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Abstract

This paper aims at proposing a new way of statistically characterising the
spatial distribution of a cloud of space debris generated by a fragmenta-
tion in orbit, by using a family of functions that is well-known in applied
mathematics. Such a family can be very convenient to describe through a
few parameters the main features affecting the dynamical evolution of the
whole cloud, and the mutual distance between objects within the cloud, at
different epochs. The tested population of space debris is supposed to be
a configuration of points resulting from the realisation of a point process
and what we call “exploratory tools” from spatial statistics are applied to
it. The role played by some parameters driving the breakup or the dynam-
ical model on the statistical results is investigated with examples based on
Fengyun-1C-like and Molniya-like cases.

Keywords:
Space debris, spatial distribution, statistical behaviour, point processes,
Fengyun-1C breakup, closure times.

1. Introduction

The issues related to space debris are now a major concern because their
number in orbit has significantly increased during the last years. Space
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debris are made up of passive artificial objects in orbit around the Earth,
covering a wide range of orbital configurations (semi-major axes, inclina-
tions, eccentricities, ...), and with a huge variety of physical properties (in
particular a wide range of Area-to-Mass Ratios (AMR)). Since the launch
of Sputnik in 1957, more than 8 000 payloads have been launched in space
and more than 4 500 are still in orbit1 (2018). Intensification of space ac-
tivities leads to an increasing number of space debris also due to in-orbit
fragmentation events. This number is likely to continuously grow in the
future in spite of mitigation guidelines recently adopted by working groups
such as the Inter-Agency Space Debris Coordination Committee (IADC).
Global analyses of the long term evolution of the space debris population
are thus still more than expected to investigate the long term sustainability
of the space activities.

Two events have particularly contributed in the growth of space debris in
low-orbit over the last decade: (i) the destruction of the Fengyun-1C satel-
lite that occurred in 2007 at an altitude of about 860 km and (ii) the acci-
dental collision between Cosmos-2251, a russian inactive telecommunication
satellite, and the american active telecommunication satellite Iridium33 that
occurred in 2009. This was the first accidental catastrophic collision ever
registered between two satellites [1], creating thousands of fragments that
spread out between 200 and 4 000 km in altitude. These two catastrophic
events are at the origin of a wide literature, dealing with their consequences
on the long term evolution of space debris in the Low-Earth-Orbit (LEO)
region ([1, 2, 3, 4, 5, 6, 7]).

In this framework, this paper aims at proposing a new way of statistically
characterising the spatial distribution - in view of collision risk evaluation -
of a cloud of space debris generated by a fragmentation in orbit, by using a
family of functions that is well-known in applied mathematics, and that we
find very convenient to be used in the framework of space debris. We are
particularly interested in the short term evolution of the cloud as the fastest
changes in the spatial distribution occur during the first revolutions after
the fragmentation. Section 2 introduces statistical tools adapted to space
debris issues while Section 3 describes the dynamical model to carry out
the simulations. In Section 4, the role played by some parameters driving
the breakup or the dynamical model on the statistical results is investigated
with an example based on a Fengyun-1C-like case ; finally conclusions and

1According to Centre National d’Études Spatiales (CNES) website (https://
debris-spatiaux.cnes.fr/) and Space-track reports (https://www.space-track.org/)

2



prospects are highlighted in Section 5.

2. G-function: a tool to statistically characterise the spatial prop-
erties of a cloud of debris

The concentration of objects within a cloud of space debris can be en-
hanced by statistical tools such as what is called “exploratory statistics”.
We base the rest of the paper on such a function, called G, that we define
hereafter.

The space debris population (or parts of it) is described as being a reali-
sation of a point process X that stands for a mathematical model describing
random configurations of points. This is a mathematical object more than
well-known by mathematicians but that we recall here to be self-consistent.
The points configurations are observed in an observation window denoted
W, that can be here a torus around the parent body’s orbit. The intensity
λ of such a point process corresponds to the mean number of points per
volum unit (independently from their mass). To adapt the usual formal-
ism to space debris populations, the following hypotheses are added: (i) the
tested population of space debris is supposed to be a configuration of points
resulting from the realisation of a point process (that is not that obvious),
(ii) the point process is considered to be locally stationary, implying that a
translation of the point configuration will not change its statistical proper-
ties. In other words, the results of the computation will not depend on how
the observation window is defined and λ will be the same everywhere in W
that can be defined as the convex envelope of the cloud:

λ = λ0 =
EN(X)

ν(W )
. (1)

with EN(X) the mathematical expectation of the point process X number
of points (that corresponds to the mean number of points, that is then fixed
once for all), and ν(W ) the volum of the observation window W .

In practice, informations on the model to be built are obtained by car-
rying out an exploratory analysis that defines how summary characteristics
can give hints on the behaviour of the point process. These characteristics
are based on the computation of the moments of the distribution. In the fol-
lowing, we use the “nearest-neighbour distance distribution function” G(r)
[8]: let b(x,r) be a ball or radius r > 0 centred in x, a point of the point
process X, and let ρ(x,X) be the minimum Euclidean distance between x
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and another point of X. The G-function describes the probability of finding
a point of X in that ball without counting x itself,

G(r) = Px(ρ(x,X\{x}) ≤ r). (2)

The way theG(r) function is estimated has to be carefully defined : inter-
actions are possible between points that lie outside the observation window
(and for which we have no information) and points of the point process
located near the border of W, as an edge effect [9]. In order to overcome
this problem, we consider only the points which are located at a minimal
distance from the border. This method is the one used to construct the
Border Method estimator [10, 11, 12, 13]:

Let X be a stationary point process, and W its observation window.
ρ(x,X\{x}) and ρ(x, ∂W ) are the minimum Euclidean distance between a
point of the process and (i) its nearest neighbour, and (ii) the border of the
window ∂W , respectively, we have [9]:

Ĝ(r) =

∑
x∈X 1{ρ(x,X\{x}) ≤ r}.1{ρ(x, ∂W ) > r}∑

x∈X 1{ρ(x, ∂W ) > r}
. (3)

where 1(.) is the indicator function defined as follows:

1(x ∈ X) =

{
1 if x ∈ X
0 otherwise

. (4)

Figure 1 illustrates the estimation of the G-function for a point
process in two dimensions at a fixed time ; the idea is exactly
the same in 3D. The black crosses correspond to the points x of
the point process studied X defined in the observation window
W depicted by the black rectangle. In a space debris point of
view, the crosses stand for the fragments generated by an on-
orbit breakup and the whole cloud of objects can be seen as the
point process. In order to estimate the G-function, we center a
circle (or ball in 3D) of radius r on one of the crosses ; this is
represented by the blue cross and circle on Figure 1. Then, we
count the number of other points (i.e.: other crosses) that are
located inside the blue circle and at a distance greater than r of
the window boundary. This last condition, to determine which
crosses have to be considered for the estimation, comes from our
choice to use the border method estimator. After, the center of the
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circle is changed and becomes one of the remaining points, until
all the points of the point process have been selected. The result is
finally normalised by the total number of points belonging to the
point process that is equivalent to the total number of fragments
belonging to the generated cloud. This process is repeated for
other values of the circle’s radius r to get the G-function estimation
for several neighbourhoods at a fixed time.

Figure 1: Graphical illustration of the estimation process of the G-function by using
the border method estimator for a point process in two dimension. The black
crosses correspond to the points x of the point process studied X defined in the
observation window W depicted by the black rectangle.

In the following sections, to investigate the role played by the parameters
in the model - such as the typical (maximum) velocity increment value and
the position and orbit characteristics of the parent satellite -, the G-function
estimation evolution is plotted with respect to time for a fixed radius. The
estimation is always based on Equation (3) ; but picking the value of the
probability for a given radius and for each epoch, provides a view of the
temporal evolution of the estimation. Let us note that it is not a formal
estimation of the G-function with respect to time, but only a change of the
plotted variables: instead of plotting the estimation of the G-function with
respect to the radius of the ball for a fixed time, we choose a radius and
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pick the results of the estimation for different epochs to get the graphical
representation. The selection of radii is based on the corresponding “time
distance” between objects within the cloud. For example, if the radius
chosen is equal to 100 km and the relative velocity of the objects is 10 km/s,
the corresponding time distance is of the order of 10 seconds. That is, the
G-function provides the probability of finding a neighbour 10 seconds away
from a piece of space debris within the observation window that is chosen.

3. Modeling

3.1. Breakup Model

In this paper, as we are interested in the first place in the study of the
impact of some parameters changes (velocity increment distribution, initial
conditions of the parent body), a simplified model that determines only
the velocity increment distribution is convenient. Moreover, as we are not
interested in the consequences of the choice of the statistical law used to
derive the ∆V distribution, only the influence of the parameters related
to one particular statistical law are studied. In this framework, the
breakup model used for the simulation is based on a uniform law
applied to each of the three directions defining the local frame with
minimum and maximum boundaries for the velocity increment
distribution. These boundaries are set symetric to zero (as the
event is considered as isotropic), and defined by a percentage p
applied to the parent satellite velocity at the epoch of the event.
The uniform distributions are then used in the local frame of the
parent body to generate the initial conditions of each fragment
created by the breakup. The number of generated objects being
invariant and set equal to 500 (arbitrarily) for all the simulations
throughout this paper, the only parameter that is modified in the
different test cases is the value of the percentage to be applied.
Finally, the ∆V distribution law for our simplified breakup model
is defined by Equation (5).

Dsimple
∆V (max) = U(max,−max) (5)

where max = p%× Vsat with p ∈ R.
To consider more parameters, such as the number of fragments, the size or
Area-to-mass (A/m) ratio distributions, the NASA Breakup Model could be
used in a future study.
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3.2. Dynamical Model

The propagation is performed with the “FAST” software (Finalised An-
alytical Satellite Theory © CNES/IMCCE). The approach used in this soft-
ware for the orbital modeling is based on an analytical theory to get orbital
element time series [14]. An analytical method, instead of numerical,
avoids important computation times and the model is accurate
enough to be considered as representative of the main features
affecting both the cloud and single objects: changes of the orbital
period (due to a change of the semi-major axis), and the secu-
lar variations of the right ascension of ascending node and of the
argument of perigee. It is then relevant to consider only the per-
turbations due to the geopotential up to J2 (first order). Indeed,
as we look for the effect of a change of velocity of the order of
a few percent, roughly speaking only the J2 parameter is signif-
icant. As it can be established from the integral of energy that

∆a =
2

n
∆V , and since n is of the order of 10−3 rad.s−1, only the per-

turbations inducing changes of the semi-major axis greater than
2 km, namely J2, have to be taken into account.

In order to consider all the values of eccentricity or inclination (small or
large), the model is written in a set of equinoctial elements E composed by
a mean part Ē and a short periodic part ∆E, so as to write:

E(t) = Ē(t) + ∆E(t)

The mean part Ē is governed by the secular variations induced on an-
gular elements by the dynamical flattening of the Earth J2:

Ω̇ = −3

2

(
Re
a

)2

n̄J2
cos i

(1− e2)2

ω̇ = −3

4

(
Re
a

)2

n̄J2
1− 5 cos2 i

(1− e2)2
,

Ṁ =
3

4

(
Re
a

)2

n̄J2
1− 3 cos2 i

(1− e2)3/2

The short periodic part ∆E, read ∆E = L(Ē)
∂Wgen

∂Ē
, is governed by the

Lagrange Planetary Equations written in a 6×6 matrix L(Ē) and by a gen-
erating function Wgen dealing with the short periodic part of the motion.
In this paper, it is convenient to only account for the short periods induced

7



by J2, as we work mainly in LEO meaning that the order of the short
periods maximum amplitude due to J2 is 10 km while the order
of the most important other short periods (due to other orbital
perturbations) is the kilometer at most.
On another hand, knowing that the ∆V applied to the parent satel-
lite to generate the breakup is very small with respect to the ve-
locity of the parent body (order of m.s−1 and km.s−1 respectively)
and that the short periods induced by J2 are of first order, this
implies that the addition of the short periodic terms is completely
negligible when the velocity increments are applied (in the local
frame). It can be verified with the equations developed by [15]
presenting, in the local frame, the velocity variations generated
by the geopotential derived from Kaula’s equations that describe
the satellite motion into the gravitational field of a rigid body. In
the tangential direction we have:

∆vτ = na∆e
∞∑
s=1

sNs cos sM−n∆a
∞∑
s=0

1

2
Ks cos sM−na(∆ω+∆Ω cos i)

∞∑
s=1

sHs sin sM

(6)
where,

Ns(e) =
2

se
√

1− e2
Js(se)

Ks(e) = (2− δ0s)
√

1− e2Js(se)

Hs = −2e

s2
J ′s(se)

with Js(se) =
∞∑
p=0

(−1)p

p!(s+ p)!

(se
2

)2p+s
the Bessel function of first kind.

By considering Equation (6) up to the first order and small eccen-
tricities, and by converting the variations in ω, Ω and e (∆ω, ∆Ω

and ∆e respectively) in term of ∆a so as to get ∆e = ∆ω = ∆Ω =
∆a

a
,

some simplifications are made.

∆vτ ≈ 2n∆a− n∆a+ 2ne(∆a+ ∆a cos i) = (n+ 2ne(1 + cos i)) ∆a

The main term of this last equation is the quantity n∆a which is
of 10 m.s−1 order. Similar results are obtained for radial and out-
of-plan directions. Then, the change of velocity at the event epoch

8



can be applied either to the mean or osculating elements (they
have the same orders of magnitude) and they are then transformed
into a position/velocity vector by applying usual transformations.

3.3. Spatial evolution of a space debris cloud

As described by [16] or [17], four different phases can be considered after
a break-up of a satellite in orbit. During the first phase (Phase A) that lasts
only a couple of hours, the cloud can be represented as a “pulsating ellip-
soid”. But quickly - a few hours after the breakup in LEO -, the semi-major
axis differences between the created objects leading to different orbital pe-
riods, the ensemble spreads along the parent’s body orbit and forms a torus
(Phase B). Then, due to the non-sphericity of the Earth, the torus opens to
a band limited in latitude by the inclination of the parent satellite (Phase
C). The transition between Phase B and C can take several years as Ω and ω
have a period of the order of years. The last phase (Phase D) starts right af-
ter the complete nodal and apsidal dispersion. Until the beginning of Phase
D, it can be considered that the motion of the fragments is mainly perturbed
by the geopotential. It is only during the last phase that the perturbation
due to the atmospheric drag becomes dominant and the orbital decay begins.

In this paper, we focus in particular on the evolution of the fragments dur-
ing the Phase B (i.e. torus formation) that is a quick step in the spatial
evolution process of the cloud. Moreover, as the main perturbation of the
motion during this phase is due to the geopotential, this is the only one
considered for the orbit propagation/dynamical modeling.

4. Statistical analysis of the apsidal closure time (short term)

In this section, the fragmentation of a Fengyun-1C-like orbit is investi-
gated: an orbit in the LEO regime (a ≈ 7 228 km), almost circular (e ≈
0.00135) with an inclination of about 98◦ and a keplerian orbital period of
approximately 1 hour and 42 minutes, that makes the simulation be very
close to a Sun-synchronous configuration. Breakup simulation is performed
with the simplified breakup model (Section 3.1) while the orbit propagation
is carried out with the software described in Section 3.2. We study the con-
sequences of the choices of the following model parameters as revealed by
statistical functions defined above: magnitude of the ejection velocity
of the fragments, parent body’s orbit characteristics and position along
the orbit where the breakup occurs.

9



4.1. Influence of the choice of the maximum change of velocity allowed by
the breakup model

A set of ∆V , with norm and orientation randomly distributed in space,
is applied to the velocity vector of the parent body. Based on the posi-
tions and velocities of the real observed fragments in April 2008
and on the velocity of the parent body, derived from the initial
conditions, the velocity increments distribution of the generated
fragments is determined. The datafile containing the positions
and velocities of the fragments at the reference epoch 04/23/2008
has been provided by Carmen Pardini and Luciano Anselmo and
is described in [3]. From the study of this ∆V distribution, and in
particular by the examination of the data serie quantiles, it can be
established that approximately 99% of the objects have a ∆V of
about 435.6 m/s or less with respect to the parent body’s velocity.
We then notice that by choosing 6% as the maximum percentage
of the parent satellite velocity at the epoch of the event, we get
444 m/s as the maximum value for the velocity increment that
is close to the previous value derived from the provided datafiles.
Then, for the first case that will be called “realistic” hereafter, in
particular in term of distribution, the maximum value of the ∆V
distribution is set equal to 6% of the parent body velocity. For the
other test cases, we chose two values of percentage to get a “low”
case with a maximum value of 1% of the parent satellite velocity
and a “high” case with a maximum value of 9%. For the three
cases, the breakup is considered as isotropic (500 fragments gen-
erated) and the initial conditions of the propagation over two days
are the last Two-Line-Elements (TLE) known before the Fengyun-
1C satellite breakup. The perturbations considered are only those
due to the J2 term of the geopotential.
Figure 2 shows the shape of the cloud for the “low” and “realistic” cases
(left and right respectively). This figure figures out the influence of ∆V
changes in the shape of the torus, meaning that the geometric properties of
the generated torus characterise the strength of an in-orbit fragmentation
event. Minimum and maximum variations in inclination and perigee/apogee
positions are summarised in Table 1.
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Figure 2: Left: shape of the cloud for the “low” fragmentation case. Right: shape of the
cloud for the “realistic” fragmentation case. In both cases, the epoch chosen corresponds
to 2 days after the breakup and the red orbit represents the evolution of the parent satellite
during the simulation if the breakup does not occur (we can notice the effect of the node’s
secular drift). Moreover, it seems from the naked eye that we are over the apsidal closure
time, as the torus is already completed.

Table 1: Minimum and maximum variations in perigee/apogee positions (in kilometers)
and inclination (in degrees) induced by the fragmentation event. The maximum value of
the ∆V applied to the parent body leads to major changes in the geometry of the torus
generated, giving hints on the strength of the breakup event.

Min. rp (km) Max. ra (km) Min. ∆i (deg) Max. ∆i (deg)
Max. ∆V = 1% 7 220.712 7 653.313 1.29× 10−4 0.61
Max. ∆V = 6% 7 220.710 10 287.262 8.10× 10−4 3.57

Figures 3, 4 and 5 show the evolution of the probability of finding a
neighbour with time for different radii (namely 70 km, 140 km and 210 km)
and for the three ∆V cases. The radii are chosen based on the time distance
they correspond to: the time distance for a velocity of the order of 7 km.s−1

and a radius of 70 km is equal to 10 seconds (respectively 20 seconds and
30 seconds for radii of 140 km and 210 km). Therefore, on Figure 3 the
fragments are approximately and not greater than 10 seconds (respectively
20 seconds and 30 seconds) distant from each other corresponding to a space
radius of 70 km (respectively 140 km and 210 km). Any other practical
conversion factor between space and time would have been convenient as
well to enlighten the main features affecting the evolution of the probability.
The time distance values are determined from the velocity of the parent
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body and are based on the assumption that this velocity is approximately
equal to 7 km.s−1. As the generated fragments do not have the same
velocities within the cloud, the selected time distance can be seen
as an approximation that corresponds to the truth, but only for
an averaged point of view.
The obtained probabilities are plotted with a logarithmic scale.
Their estimation is carried out every 10 minutes over a period of
2 days (propagation time of the orbits).

Figure 3: Probability of finding a neighbour (G-function) in a radius of 70 km from a space
debris after the simulation of fragmentation. The blue curve stands for the “low” case,
the red one represents the “realistic” case and the black curve corresponds to the “high”
case. The estimation of the G-function is carried out every 10 minutes over a period of 2
days.
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Figure 4: Probability of finding a neighbour (G-function) in a radius of 140 km from a
space debris after the simulation of fragmentation. The blue curve stands for the “low”
case, the red one represents the “realistic” case and the black curve corresponds to the
“high” case. The estimation of the G-function is carried out every 10 minutes over a
period of 2 days.

Figure 5: Probability of finding a neighbour (G-function) in a radius of 210 km from a
space debris after the simulation of fragmentation. The blue curve stands for the “low”
case, the red one represents the “realistic” case and the black curve corresponds to the
“high” case. The estimation of the G-function is carried out every 10 minutes over a
period of 2 days.

The probability inside the cloud varies a lot with time, especially dur-
ing the first revolutions around the Earth after the fragmentation. This is
due to the short distance between objects within the cloud, distance that
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evolves with time along the orbit, because of the differences in orbital pe-
riod for each created fragment. Indeed, the maximum mean motion change
relative to the parent satellite is approximately equal to 2.56× 10−4 rad.s−1

and leads to a maximum variation in orbital period of about 34 minutes
after the fragmentation, which is a lot, relative to the parent body’s period
(≈ 100 minutes).
For the “low” case when the radii selected are 140 km and 210 km, the os-
cillations, although present, are less visible during the first revolutions after
the breakup. This is explained by the fact that the strength of the event
is not important enough to spread all the fragments during the first revolu-
tions, so all the debris can be found in a neighbourhood of 140 km and thus
obviously in a 210 km neighbourhood, at least during the first hours of the
simulation.
Nevertheless, for all the test cases and all the radii considered, the global
tendency is the decrease of the probability with time as the cloud spreads
along the parent satellite orbit. As expected, the probability value is always
bigger in a radius of 210 km around a space debris than for other radii, even
at the end of the propagation. Moreover, and as expected as well based on
the cloud shapes displayed on Figure 2, the probability of finding a neigh-
bour within a given perimeter, defined by the ball radius r decreases with
the increase of the maximum value of the ∆V applied, corresponding to a
more important spatial distribution of the objects.
The G-function tends to stabilise through time for all the radii based on
Figures 3 to 5 but the simulation is only performed over 2 days. When the
simulation duration is pushed to 10 years, for all the study cases, this ten-
dency is confirmed: for the “realistic” case (maximum ∆V set equal to
6% of the parent satellite velocity), the probability of finding a neigh-
bour tends to 0 for a radius of 70 km and to 1 × 10−3 for radii of 140 km
and 210 km. These results lead to the observation that the distribution of
the cloud tends to the uniformisation through time ; as the probability of
finding a neighbour does not evolve anymore, the minimum distance (mean
euclidean) between the fragments tends to become constant.
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Figure 6: Evolution of the mean minimum euclidean distance between the cloud
fragments through time, after the simulation of the breakup.tion. The blue curve
stands for the “low” case, the red one represents the “realistic” case and the black
curve corresponds to the “high” case. For the three cases, this distance tends to
stabilise with time.

4.2. Influence of the orbit characteristics on the G-function

This section aims to give a general overview of the properties provided by
the G-function depending upon the kind of dynamical family of the objects
that may be affected by a breakup or a collision. Four kinds of orbits are
compared:

• the Fengyun-1C type used previously,

• an Iridium-like orbit (differences in inclination and semi-major axis),

• a geostationary type (the one of a telecommunication satellite belong-
ing to the BSAT family),

• a Molniya type (high eccentricity and inclination quite close to the
critical inclination).

To simulate the evolution of a satellite on these orbits, the TLE of four
existing space systems are chosen. First, the last TLE of the chinese satel-
lite Fengyun-1C before its breakup, then the recent TLE’s of the payload
Iridium-125 (reference epoch: 10/12/17), of the japanese satellite BSAT-4A
(reference epoch: 10/17/17), and finally of the satellite Molniya 3-50
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(reference epoch: 10/17/17) are used. The orbital elements deduced
from the TLE of these four parent bodies are summarised in Ta-
ble 2.
A fragmentation generating 500 pieces of space debris is parameterised in
order to correspond, for all the test cases, to the “realistic” case described
before. For Iridium and Fengyun systems, the maximum velocity increment
applied is equal to 6% of their velocity at the event epoch, in order to get a
maximum value of 444 m.s−1 (as the initial velocity is approximately equal
to 7 km.s−1). The Molniya parent body being located close to the
orbit’s perigee at the epoch of the event (M = 15◦), its velocity
is of the order of 6 km.s−1 and concerning the BSAT satellite, its
velocity at the epoch of the selected TLE is equal to 3 km.s−1.
Then, in order to generate breakups with equivalent strengths,
the percentages applied to the parent bodies Molniya and BSAT
are changed to produce a maximum ∆V of about 450 m.s−1 cor-
responding to the realistic study case. We chose 15% and 7% of
the parent satellites velocities BSAT and Molniya respectively at
the epoch of the fragmentation (depending on the TLE) to de-
fine the maximum boundary of the ∆V distribution for these two
systems. The orbit propagation of the generated fragments, for
all the study cases, is performed over 2 days considering the long
periods of the geopotential term (up to J2) as the only perturba-
tion, namely secular variations on the angles. The consideration
of the J2 term only may not be sufficient to properly reproduce
the cloud evolution of Molniya and GEO orbits as they are located
deeper in space than Iridium or Fengyun ones. Nevertheless, the
main purpose of the study here is not the dynamics, but focus on
investigating the effect of orbit characteristics on a spatial statis-
tic such as the G-function. A more complete examination should
nonetheless be carried out, considering in particular (beyond the
atmospheric drag for low orbits) the luni-solar perturbations and
the Solar radiation pressure to go further in the analysis for GEO
and Molniya orbits.

Figure 7 shows the results obtained for the G-function time dependency
from the epoch of the fragmentation in a radius of 70 km and 210 km for the
Fengyun-1C study case. The curves are the same as the red ones on
Figure 3 and 5. They are reproduced here on the same plot, with a
logarithmic scale for the probability (Fengyun and Iridium cases)
in order to allow a better comparison between all the generated
clouds. Figures 8, 9 and 10 present the probability evolution with time for
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Table 2: Orbital elements used as initial conditions of the breakup simulations on
Fengyun-1C, Iridium, geostationary and Molniya types of orbits with : a the semi-
major axis (in km), e the eccentricity, i the inclination (in degrees), Ω the right
ascension of ascending node (in degrees), ω the argument of perigee (in degrees)
and M the mean anomaly (in degrees). They are deduced from the last known
TLE before the simulation of the explosion.

Reference epoch Satellite a (km) e i (deg) Ω (deg) ω (deg) M (deg)
01/08/2007 Fengyun-1C 7 228.4508 0.00135 98.6462 0.784894 269.9602 90.00278
10/12/2017 Iridium-125 6 992.8238 0.00118 86.6819 270.6352 216.056 231.8937
10/17/2017 BSAT-4A 42 166.44 0.00032 0.0334 315.0733 178.6097 336.2083
10/17/2017 Molniya 3-50 26 555.82 0.7224 62.1119 229.9198 267.7421 15.9127

Iridium, geostationary and Molniya cases respectively. The usual scale
(bounded between 0 and 1) is preferred to the logarithmic scale
for geostationary and Molniya test cases in order to avoid a loss
of informations on the G-function variations due to the important
number of null values obtained for the estimation.

Figure 7: Probability of finding a neighbour in a given radius from a space debris
after the simulation of fragmentation for a Fengyun-1C-like type of orbit at the
reference epoch 01/08/2007. Initial conditions are set as follows: a = 7 228.4508 km,
e = 0.00135, i = 98.6462◦, Ω = 0.784894◦, ω = 269.9602◦ and M = 90.00278◦.
The red curve corresponds to a radius of 70 km while the black one stands for a
radius of 210 km.
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Figure 8: Probability of finding a neighbour in a given radius from a space debris
after the simulation of fragmentation for an Iridium-like orbit at the reference epoch
10/12/17. Initial conditions are set as follows: a = 6 992.8238 km, e = 0.00118,
i = 86.6819◦, Ω = 270.6352◦, ω = 216.056◦ and M = 231.8937◦. The red curve
corresponds to a radius of 70 km while the black one stands for a radius of 210 km.

Figure 9: Probability of finding a neighbour in a given radius from a space debris
after the simulation of fragmentation for a geostationary type of orbit at the ref-
erence epoch 10/17/17. Initial conditions are set as follows: a = 42 166.44 km,
e = 0.00032, i = 0.0334◦, Ω = 315.0733◦, ω = 178.6097◦ and M = 336.2083◦.
The red curve corresponds to a radius of 70 km while the black one stands for a
radius of 210 km.
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Figure 10: Probability of finding a neighbour in a given radius from a space debris
after the simulation of fragmentation for a Molniya-like type of orbit at the reference
epoch 10/17/17. Initial conditions are set as follows: a = 26 555.82 km, e = 0.7224,
i = 62.1119◦, Ω = 229.9198◦, ω = 267.7421◦ and M = 15.9127◦. The red curve
corresponds to a radius of 70 km while the black one stands for a radius of 210 km.

The results obtained with this approach for the cases Iridium and Fengyun
are almost the same because these Low-Earth-Orbits have similar charac-
teristics and in particular, they present a very low eccentricity and an in-
clination between 85◦ and 100◦ (86.7◦ for Iridium and 98.6◦ for Fengyun).
The behaviour of the G-function may then be the same for quasi-circular
orbits but with a dependence on the number of fragments generated by the
fragmentation. Indeed, here, the same supposed number of space debris is
created for the four cases, but the decrease (respectively increase) of this
number will lead to a decrease (respectively increase) of the probability of
finding a neighbour in a given radius.

For the Molniya case, the probability of finding a neighbour in
a radius of 70 km and 210 km quickly tends to 0 (1.6 × 10−3 and
1.5× 10−2 respectively on average for the last 10 epochs) based on
Figure 10. The velocity differences along the trajectory tend to
spread the space debris cloud and only a little bit more than a
revolution (12h) is necessary to stabilise the probability, meaning
that the parent satellite orbit is populated.
These observations are illustrated by Figure 11 with: on the left
the shape of the cloud 8 hours after the explosion and on the right
this same cloud 16 hours after the event.
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Figure 11: 3D representation of the Molniya cloud. Left: shape of the cloud 8
hours after the explosion. Right: shape of the space debris cloud 16 hours after
the explosion. In both cases, the red orbit stands for the evolution of the parent
satellite during the simulation if the breakup does not occur. A little bit more than
12 hours are necessary to spread all the fragments along the parent body’s orbit.

Finally, for the geostationary-like orbit, the probability of finding an-
other fragment in a neighbourhood of 70 km around a piece of space debris
is equal to zero at the end of the simulation. The same observation is made
for a radius equal to 210 km, even if in that case the mean value of the prob-
ability is equal to 0.00492 for the last ten propagation epochs. Techniques
based on the G-function lead to very small or null probabilities
to detect a fragment in a radius of 210 km, but a slight increase
is visible between about 16 hours and 27 hours and then from
33 hours at least after the occurrence of the explosion. Two argu-
ments, based on eccentricity and orbital period, can explain these
variations.
On one hand, at the end of the propagation, the mean value of
the fragments’ eccentricity is approximately equal to 0.175, with a
maximum value of 0.413. Knowing that the initial eccentricity of
the parent body is approximately equal to 3 × 10−4 (almost zero)
at the reference epoch, the objects generated by the fragmenta-
tion have an eccentricity three orders greater than the initial one
on average, indicating a more important spreading of the cloud
elements. This observation also means that differences between
apogee and perigee radius may become significant over time.
On the other hand, it is interesting to determine the orbital pe-
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riods of the fragments, as some of them can be different from
24 hours. These deviations in orbital period, with respect to the
one (usual) of a geostationary satellite, can influence the spatial
distribution of the space debris cloud. The calculations show that
the minimum orbital period is around 16 h 20 min, explaining
the start of the probability increase, and the maximum value is
approximately equal to 51 h 53 min. Moreover, the orbital pe-
riod of approximately 60% of the fragments is less than 27 hours,
explaining the (small) decrease between 27 hours and 33 hours.
From that moment, the estimations slowly begin to increase again
because the space debris that have already realised one revolution
are located in the neighbourhood of the ones presenting an orbital
period of 33 hours or more. After that, the probability of find-
ing a neighbour stabilises, indicating that the environment of the
parent body trajectory is populated (not necessarily uniformly).
These remarks can be verified graphically with the representation in three
dimensions of the space debris cloud generated by the fragmentation of a
system evolving on a geostationary orbit on Figure 12. On top left, the cloud
is plotted 12 hours after the explosion in order to visualise its shape before
the first increase of the probability around 16 hours after the event ; the
spreading of the fragments is already important and clearly visible. Then,
on top right, the shape of the cloud is presented 27 hours after the explosion
(top view) ; the differences in orbital period of the fragments relative to the
parent body can be clearly distinguished. Finally, at the bottom, the shape
of the cloud is plotted 33 hours after the event (top view) where one can see
the re-covering of the different trajectories.

21



Figure 12: Top/left: shape of the cloud 12 hours after the explosion. Top/right:
shape of the cloud (top view) 27 hours after the explosion. Bottom: shape of the
space debris cloud (top view) after 33 hours of simulation. In the three cases,
the red orbit represents the parent satellite evolution during the simulation if the
breakup does not occur. Approximately 33 hours are necessary to populate the
trajectory of the parent body because of the differences in orbital period induced
by the explosion.

4.3. Influence of the location of the fragmentation along the orbit on the
results of G-function

The value of the G-function that is estimated at a given epoch
and for a given radius does depend upon the location of the
breakup along the parent body’s orbit. This dependence is stud-
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ied in that section.
Three study cases are compared here. The parent body’s orbit re-
mains the same for each of the three cases, and namely a Molniya-
like trajectory (Table 2, line 4) to clearly emphasise the role played
by the eccentricity. The choice of an orbit with a high eccentric-
ity is also motivated by the important velocity differences existing
along this type of trajectory. The three test cases are defined by
setting the mean anomaly equal to 0◦, 90◦ and 180◦ for cases 1,
2 and 3 respectively. The velocity increment distribution is cho-
sen to correspond to the “Molniya realistic case” (maximum ∆V
equal to 450 m.s−1) and then depends on the initial velocity of the
parent body at the epoch of the event. So before applying the
distribution to the parent satellite, we set the upper bound of this
distribution equal to 5% of the parent body velocity for case 1
and to 18% of the parent satellite velocity for cases 2 and 3. The
orbits are propagated over 2 days, accounting only for the long
periodic terms due to J2, namely secular variations on the angles.
Figure 13 shows the evolution with time of the G-function estima-
tion for a ball radius (i.e.: a neighbourhood) of 210 km around
a piece of space debris within the cloud. For each of the three
study cases we chose to show only the results obtained for a ra-
dius of 210 km because the most important variations (see below)
are visible in this neighbourhood.
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Figure 13: Probability of finding a neighbour in a radius of 210 km around a piece of
space debris within the cloud, after the explosion, defined as realistic, of a satellite
evolving on a Molniya-like orbit. The red, blue and black curves stand respectively
for the cases where the mean anomaly at the epoch of the event is set equal to 0◦,
90◦ and 180◦.

First of all, the initial eccentricity of this type of orbit (≈ 0.72)
induces variations in the evolution of the G-function with time.
These oscillations are especially visible for M = 90◦ and M = 180◦

and occur every 6 hours approximately after the occurrence of the
fragmentation, at least during the first day of simulation. Based on
Figure 13, the probability is pretty high every 12 hours meaning
that the objects within the cloud tend to get closer to each other.
These changes in the G-function occur at the same moments af-
ter the explosion, independently from the initial location of the
parent body along its orbit at the epoch of the event. Following
this observation and knowing that the orbital period of an object
evolving on a Molniya type of trajectory is around 12 hours, it
can be deduced that, even if perigee and apogee crossings have an
influence on the space debris cloud distribution because of the ve-
locity changes, the variations are due to passages through special
points of the trajectory. These locations are the “pinch points”
[16] and correspond to the position of the orbit where the event
occurred and its opposite.
More specifically, two features can be observed when the fragmen-
tation occurs at the orbit’s perigee (M = 0◦, red curve). First, the
probability of finding a neighbour is the smallest. Second, the
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probability tends to stabilise relatively quickly (around 16 hours,
a bit more than an orbital revolution) ; we interpret this stabi-
lization as a total spreading of the cloud along the parent body’s
orbit. An explosion occurring at the apogee of the trajectory
(black curve) leads to the most visible increase of the probability
around 12 hours and then 24 hours after the breakup; the same
observation is even made for the case where M = 90◦ (blue curve).
Here, the stabilization of the probability of finding a neighbour
occurs around 28 hours in the case of a breakup where M = 90◦,
and, for an explosion occurring at the orbit’s apogee, the prob-
ability is not stabilised yet at the end of the simulation (2 days
after the event).
Moreover, it is worth noting that the probability of finding a neigh-
bour, and then the space debris density, is naturally greater when
the breakup occurs at the apogee of the trajectory because the
velocity of a payload is naturally smaller at that location. This
explains the amplitude differences observed on Figure 13 and it
also means that the collision probability between a fragment of
the cloud and an outside object is greater for that breakup con-
figuration.

As a conclusion, the location of the parent body along its orbit
plays an important role for the spatial distribution variations of
the cloud, and in particular on the spreading time of the fragments
along the parent satellite trajectory, specifically in the case of a
highly eccentric orbit as the Molniya type.

5. Conclusions and prospects

A new approach to estimate the spatial distribution of a space debris
cloud generated by a fragmentation in orbit has been presented: the G-
function based on point processes theory initially used in lots of others study
fields (forestry, ecology, ...). It mainly uses the distances between objects
of the studied population to get the probability of finding a neighbour in a
given “perimeter” around a point (i.e. a fragment). Before the estimation,
a so-called observation window has to be defined, including all the points
belonging to the point process without creating gaps, as the distance be-
tween a particle and the window’s border is the second main characteristic
to consider for the estimate. The observation window evolves through time
with the shape of the cloud and is defined based on the spherical coordinates
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of the extreme objects of the population. The behaviour of the G-function
has been analysed when applied to the particular problem of studying the
distribution of space debris, by carrying out some changes in the parameters
of the simulation.
The influence of (i) the typical (maximum) value of ∆V , (ii) the kind of
orbit of the parent satellite, and (iii) the location of the breakup along
the orbit (i.e. position of the parent body on its orbit) have been
discussed. The parameters that induced the greatest differences in the evo-
lution of the G-function are the maximum value of ∆V (fragments are closer
when this maximum value is small and reversely) and the orbit’s type of the
parent body (high eccentricities generate “periodic” variations on the orbital
period). Nevertheless, for strongly eccentric orbits, such as the one
of a Molniya system, the location of the breakup has also a great
influence on the cloud distribution because of the important ve-
locity variations along this type of orbit.
Only the effects of the geopotential term (due to J2) are consid-
ered here ; further analyses shall be carried out with the consideration of
other perturbations (such as atmospheric drag) and the addition of space
debris characteristics (as the direction of their velocity vector) in order to
get closer to the definition of a collision probability instead of a probabil-
ity of finding a neighbour in a given radius around a piece of space debris.
On another hand, it will be interesting to check the influence of the size of
the fragments on the distribution of the cloud. It should be interesting to
consider the evolution of the G-function for a population of small pieces of
space debris (less than 10 cm in diameter) in order to check the possible de-
viations with the population of fragments with a diameter greater or equal
to 10 cm.
Finally, the study of the existence of a path between the estima-
tion of the G-function and the one of the spatial density should be
carried out. Based on the expression derived by [18], the spatial
object density in a particular cell belonging to a discretised vol-
ume can be determined with two quantities: the cell volume and
the resident probability related to that cell. An analogy can be
made between that method and the use of the G-function ; the
statistic presented in this paper can be estimated in each cell of a
discretised observation window to get a spatial object density esti-
mation with the equation described in [18] (p 64). In that case, the
cell volume is determined from the discretised observation window
and the resident probability is replaced by the estimation of the
G-function in the cell. This method seems promising and will be
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studied deeper in a future work.
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