy the law of reflection at Q1 about any confocal quadric ()2
given by Definition 2.18.

By Proposition 2.19, this definition doesn’t depend on the choice of the quadric
Q2. We still have the

Proposition 2.24. Let I' C CP? be a germ of C'-smooth curve and x € T such
that uw = T,I" is not isotropic. Then two lines €1 and {5 through x are symmetric
with respect to u for the complex reflection law introduced in Subsection 2.1 if and
only if {1 and 3 are CCS-symetric with respect to u.

We conclude that, in the complex setting, Definition 2.23 extends the law
introduced in [2] to any smooth hypersurface I of CP”, and a similar work can
be done for hypersurfaces of RP". In the two-dimensional complex case, this
extension coincide with the complex reflection law introduced in [6, 7] except that
it is not well-defined at points of isotropic tangency.

3 Circumcircles and circumcenters of complex or-
bits

Here we present the last part of the required definitions, which concerns the com-
plex circles circumscribed to triangular orbits. This part is different from the
previous one, because here the considered conics are complex and not necessarily
complexified versions of real conics.

Definition 3.1. A complex circle is a regular complex conic passing through both
isotropic points at infinity. Its center is the intersection point of its tangent lines
at the isotropic points.



Proposition 3.2. For a non-degenerate finite orbit, there is a unique complex
circle passing through the vertices of the orbit and both isotropic points at infinity.
It is called the circumscribed circle or circumcircle to the non-degenerate orbit.

Proof. Denote by «, 3,7 the vertices of the orbit. We have to prove that no three
points of «, 8,7, I, J are collinear. Indeed, as no vertices are on the line at infinity,
we only need to study two different cases:

1. «, 8,7 are not collinear because they are distinct and they lie on the ellipse
which has at most two intersection points with any line.

2. «, 8,1 are not collinear or else the line a8 would be isotropic. But this is
impossible for a non-degenerate triangular orbit by Remark 2.12.

We then exclude all other possible combinations of two vertices of the orbit
with I or J, using the same arguments.

O
Let us extend this definition to degenerate orbits.

Definition 3.3. Let T be a degenerate or infinite orbit. A circumscribed circle of
T is the limit (in the space of conics) of a converging sequence of circumscribed
circles of non-degenerate finite orbits converging to T. If a sequence of complex
circles converges to a conic so that their centers converge to a point ¢ € CP?,
then ¢ is called a center of the limit conic. A circumcenter of T is a center of its
circumscribed circle.

Remark 3.4. A priori, a limit conic C may have several centers in the sense of this
definition. Indeed, ¢ depends on the choice of the sequence of circles converging
to IC. See Case 4 of Proposition 3.5 and its proof for more details.

Even if they are called circles, the circumscribed circles to a degenerate or
infinite orbit can degenerate into pairs of lines, as described below.

Proposition 3.5. The limit of a converging sequence of complex circles is one of
the following:

1. a regular circle ;

2. a pair of isotropic non-parallel finite lines ; the corresponding center lies on
their intersection ;

8. the infinite line and a finite line d ; the center c lies on the line at infinity
and represents a direction which is orthogonal to d ;

4. the line at infinity taken twice : its center can be an arbitrary point in CP2.

Proof. The equation of a regular circle D is of the form

a(x® +y?) +prz+qyz +rz2 =0



where a,p,q,r € C, a # 0 and 4ar # p? + ¢°. Both isotropic tangent lines to D
have equations 2a(x £ iy) + (p £ ig)z = 0, whose intersection is ¢ = (p : ¢ : —2a),
which is the center of D by definition.
If we take a limit of regular circles, the equation of the limit circle is of the
same type, that is
a(x® +y?) +prz+qyz +rz2 =0

but maybe with a = 0 or 4ar = p? + ¢?. And the center c is still of coordinates
(g:p:—2a).

If a = 0, the limit circle is the union of the line at infinity (z = 0) and the line
d of equation px + qy 4+ rz = 0. The line d is finite if and only if (p,q) # 0, and in
this case it has direction (¢, —p). Since ¢ = (p: ¢ : 0), the direction represented by
¢ is orthogonal to d. If d is infinite, the limit circle is the (double) line at infinity.
Note that in this case the center can be an arbitrary point.

If a # 0, but 4ar = p? + ¢2, the equation of the limit circle becomes

) + (v o) =
(m+2a2 + y—|—2az 0

which is the equation of two isotropic non collinear lines intersecting at the point
(=& =L :1)=(p:q: —2a)=c.
If a # 0 and 4ar # p® + ¢2, the limit circle is regular. O

Now let us find which triangular orbits have their center on the line of real foci
of £.

Proposition 3.6. Suppose that T is a complex triangular orbit whose circumcen-
ter lies on the real foci line. Then T is finite, non-degenerate, symmetric with
respect to the real foci line of £, and has a vertex on it.

Proof. Let T be a triangular orbit with a circumscribed circle C' having a center
c on the real foci line of £.

First case : Suppose T is finite and non-degenerate. We follow the
arguments of Romaskevich [18] who treated the similar case for incenters. Indeed,
at least two vertices should lie outside the foci line. If the line through them is not
orthogonal to the foci line, then this pair of vertices together with their symmetric
points and the remaining third vertex in T are five distinct points contained in the
intersection £ENC. This is impossible, since £ is not a circle. Finally, the remaining
vertex has to be on the foci line, or else we could find two distinct orbits sharing a
common side, which is impossible by definition of the reflection law with respect
to non-isotropic lines.

Second case : Suppose T is infinite. Then the line at infinity cuts C in
three distinct points, hence C' is degenerate. By Proposition 3.5, C' contains the
line at infinity. Since T has only one infinite vertex a by Proposition 2.16, and two
other finite vertices (,~, the other line d C C' is not the line at infinity. Again by
Proposition 3.5, the center is infinite and represents the orthogonal direction to d.
Since it is on the real foci line, the latter is orthogonal to d. Thus d intersects the
infinity line at the same point as the line orthogonal to the foci line. This point
does not lie in £, and in particular, d does not contain «. Hence, we have d = v

10



is a side of T, a ¢ d and by the same symmetry argument as in the first case «
should belong to the real foci line. But this is impossible since the latter intersects
£ in only two finite points.

Last case : Suppose T is degenerate. Then C cannot be a regular circle,
otherwise the latter would be tangent to £ in a point of isotropic tangency (by
Proposition 2.14): this would imply that this point of isotropic tangency is I or
J, which is impossible since they do not belong to £, assumed not to be a circle.

The circumcircle C' cannot be the union of the line at infinity and another line
d. Otherwise, by the same arguments as in the second case, this line would be
othogonal to the real foci line. Since T is finite (Proposition 2.16), d goes through
its both vertices, implying that they are symmetric with respect to the foci line.
Therefore, both vertices are points of isotropic tangency but this cannot happen
for a degenerate triangular orbit.

Finally suppose C' is the union of two isotropic lines having different directions.

Lemma 3.7. Let C,, be a sequence of circles containing two distinct points M,
and Ny, of & converging to the same finite point a. Suppose C,, has a center c,
converging to a finite point ¢ # a. Then the line ca is orthogonal to the line T,E.

Proof. The tangent line to C),, at M, is orthogonal to the line M,c, hence the
same is true for their limits. The limit of Ty, C), is obviously the limit of the line
M, N,,. Since M,, and N,, are on &, the line M,,N,, also converges to the tangent
line T,&. Hence T, is orthogonal to ac. O

Thus if « is a vertex of isotropic tangency of the orbit, Lemma 3.7 implies that
ac is orthogonal to T, &, hence ac = T,E since the latter is isotropic. Recall that
« does not lie in the real foci line. Since both isotropic lines constituing the circle
go through ¢, one of them is T,£€. Hence, they are both tangent to £ by symmetry
with respect to the real foci line. Thus the other vertex of T is a point of isotropic
tangency of £, which is not possible by the previous arguments (such an orbit is
not closed). O

4 Proof of Theorem 1.1

We reall that & is a complexified ellipse, which we will identify with C. Denote by
v the real ellipse inscribed in all triangular real periodic orbits. We use the same
notation ~y for its complexified version.

Consider the Zariski closure T of the set of real triangular orbits (which are
circumscribed about 7). Let T3 denote the set of triangles with vertices in € that
are circumscribed about . It is a Zariski closed subset of £3 ~ ((CIP’l)3 that
contains the real orbits and can be identified with the set of pairs (A, L), where A
is a point of the complexified ellipse £ and L is a line through A that is tangent
to 7. The set of the above pairs (A, L) is identified with an elliptic curve, and
each pair extends to a circumscribed triangle as above, see the complex Poncelet
Theorem and its proof in [9] for more details. Hence 73 is an irreducible algebraic
curve. Each triangle in T is circumscribed about «y, by definition and since this is
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true for the real triangular orbits and the tangency condition of the edges with ~
is algebraic. Thus 7 C 73. Hence 7 = T3, by definition and since the curve of real
triangular orbits (which is contained in 7) is Zariski dense in T3 (irreducibility).
Now the set 7 C T of complex non-degenerate triangular orbits circumscribed
about the Poncelet ellipse v is a subset of 73 = T, Zariski open in T (because
T\ T is defined by polynomial equations). Note that 7 \ 7 is finite (since it
is a proper Zariski closed subset of an algebraic curve T), and 7 is dense in T
for the usual topology. Thus the analytic map ¢ : 7 — CP? which assigns to
a non-degenerate orbit its circumcenter can be extended to a holomorphic map
T — CP2, being a rational map. And by Remmert proper mapping theorem (see
[10]), its image denoted by C is an irreducible analytic curve of CP2, hence it is an
irreducible algebraic curve by Chow theorem (see [10]).

Let us show that C is a conic, using Bezout theorem and studying its intersec-
tion with the real foci line of £. In fact, we already know two distinct points lying
on this intersection: the circumcenters ¢; and ¢y of both triangular real orbits T;
and T circumscribed about Poncelet’s ellipse v and having a vertex on the foci
line.

Lemma 4.1. The foci line of the ellipse intersects C in only ¢ and cy which are
distinct, and for each i the only triangular orbit of T having c¢; as a circumcenter
18 Ti-

Proof. Take a point ¢ of ¢ lying on the foci line. Then by Proposition 3.6, an orbit
of center c is finite, non-degenerate, and has a vertex on the foci line. If this orbit
is in T, it is circumscribed about . One of its vertices lies on the foci line, hence
coincides with a vertex of some T;. Hence it is T} or Ts, otherwise we could find
a number strictly greater than two of tangent lines to v containing a vertex of £.
Furthermore, if ¢; = ¢, the circumcircle of 77 would be the same as the one of
T» by symmetry, and £ would share six dictinct points with the former, which is
impossible. The result follows. O

Theorem 4.2. The set C C CP? is an ellipse.

Proof. Let us show that ¢; is a regular point of é, and that the latter intersects
the foci line transversally. Fix an order on the vertices of 77 and consider the
germ (7,T1). The latter is irreducible (because parametrized by ), hence the
germ (V,¢1) € (C,¢1) defined as ¢(T,T}) is also irreducible. By Lemma 4.1, any
other irreducible component V’ of (C,¢;) is parametrized locally by ¢ and a germ
(T,T7), where T| is obtained from T7 by a permutation of its vertices. Thus
V' =V since ¢ doesn’t change by permutation of the vertices of the orbits: (é, 1)
is irreducible.

We fix a local biholomorphic parametrization P(t) of the complexified ellipse
&, so that Py = P(0) is a vertex of the real ellipse £ that is also a vertex of the real
triangular orbit T;. This gives local parametrizations of the orbits T'(P) whose
first vertex is P and of their circumcenters c¢(t) = ¢(T(P(t))). We restrict P to
the curve P(t) parametrizing the real points of £. We can suppose that P(t) and
P(—t) are symmetric with respect to F. Write r(t) = |P(t)c(t)| for the radius of
the circumscribed circle to T'(¢). Thus we have ¢(0) = ¢(T1) = ¢1, and we need to
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show that ¢/(0) # 0 and that ¢/(0) has not the same direction as the line of real
foci of £.

First, we have r(t) = r(—t) by symmetry, and r is smooth around 0 since
P(0) # ¢(0). Thus, (0) = 0. This implies that the vector ¢/(0) — P'(0) is
orthogonal to the line ¢(0)P(0), which is the real foci line by definition. But P’(0)
is already orthogonal to the foci line (being a vector tangent to £ at its vertex Fp),
hence the same hold for ¢/(0). It’s then enough to show that ¢/(0) # 0.

Suppose the contrary, i.e. ¢(0) = 0. We use again r'(0) = 0. If we denote
by Q(t) one of the other vertices of T'(¢t) and Qo = Q(0), then since also r(t) =
|Q(t)c(t)], the equality r'(0) = 0 gives that the line Qoc; is orthogonal to T, E.
It means that the circumscribed circle D to T} has the same tangent line in Q)¢ as
E. Since this is also true in Py and in the third point of T} (same proof), we get
that £ and D have three common points with the same tangent lines, which means
that £ is a circle. But this case was excluded at the beginning (remark 1.2).

Hence ¢/(0) # 0 and ¢/(0) is orthogonal to the line of real foci. The proof is
the same for ¢5. Hence by Bezout theorem, C is an ellipse. O
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