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Spiraling of sub-Riemannian geodesics around the Reeb flow

in the 3D contact case

Yves Colin de Verdière∗ Luc Hillairet † Emmanuel Trélat‡

Abstract

We consider a closed three-dimensional contact sub-Riemannian manifold. The objective
of this note is to provide a precise description of the sub-Riemannian geodesics with large
initial momenta: we prove that they “spiral around the Reeb orbits”, not only in the phase
space but also in the configuration space. Our analysis is based on a normal form along any
Reeb orbit due to Melrose.

1 Introduction and main result

Let (M,D, g) be a closed sub-Riemannian (sR) manifold of dimension 3, where D is a contact
distribution endowed with a Riemannian metric g. We assume for simplicity that D is oriented,
and we denote by αg the unique one-form defining D so that dαg |D is the volume form induced

by the metric g on D. The Reeb vector field Z is then characterized by the relations αg(Z) = 1
and dαg(Z, ·) = 0. Equivalently, given any positive g-orthonormal local frame (X,Y ) of D, Z is
the unique vector field such that [X,Z] ∈ D, [Y, Z] ∈ D and [X,Y ] = −Z mod D.

We recall that the cometric g? : T ?M → R+ associated with the sR metric g is defined by

g?(q, p) = ‖p|D(q)‖2g(q).

The Hamiltonian G =
√
g?, which is homogeneous of degree 1, generates the sR geodesic flow:

the projections onto M of the integral curves of the associated Hamiltonian vector field ~G are
the sR geodesics with speed 1. Note that the function G is not smooth along the line bundle
Σ = G−1(0) = D⊥ (the annihilator of D). The geodesic flow Gt = exp(t ~G) is homogeneous of
degree 0, and thus is defined and smooth on S?M \ SΣ. Here, S?M is the unit cotangent bundle,
and SΣ is the sphere bundle of Σ (quotient of Σ by positive homotheties).

The Reeb vector field Z has the following dynamical interpretation. If v0 ∈ D(q0), then there
exists a one-parameter family of geodesics associated with the Cauchy data (q0, v0), all of them

being the projections of the integral curves of ~G with Cauchy data (q0, p0) and (p0)|Dq0
= g(v0, ·).

For every s ∈ R, the projections on M of the integral curves of ~G with Cauchy data (q0, p0 + sαg)
in the cotangent space have the same Cauchy data (q0, v0) in the tangent space. As s→ ±∞, they
spiral around the integral curves of ∓Z.
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In this paper, our objective is to give a precise description of these sR geodesics with large
initial momenta: we will explain in what precise sense they spiral around the Reeb orbits.

To establish this feature, we will use an exact local normal form along an arc of a Reeb orbit.
This result is originally due to Melrose (see [8, Proposition 2.3]); his proof is however rather sketchy
and we will give here a full proof of it (which is far from being obvious) in Section 2.

In Section 3, we will deduce from this normal form the spiraling property of sR geodesics around
Reeb trajectories, not only in the phase space T ?M (the cotangent bundle of M), but also in the
configuration space M . We will then be in a position to explain more precisely what spiraling
means.

2 Melrose normal form along a Reeb orbit

We denote by ω the canonical symplectic form of T ?M . In local symplectic coordinates (q, p), we
have ω = dq ∧ dp (see Appendix A.1 for the sign conventions that are used here and throughout).
The codimension-2 manifold Σ is a symplectic subcone of T ?M , endowed with the restriction ω|Σ.
Note that

Σ = {(q, s αg(q)) ∈ T ?M | q ∈M, s ∈ R}.

We define the Hamiltonian ρ : Σ→ R by ρ(s αg) = |s|. The projection onto M of the Hamiltonian
vector field ~ρ is ±Z, depending on the sign of s. We restrict our study to Σ+ = ρ−1((0,+∞)), the
cone of positive multiples of αg. The cone Σ− = −Σ+ is obtained by changing the orientation of
D. Given an open subset U ⊂M , we denote by Σ+

U the cone Σ+
U = {(q, sαg(q)) | q ∈ U, s > 0}.

We consider the symplectic conic manifold Σ+ × R2
u,v endowed with the symplectic form ω̃ =

ω|Σ + du∧ dv and with the conic structure defined by λ · (q, s αg(q), u, v) = (q, λsαg(q),
√
λu,
√
λv)

for any λ > 0. We define the function I on Σ+ × R2
u,v by I(σ, u, v) = u2 + v2, for any σ ∈ Σ+

and (u, v) ∈ R2. is the Hessian of the function (u, v) 7→ g?(σ, u, v) (which vanishes as well as its
differential at (0, 0)) for any fixed σ ∈ Σ+.

We are going to establish the following Melrose normal form.

Theorem 2.1. Let Γ0 be a closed arc of a Reeb orbit in M , diffeomorphic to [0, 1]. There exist a
neighborhood U of Γ0 and a homogeneous symplectic diffeomorphism χ of a conic neighborhood C
of Σ+

U in T ?U to a conical neighborhood C ′ of Σ+
U × {0} in Σ+

U × R2, satisfying χ(σ) = (σ, 0) for
every σ ∈ Σ+

U , such that g? ◦ χ−1 = ρI.

The proof in done in Sections 2.1 and 2.2 hereafter. But Section 2.1 also contains results
on automorphisms preserving the normal form, and on a parallel transport property along Reeb
trajectories.

2.1 Birkhoff normal form and parallel transport

Let us first recall the Birkhoff normal form derived in [3]. In what follows, given k ∈ N ∪ {+∞},
given smooth maps f1 and f2 on T ?M (or on Σ+×R2

u,v) with values in some manifold, the notation
f1 = f2 + OΣ(k) means that f1 coincides with f2 along Σ (or along Σ× {0}) at order k, at least.

Theorem 2.2 ([3]). Let q0 ∈M be arbitrary. There exist a conic neighborhood C of (q0, αg(q0)) ∈
Σ+ in T ?M \ {0} and a smooth homogeneous symplectomorphism χ : C → χ(C) ⊂ Σ+ × R2

u,v,
satisfying χ(σ) = (σ, 0) for every σ ∈ Σ+ ∩ C, such that g? ◦ χ−1 = ρI + OΣ(∞).

In other words, in local coordinates (q, s, u, v) as above, we have g? ◦ χ−1(q, s, u, v) = s(u2 +
v2) + OΣ(∞). Note that the proof of Theorem 2.2, done in [3], is quite long and technical, and
consists in deriving a normal form with remainder terms, in using the Darboux-Weinstein lemma
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and then in improving the remainder terms to a flat remainder term OΣ(∞) by solving an infinite
series of cohomological equations. The final step of the proof of Theorem 2.1 will in particular
consist of removing the flat term OΣ(∞) (see Section 2.2).

Now, we give a result on symplectomorphisms (canonical transforms) preserving the above
Birkhoff normal form. We identify R2

u,v ∼ C with (u, v) ∼ u+ iv for convenience.

Theorem 2.3. With the notations of Theorem 2.2, let Θ : χ(C)→ χ(C) be a smooth homogeneous
symplectomorphism (for the symplectic form ω̃), satisfying Θ(σ, 0) = (σ, 0) for every σ ∈ Σ+, such
that g? ◦ χ−1 ◦ Θ−1 = ρI + OΣ(∞), that is, such that ρI ◦ Θ = ρI + OΣ(∞). Then there exist
smooth mappings F : C → Σ+ satisfying F (σ, 0) = σ for every σ ∈ Σ+, and θj : Σ+ ∩ C → R
such that {ρ, θj}ω = 0 for every j ∈ N, i.e., all functions θj are constant along the Reeb orbits,
and such that

Θ(σ, u+ iv) =
(
F (σ, u+ iv), ei

∑+∞
j=0 θj(σ)I(u,v)j (u+ iv)

)
+ OΣ(∞),

for all (σ, u, v) ∈ C. In particular, not only ρI but also I and ρ are preserved by Θ modulo OΣ(∞).

Theorem 2.3 actually follows from the Lewis-Sternberg theorem (see [7, 12], see also [5]), or
more precisely from a variant of it where we assume that χ is the identity along Σ+. But we
provide hereafter a more direct proof.

Proof of Theorem 2.3. We start with the following lemma. Recall that (Σ+, ω|Σ) is a symplectic
conic manifold of dimension 4.

Lemma 2.1. Let N > 2 be an arbitrary integer. Let ΘN : χ(C) → χ(C) be a smooth symplecto-
morphism (for the symplectic form ω̃), satisfying ΘN = id+RN+OΣ(N+1), with RN homogeneous
of degree N > 2 in (u, v). Then there exists a smooth function S : χ(C) → R, homogeneous of

degree N + 1 in (u, v), such that ΘN = exp(~S) + OΣ(N + 1).

Proof of Lemma 2.1. Let us choose local symplectic coordinates (q, p) with q = (q1, q2), p = (p1, p2)
so that Σ = {q2 = p2 = 0}. We write ΘN (q, p) = (q1, q2 + AN (q, p), p1 + BN (q, p)) + OΣ(N + 1).
Using the fact that ΘN is symplectic, we get dAN ∧ dp− dBN ∧ dq = OΣ(N). Hence, there exists
S homogeneous of degree N + 1 in the variable (q2, p2) so that dS = ANdp−BNdq +OΣ(N + 1).

This gives the result, because exp(~S)(x) = x+ ~S(x) +OΣ(2N).

Hereafter, we use local coordinates (σ, u, v), with σ = (q, s). In order to avoid heavy notations,
we denote (without any index) by { , } the Poisson bracket with respect to the symplectic form
ω̃ = ω|Σ + du ∧ dv. Note that the variables σ and (u, v) are symplectically orthogonal, and that
the coordinates u and v are symplectically conjugate and {u, v} = 1.

In these local coordinates (q, s, u, v), we have g? ◦χ−1(q, s, u, v) = s(u2 + v2) + OΣ(∞). Setting

Θ(q, s, u, v) = (q′, s′, u′, v′), we have also g? ◦ χ−1 ◦ Θ−1(q′, s′, u′, v′) = s′(u′
2

+ v′
2
) + OΣ(∞). It

follows that s′(u′
2
+v′

2
) = s(u2+v2)+OΣ(∞), which can be written in short as ρI◦Θ = ρI+OΣ(∞).

Besides, since Θ(σ, 0) = (σ, 0) and the Hamiltonian vector field of ρ is preserved, we infer that

σ′ = σ + OΣ(2). Therefore we get that u′
2

+ v′
2

= u2 + v2 + OΣ(4). As a consequence, there
exists θ0(σ) ∈ R such that u′ + iv′ = eiθ0(σ)(u + iv) + OΣ(3), where σ = (q, s). Defining the
smooth 2-homogeneous function S2 = θ0I/2, i.e., S2(σ, u, v) = θ0(σ)(u2 +v2)/2, the corresponding

Hamiltonian vector field ~S2 generates a rotation of angle θ0(σ) in the coordinates (u, v), and we
infer that

Θ = exp(~S2) + OΣ(3).
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Now, writing exp(−~S2)◦Θ = id +R2 + OΣ(4) with R2 homogeneous of degree 3 in (u, v), applying
Lemma 2.1 with N = 3 yields the existence of a smooth 4-homogeneous function S3 such that

Θ = exp( ~S2) ◦ exp( ~S3) + OΣ(4). (1)

Since S2 = θ0I/2, we have {S2, ρI} = 1
2{θ0, ρ}I2 and {S2, {S2, ρI}} = 1

4{{θ0, {θ0, ρ}}I3 = OΣ(6),
and thus

ρI ◦ exp( ~S2) = exp({S2, ·}).ρI = ρI +
1

2
{θ0, ρ}I2 + OΣ(6).

Now, S3(σ, u, v) is a sum of terms of the kind a3(σ)Q3(u, v) with a3 smooth and Q3 homogeneous in
(u, v) of degree 3 (running over u3, u2v, uv2, v3). Taking one of them, S3(σ, u, v) = a3(σ)Q3(u, v),
we compute

ρI ◦ exp( ~S2) ◦ exp( ~S3) = exp({S3, ·}).
(
ρI +

1

2
{θ0, ρ}I2 + OΣ(6)

)
= ρI +

1

2
{θ0, ρ}I2 + a3ρ{Q3, I}+ OΣ(5). (2)

Computing {u3, I} = 6u2v, {u2v, I} = −2u3 + 4uv2, {uv2, I} = −4u3v+ 2v3, {v3, I} = −6uv2, we
note that {Q3, I} is homogeneous of degree 3. Now, since we must have ρI ◦Θ = ρI + OΣ(∞), it

follows from (1) that ρI = ρI ◦ exp( ~S2)◦ exp( ~S3) + OΣ(5), and using (2) we infer that 1
2{θ0, ρ}I2 +

a3ρ{Q3, I} = OΣ(5). Since I2 is 4-homogeneous and {Q3, I} is 3-homogeneous, it follows that
{θ0, ρ} = 0 and a3{Q3, I} = 0. Then we have either a3 = 0 and thus S3 = 0, or {Q3, I} = 0, and
in this case, it follows from Remark A.1 (in Appendix A.2) that Q3 = 0. Then, in all cases, we
have S3 = 0.

Since S3 = 0, writing now exp(−~S2)◦Θ = id + OΣ(3) = id +R3 + OΣ(4) with R3 homogeneous
of degree 3, applying again Lemma 2.1 with N = 3 yields the existence of a smooth 4-homogeneous
function S4 such that

Θ = exp( ~S2) ◦ exp( ~S4) + OΣ(4).

As above, settingQ4(σ, u, v) = a4(σ)Q4(u, v), we compute ρI◦exp( ~S2)◦exp( ~S4) = ρI+a4ρ{Q4, I}+
OΣ(6), and similarly, since we must have ρI ◦ Θ = ρI + OΣ(∞), it follows that a4ρ{Q4, I} = 0.
Then, either a4 = 0 or {Q4, I} = 0. In the latter case, by Remark A.1 we have AQ4 = 0, and by
Lemma A.1 we get that Q4 ∈ P inv

4 , that is, Q4 = cI2 for some c ∈ R.

The reasoning continues by iteration, and is even simpler now that we know that {θ0, ρ} = 0

and thus that ρI ◦ exp(~S2) = ρI + O(∞). In passing, we note that this implies immediately that

I ◦ exp(~S2) = I + O(∞) and ρ ◦ exp(~S2) = ρ + O(∞) We only describe the next step, then the
recurrence is immediate.

Writing exp(−~S4) ◦ exp(−~S2) ◦Θ = id +R4 + OΣ(5) with R4 that is 4-homogeneous, applying
Lemma 2.1 with N = 4 yields the existence of a smooth 5-homogeneous function S5 such that

Θ = exp( ~S2) ◦ exp( ~S4) ◦ exp( ~S5) + OΣ(5).

Taking S4(σ, u, v) = a4(σ)Q4(u, v), we compute ρI ◦ exp( ~S2)◦ exp( ~S4)◦ exp( ~S5) = ρI+{a4, ρ}I3 +
a5ρ{Q5, I}+ OΣ(7). Therefore, reasoning as above, we infer that {a4, ρ} = 0 and a5ρ{Q5, I} = 0.
Then either a5 = 0 or {Q5, I} = 0. In the latter case, we get Q5 = 0 by Remark A.1. Hence
S5 = 0.

Since S5 = 0, writing now exp(−~S4) ◦ exp(−~S2) ◦Θ = id + OΣ(5) = id +R5 + OΣ(6) with R5

homogeneous of degree 5, applying again Lemma 2.1 with N = 5 yields the existence of a smooth
6-homogeneous function S6 such that Θ = exp( ~S2) ◦ exp( ~S4) ◦ exp( ~S6) + OΣ(6). Reasoning as for
S4, we establish that S6(σ, u, v) = a6(σ)I(u, v)3.

A recurrence argument concludes the proof.
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Parallel transport along Reeb trajectories. An interesting consequence of Theorem 2.3 is
that this result reveals a property of parallel transport of D along Reeb trajectories: this transport
is the image by the differential of Π ◦ Θ−1 of the trivial transport in the (u, v) planes. Indeed,
Theorem 2.3 implies that dΘ(σ, 0) is a rotation in the (u, v) plane with constant angle 2s1(σ) along
the orbits of ~ρ. Projecting this property onto M gives the invariance of the parallel transport under
the change of charts preserving the Birkhoff normal form.

2.2 End of the proof of Theorem 2.1 by Nelson’s trick

To end the proof and in particular to remove the flat remainder term OΣ(∞) in the Birkhoff normal
form given in Theorem 2.2, we use the nice scattering method due to Edward Nelson (see [10]),
thanks to which we will establish an exact normal form in a Reeb flow box.

The Birkhoff normal form given in Theorem 2.2 is valid in some conic neighborhood of Σ+
U ,

where U is a flow box for the Reeb flow, i.e., U is diffeomorphic to Sx × (−2c, T0 + 2c)y for some
c > 0, with Z = ∂y. Theorem 2.2 provides us with a homogenous symplectic diffeomorphism that
we use as a coordinate system, so that we now work in Σ+

U × R2
u,v.

We define the Hamiltonian H =
√
ρI on Σ+ × (R2 \ {0}). We set J =

√
I/ρ and we define θ

so that (J, θ) are polar coordinates in R2
u,v. The function J is homogeneous of degree 0 and is a

measure of the angular distance to Σ. The sphere bundle S(Σ+
U × (R2 \ {0})) is thus parametrized

by (m,J, θ) = [m,αg(m); J, θ)] with m ∈ U .
We denote by Ht the flow of the Hamiltonian vector field

~H =
J

2
~ρ+

1

J

∂

∂θ
,

which is homogeneous of degree 0 and hence is defined on the sphere bundle. It is explicitly given
by

Ht(m,J, θ) = (RJt/2(m), J, θ + t/J),

where (Rs)s∈R is the Reeb flow on M .
Let V0 ⊂ V be defined by V0 = S0 × (−c, T0 + c) with S̄0 ⊂ S. Let us choose 0 < a0 < a1

and denote by Cj the cones Cj = {(m,J, θ) | m ∈ Uj , J < aj}. Using the Birkhoff normal form,
recalling that G =

√
g?, we have G2 = H2 + OΣ(∞), where the remainder term OΣ(∞) is smooth.

This can be rewritten as
G2 = H2(1 + OΣ(∞)),

so that the geodesic Hamiltonian satisfies G = H + OΣ(∞) in C1 and the remainder term OΣ(∞)
in the latter equation is smooth even though G and H are not.

We now extend G to Σ+×(R2\{0}) as follows: let ψ be a smooth function that is homogeneous
of degree 0 on Σ+ × R2 identically equal to 1 in C0 and identically equal to 0 outside of C1. We
define G̃ = ψG + (1− ψ)H, and we check that R = G̃ −H = OΣ(∞) and that {J, G̃} = ȮΣ(∞),
where the upper dot indicates that we are dealing here with functions on Σ+×(R2\{0}). It follows
from the definition that the flows G̃t and Ht are complete and coincide outside of C1.

Lemma 2.2. Given any z0, we set J (t) = J(G̃t(z0)). For every N > 2, there exist CN > 0
and DN > 0 such that, if 0 < J (0) 6 1

2 and 0 6 t 6 CN/J (0)2N , then J (t) 6 2J (0) and
|J (t)− J (0)| 6 DNJ (0)2N+1 t.

Proof of Lemma 2.2. Since {J, G̃} = ȮΣ(∞) is homogenous of degree 0, for any N there exists
C > 0 such that

0 < J(z) 6 1⇒ |{J, G̃}(z)| 6 CJ(z)2N+1.
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It follows that J̇ (t) 6 CJ 2N+1(t) as long as J (t) 6 1. Integrating, we get

J (t) 6
J (0)

(1− 2NCtJ 2N (0))
1/2N

,

as long as (2NCJ 2N (0))t 6 1/2 and J (t) 6 1. Hence, there exists CN > 0 (e.g., CN = 22N−1
22N+1NC

)
such that

0 6 t 6 CN
1

J (0)2N
and J (0) 6

1

2
⇒ J (t) 6 2J (0).

Therefore J(t) 6 2J(0). Using that |J ′t)| 6 CJ2N+1(t) 6 C(2J(0))2N+1, we get the second
estimate (with DN = Z2N+1CCN ).

Using the fact that ~̃G − ~H = OΣ(∞), taking a1 small enough, we assume that, in the decom-

position ~̃G(z) = a∂y + V + b∂u + c∂v, where V is tangent to S1 × {y}, we have a > J/4 as long as
z is in C1.

Lemma 2.2 then implies that, for ε > 0 small enough, if t 6 ε(J (0))2N then J (t) > J (0)
2

so that the flow G̃t is going out of C1 within a time of order at most O(1/J (0)) in both time
directions.

Following the method of Nelson, let us now define χ : Σ+ × (R2 \ {0})→ Σ+ × (R2 \ {0}) by

χ(z) = lim
t→+∞

(Ht ◦ G̃−t)(z).

It is well defined and the limit is obtained within a time O(1/J(0), because as soon as t0 is such
that G−t0(z) has left C1, we have Ht ◦ G̃−t(z) = Ht0 ◦Ht−t0 ◦ G−t+t0 ◦ G−t0 for t > t0, and the
flows of H and G̃ coincide outside of C1.

By definition we have χ ◦ G̃t = Ht, so that χ ◦Gt(z) = Ht(z) for t small and z ∈ C0, since the
flows of G and G̃ coincide there.

Moreover, χ is a symplectomorphism of Σ+ × R2 \ {0} whose inverse is given by χ−1 =
limt→+∞(G̃t ◦H−t)(z).

Let us finally prove that we can extend χ to Σ+×R2 by the identity on Σ and obtain a smooth
symplectomorphism that transforms G to the desired Melrose normal form in C0. The latter fact
follows from the definition so that the only issue is the smooth extension.

Let φ be a smooth function that is homogeneous of degree 0 on Σ+×R2. Following [11, Section
3], we compute the time derivative of D(t)(z) = φ(Ht ◦ G̃−t(z)), given by

D′(t) = −{G̃,D}+ {H ◦ G̃−t,D} = −{R ◦ G̃−t,D} = −{R,φ ◦Ht} ◦ G̃−t,

where we have used, successively, the invariance of G̃ under G̃t, and the invariance of the Poisson
bracket under G̃t. Using the explicit expression for Ht and the fact that J is preserved by the flow
of Ht, we see that, as long as J(z)× t is bounded above, the differential of Ht at z is O(J(z)−2).
It follows that the Poisson bracket {R,φ ◦ Ht} is O(J(z)∞) as long as J(z)t is bounded. Using
Lemma 2.2, it follows that D′(t) = O(J (0)∞), and thus |D(t) − D(0)| = O(J (0)∞) as long as
J (0)t is bounded.

Locally in z, in the expression giving χ(z) instead of the limit t→ +∞ we can fix t = T0 chosen
of the order of 1/J(z). Then, we have |D(t)−D(0)| = O(J (0)∞) for t = O(1/J(0)). Choosing φ
among a finite set of functions that give local coordinates in C1, we obtain that d(χ(z), z) = O(J∞)
for some distance d. We have then d(z0, χ(z)) 6 d(z0, z) + d(z, χ(z) if z0 ∈ Σ × {0}. This proves
that χ, extended by the identity on Σ+ × 0, is continuous.
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To finish, Nelson’s trick consists of constructing extensions of these flows to the k−jets spaces.
For example, if k = 1, we consider the lifts of both flows to the tangent space T (Σ+×R2). The same
properties as above are satisfied, and we get that χ can be extended smoothly and its differential
is the identity on Σ+ × {0}. Hence χ can be extended to a diffeomorphism such that G̃ ◦ χ = H
and, in particular, G ◦ χ(z) = H(z) if z ∈ C0. Theorem 2.1 is proved.

3 Spiraling along periodic Reeb orbits

In this section, we show how the Melrose normal form along a Reeb orbit given in Theorem 2.1
can be used to describe the spiraling property of geodesics around Reeb trajectories.

Considering the symplectomorphism χ given by Theorem 2.1, the geodesics of large initial
momenta are images under χ−1 of the curves

t→
(
RtJ0/2, J0e

it/J0+θ0
)
,

with t = O(1/J0). In order to describe these images in a precise way, it is useful to compute the
differential Ξ of χ−1 along Σ+ × {0}. Fixing a positive g-orthonormal basis (X,Y ) of D which is
parallel along the Reeb flow for the parallel transport defined in 2.1, we have

Ξσ(δσ, δu, δv) = δσ +
1√
ρ(σ)

(δu~hX + δv~hY ).

To state the result below, it is more convenient to define a complex structure on D: the product
by i is defined as the rotation of angle π/2 with respect to the orientation of D and the metric g.

Theorem 3.1. Let q0 ∈M be arbitrary, and let (q0, p0) ∈ T ?q0M be the Cauchy data of a geodesic
t 7→ γ(t) starting at q0 with unit speed γ̇(0) = X0 ∈ D(q0). We assume that h0 = hZ(p0) � 1
(large initial momentum).

Then, there exists a point Q0 = Q0(q0, p0) ∈ M close to q0, and a vector Y0 ∈ D(Q0) close to
X0, such that, denoting by Γ(τ) = Rτ (Q0) the Reeb orbit of Q0, and by Y (t) the parallel transport
of Y0 along Γ,

we have, using the complex structure on D, for t = O(h0),

γ(t) = Γ(J0t/2)− iJ0e
it/J0Y (J0t/2)) + O(J2

0 ), γ̇(t) = eit/J0Y (J0t/2) + O(J0),

with J0 = h−1
0 + O(h−3

0 ) and Q0 = q0 − ih−1
0 X0 + O(h−2

0 ).

In other words, this result says that, on time intervals of length of the order of 1/h0, the
geodesics spiral along orbits of the Reeb flow taken for time intervals O(1).

Proof. We have g?(q0, p0) = 1 and thus J0 = 1/ρ0. Using that hZ = ρ + OΣ(2), we get that
J0 = h−1

0 + O(h−3
0 ). Setting z(t) = Gt(q0, p0), we have

z(t) = χ−1

(
RJ0t/2(Q0),

1

J0
αg(Q0), J0e

it/J0

)
.

This defines Q0 and we have γ(t) = π(z(t)), where π : T ?M →M is the canonical projection. The
result now follows by taking (if necessary) a covering of the Reeb trajectory by a finite number of
charts in which the normal form is valid.
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4 A conjecture on periodic geodesics

We consider a periodic orbit Γ of the Reeb flow on M of primitive period T0 > 0. In this section,
using the normal form, we derive an approximation of the return Poincaré first return map of the
geodesic flow, for geodesics spiraling around Γ and that are almost closed within time T0/J0. Using
this, we give a conjecture on the lengths of long closed geodesics close to Γ.

Along Γ, the fiber bundle D is trivial. We then consider a g-orthonormal frame of D(Γ(0)),
that we transport in a parallel way along Γ. In this way, we obtain a monodromy of angle α0. Let
us consider geodesics spiraling around Γ that are close to γ0(t) = RJ0t/2(Γ(0))− iJ0e

it/J0Y (J0t/2).

The conditions for γ0 to be a periodic integral curve of
−→
ρI of period Tj,k, covering j times Γ and

winding k times around Γ, are given by J0Tj,k = 2jT0 and
Tj,k

J0
+ jα0 = 2kπ. It follows that

Tj,k = 2

√
jkπT0

(
1− jα0

2kπ

)
.

We formulate the following conjecture:

If the Reeb periodic orbit is non degenerated, then for every j ∈ N \ {0} there exists
a sequence of closed geodesics covering j times Γ with lengths close to Tj,k for k large
enough.

This conjecture is consistent with our computation made in the Heisenberg flat case in [3,
Section 3.1] and with the case of the sphere S3 computed in [6]. We guess that our conjecture
holds true at least if I is globally defined, which is the case in the example described in [4].

A Appendix

A.1 Sign conventions in symplectic geometry

Since there are several possible sign conventions in the Hamiltonian formalism, we fix them as
follows.

Given a smooth finite-dimensional manifold M , the canonical symplectic form on the cotangent
bundle T ∗M is ω = dq ∧ dp = −dθ with θ = p dq in local symplectic coordinates (q, p).

Given a (smooth) Hamiltonian function h, the associated Hamiltonian vector field ~h is defined

by ι~hω = ω(~h, ·) = dh. In local coordinates, we have ~h = (∂ph,−∂xh).

The Poisson bracket of two Hamiltonian functions f and g is defined by {f, g} = ω(~f,~g) =

df.~g = −dg. ~f . In local coordinates, we have {f, g} = ∂qf∂pg − ∂pf∂qg. We have
−−−→
{f, g} = −[~f,~g].

Given a vector fieldX onM , the Hamiltonian lift is the function defined by hX(q, p) = 〈p,X(q)〉.
Given two vector fields X and Y on M , we have {hX , hY } = −h[X,Y ].

A.2 A useful lemma for homogeneous polynomials

Given any integer k, we define Pk as the set of k-homogeneous polynomials in two variables (u, v).
We define

P 0
k =

{
Q ∈ Pk |

∫ 2π

0

Q(cos θ, sin θ) dθ = 0

}
,

P inv
k = {c(u2 + v2)k/2 | c ∈ R}.

The set P 0
k is the set of k-homogeneous polynomials having zero average along the circle u2+v2 = 1.
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We endow Pk with the scalar product 〈Q1, Q2〉 = 1
2π

∫ 2π

0
Q1(cos θ, sin θ)Q2(cos θ, sin θ) dθ. Note

that P 0
k ⊥ P inv

k . Considering polar coordinates, defining the endomorphism A of Pk defined by
A = u∂v − v∂u (or equivalently, considering the operator ∂θ), we have the following immediate
result.

Lemma A.1. • If k is odd then Pk = P 0
k and A is invertible.

• If k is even then Pk = P 0
k ⊕ P inv

k , and we have range(A) = P 0
k and ker(A) = P inv

k .

Remark A.1. Setting I(u, v) = u2 + v2, endowing R2
u,v with the symplectic form du ∧ dv, it is

useful to note that, given any Q ∈ Pk, we have

{I,Q} = u∂vQ− v∂uQ = AQ.

In particular, when k is odd, we have {I,Q} = 0 if and only if Q = 0.
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