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Investigation of the effective permeability of vuggy 
or fractured porous media from a Darcy-Brinkman
approach

F. Golfier · D. Lasseux · M. Quintard

Abstract In this paper, the macroscopic representation
of one-phase incompressible flow in fractured and cavity
(or vuggy) porous media is studied from theoretical and
numerical points of view. A single-domain (or equivalently
a Darcy-Brinkman) type of approach is followed to describe
the momentum transport at Darcy scale where the fracture or
cavity region and porous matrix region are well identified.
The Darcy scale model is upscaled yielding a macroscopic
momentum equation operating on the equivalent homoge-
neous medium. Numerical solution to the associated closure
problem is proposed in order to compute the effective per-
meability. Numerical results on some model fractured and
cavity media are discussed and compared to some analytical
results.
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1 Introduction

Fractured and vuggy rocks—or cavity media—are a special
class of heterogeneous porous media that are of particu-
lar interest in petroleum engineering due to the vugular
character of some dolomite or limestone oil reservoirs for
instance [8, 14, 38]. Such media are characterized by a
porous matrix embedding both fractures and macro-pores—
referred to as vugs—which characteristic size is several
orders of magnitude larger than the matrix pore size. Their
typical diameter ranges between 1 mm and 1 cm and their
presence often results from fossil fragment dissolution.
Core analysis on vuggy samples has often exhibited some
unexplained behavior like early water breakthrough during
imbibition experiments [12, 13] and this suggests that a par-
ticular attention should be dedicated to macroscopic models
and transfer properties of such media while, for instance,
vugs distribution within the matrix might play an important
role depending on whether they are interconnected through
large clusters or totally not connected [31, 33, 39, 46–48].

In this paper, the interest is focused on one-phase incom-
pressible creeping flow in vuggy and fractured porous
media. A theoretical derivation of a relevant model is dis-
cussed first and numerical results on model structures are
proposed next.

The situation is schematically depicted in Fig. 1 where
we have represented the three different scales of observa-
tion of the system under consideration. At the pore-scale,
the noncompressible fluid-phase and the solid-phase are
identified with their characteristic length-scales �β and �σ ,
respectively, while at Darcy’s scale, the ω and η regions,
referring, respectively, to the porous medium and plain fluid
(vugs or fracture) in the rest of this paper, have charac-
teristic lengths lω and lη. At this scale, physical quantities
can be obtained by averaging the corresponding pore-scale
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Fig. 1 An example of hierarchy of scales associated with one-phase
flow in vuggy rocks

ones over the volume Vω or Vη. For any physical quan-
tity ψβ associated to the β phase, it is common to use in
both regions the superficial average and the phase intrinsic
average, respectively, defined by [64]

〈ψβ〉κ = 1

Vκ

∫

Vβ⊂Vκ

ψβ dV κ = ω, η (1)

〈ψβ〉βκ = ε−1
κ

1

Vκ

∫

Vβ⊂Vκ

ψβ dV κ = ω, η (2)

with the straightforward relationship

〈ψβ〉κ = εκ 〈ψβ〉βκ κ = ω, η (3)

εκ being the porosity in the κ-region such as

εω = Vβ

Vω

εη = 1 (4)

For simplication of the notations, the following nomencla-
ture is adopted throughout the article

Vκ
β = 〈vβ〉κ κ = ω, η (5)

P κ
β = 〈pβ〉βκ κ = ω, η (6)

Finally, the large scale of characteristic length L in Fig. 1 is
representative of an equivalent homogeneous structure and
the main purpose of our work here is to propose a rele-
vant model over this structure, starting from a description at
Darcy’s scale in volume V .

2 One- and two-domain approaches

Situations, for which macroscopic flow equations at the
scale L are required, are encountered in a wide variety of
domains and efforts to derive underlying models at Darcy’s
scale have therefore concentrated a great deal of attention
both from theoretical and empirical points of view. The
basic approach, sometimes used with success (see, e.g., [43,
49]), consists in extending the validity of Darcy’s law, every-
where even in fractures or vugs. An effective permeability
value is thus assigned to each inclusion corresponding to
the η-region so that the flow rate passing through the fluid
region is recovered. Such a model can be useful if one is
not interested in an accurate description of the flow within
the fluid domain but it raises, however, the question of the
effective permeability value to be used. If, for certain pecu-
liar forms of inclusion (e.g., a two-dimensional fracture of
constant thickness), the calculation is straightforward, the
question is more tricky in a more general configuration. This
issue led to the formulation of various mathematical models
of flow in vuggy porous media. A quick overview of the lit-
erature following the early works of Brinkman [7], Joseph
and Tao [28], and Beavers and Joseph [4] indicates that
two main approaches have been followed for the descrip-
tion at the Darcy’s scale of one-phase flow in a fluid-porous
system to which vugular media are pertaining. These two
approaches are sometimes referred to as the single-domain
and double-domain approaches.

The first one is based on the use of the Stokes model
corrected by a Darcy term in the η region (the permeability
Kη being theoretically infinite) and of Darcy’s law modified
by a Brinkman term in theω region of isotropic permeability
Kω. It was originally written as

0 = −∇P κ
β + ρβg − μβ

Kκ

Vκ
β + μ̃∇2Vκ

β (κ = ω, η) (7)

where μ̃ = μβ in the η region. In the ω region, the cor-
rection term μ̃∇2Vω

β accounts for the boundary layer type
of flow in the neighborhood of the interface with the plain
fluid and cancels rapidly beyond a distance of the order of



√
Kω (or rather, of the grain size [52]) from Aωη inside ω

[40, 57]. Although confusion has remained on this term,
especially on μ̃ [34, 37] as well as on the complete form
of the equation—this point will be detailed later on—this
model has been employed into many different situations
[2, 5, 6, 19, 56]. As demonstrated in [26], the single-
domain model is completely equivalent to the Brinkman
approach. This approach makes use of a Darcy-Brinkman
equation in the porous region and a Stokes model in the fluid
region while the associated boundary conditions are usually
assumed to be identical to the case of a fluid/fluid system,
i.e., pressure and velocity (or normal stress) continuity. The
equivalence between this approach and the single-domain
model is exploited in this work.

Conversely, in the double-domain approach, Darcy’s law
is kept in the porous region and Stokes model in the fluid.
From a mathematical point of view, this leads to an ill-posed
problem in terms of writing proper boundary conditions to
match the twomodels unless one accepts some discontinuity
in the tangential velocity at the interface. Doing so is equiv-
alent to reduce the boundary layer region to a zero thickness
surface on which a singularity in the velocity and/or stress
fields is concentrated. This was first proposed by Beavers
and Joseph [4, 28] who postulated a boundary condition of
the form

d
(
Vη

β · ex

)

dy
= α√

Kω

(
Vη

β − Vω
β

)
· ex at Aωη (8)

in the special case of a two-dimensional channel with a
porous wall as represented in Fig. 2i. In Eq. 8, α is a
medium-related constant for which no general estimations
are available so far. In a study on the slip coefficient values,
indeed, Sahraoui and Kaviany [54] showed that it depends
on the interfacial location, the permeability, the porosity or
surface structure of the porous medium among other param-
eters. In that sense, α must be considered as an adjustable
parameter while the impact remains small and of second
order if the interface varies within the range of the grain size
[35].

Partial theoretical justifications of this approach were
proposed [9, 15, 25, 53] and were used practically in the

Fig. 2 Geometry with Poiseuille flow considered in [4] and [40] (i);
geometry with Couette flow considered in [29] (ii)

case of the simple geometry represented in Fig. 2i. For this
specific configuration, it was demonstrated that the single-
and double-domain approaches are identical and lead to the
same result for the flow within the fluid region only, pro-

vided α is identified to
√

μ̃
μβ

[40]. In the case of a shear flow

past a porous body (Fig. 2ii), the analogy requires α = μ̃
μβ

as shown in [29]. Extensions or modifications of this inter-
facial condition were proposed by Saffman [53] and Jones
[27] in order to consider more complex geometries.

More recently, the problem was carefully revisited from
a theoretical point of view in an original analysis developed
with the aid of the volume averaging method [44]. Under
the classical constraint that scales are well separated, it was
shown that two corrective terms—referred to as the first and
second Brinkman corrections—both of the same order of
magnitude in the ω-η interfacial region, must be considered
to describe the flow with a unique momentum equation in
the entire ω region. This equation can be written under the
form

0 = −∇P ω
β + ρβg + μβ

εω

∇2Vω
β

−μβ

εω

∇εω · ∇
(
ε−1
β Vω

β

)
− μβ�β (9)

The first Brinkman correction term corresponds to a viscous
diffusive term (see Eq. 7) while the second one takes into
account, through the porosity gradient, the modification of
the structure in ω near the interface with the fluid (η-region).
An important feature is that the viscosity associated to the
diffusive term in Eq. 9 is actually μ̃ = μβ

εω
as already proved

in previous works [63]. In the η-region, and provided some
lengthscale constraints are fulfilled, the averaged equations
were justified to be formally the same as the point equations,
and in particular, the momentum balance is given by

0 = −∇P
η
β + ρβg + μβ∇2Vη

β (10)

Unfortunately, Eq. 9 is not a closed form since an expres-
sion for �β independent of non-local pressure and velocity
(i.e., integro-differential terms) and valid everywhere in the
ω-region cannot be found. A local closed form is available
in the region far from the interface only, i.e., in the homoge-
neous part of ω, where it can be shown that �β is given by
K−1

ω · 〈vβ

〉
ω
and Eq. 9 can be written as

0 = −∇P ω
β + ρβg + μβ

εω

∇2Vω
β − μβK−1

ω · Vω
β (11)

Because of this difficulty, Ochoa-Tapia and Whitaker fur-
ther proposed to use Eq. 11 everywhere in the ω region and
to compensate the inaccuracy close to Aωη, they developed
a jump condition at the ω − η boundary for this equation
to be valid everywhere in ω on an average sense. In that
way, as in the Beavers-Joseph type of approach, a particu-
lar physics is attributed to the interface. This jump condition



was rigorously justified in [45] for the one-dimensional tan-
gential flow sketched in Fig. 2. Keeping the velocity field
continuous at the interface, i.e.,

Vω
β = Vη

β at Aωη (12)

the excess stress can be expressed under the following
generalized form

nωη ·
[(

P
η
β − P ω

β

)
I + μβ

[(
ε−1
ω ∇Vω

β − ∇Vη
β

)

+
(
ε−1
ω ∇Vω

β − ∇Vη
β

)T
)]

= μβM · Vω
β at Aωη (13)

In this relationship, M is a viscous drag tensor depending
on Kω and εω and must be considered as an adjustable
parameter. Note that, in the problem studied in [45], the
contribution of the transpose term is zero when the flow is
parallel to the dividing surface. A quick order of magnitude
analysis would indicate that

M = O

(
K

− 1
2

ω

)
(14)

which is in agreement with the fact that the flow structure
exhibits significant variation over a distance of the order of√

Kω from the interface. In the case of a simple config-
uration with forced flow parallel to the interface—similar
to the one investigated in [4] (Fig. 2i)—Goyeau et al. [20]
developed an explicit relation for this viscous drag ten-
sor (that reduces to a scalar jump coefficient in that case).
Recently, this work was pursued [62] leading to the deriva-
tion of local closure problems governing this stress jump at
the interfacial region but still for the same simple config-
uration. A novel and more sophisticated methodology was
proposed in [60] for the derivation of these jump boundary
conditions. Numerical investigations were also carried out
[3, 26, 58, 61] but again in the simple configuration envis-
aged by Beavers and Joseph. Some results in a more general
situation are available in [30].

Clearly, the question of which theory is the most conve-
nient one for describing flow in a plain fluid-porous medium
system is still a subject of controversy (see, e.g., [41, 42,
59]). In the general case of cavity media where size and spa-
tial distribution of the ω and η regions can be complex and
for which the flow pattern is much more complicated than
the simple parallel flow usually investigated, the question
is even more open. However, as shown in [58], significant
mismatch between the different approaches is expected for
large enough values of εω and Kω only. Numerical results
in [58] show no difference in the flow field obtained with
a jump boundary condition (Eq. 13) or with the classi-
cal Brinkman approach when εω < 0.6 and Kω < 3D.
This is further confirmed by the work reported in [30].
In this reference, macroscopic numerical results obtained
on several different configurations and sets of parame-
ters did not show very significant differences between the

two approaches in comparison with corresponding aver-
aged microscale results. While a long-term objective would
be to derive a nonlocal closed form of Eq. 9 in the gen-
eral case, the investigation of the present work is focused
on the possibility of describing vuggy or fractured media
by a large-scale effective permeability and to provide an
explicit way of determining this coefficient for a given
matrix and vug structure. This goes along the same lines
as a recent work reported by Arbogast and Lehr [1] using
homogenization theory and a Beavers and Joseph double-
domain approach. More recently, this study was extended to
more general fractured vuggy systems using either a Darcy-
Brinkman (one-domain) approach [32, 50] or a Beavers and
Joseph formulation [24]. In this last reference, numerical
simulations were carried out on vugular porous structures at
two different scales. At the Darcy-scale, the incompressible
Darcy-Brinkman flow (one-domain approach) was solved
on the structure using a fine grid discretization. At the
large-scale, the Darcy equation, obtained by upscaling the
Darcy-Brinkman model, was solved using a coarse grid
discretization, each grid-block bearing an effective perme-
ability computed from the average over each block of the
flow solution at the fine-grid description. Results at both
scales were satisfactorily compared. The net achievement of
this work was the validation of the upscaling procedure.

While keeping the same Darcy-scale model, our objec-
tive in the present work is somewhat different. First, we
carefully derive the large-scale model that is validated using
an analytical solution on some model structure. Compari-
son of this Darcy-Brinkman approach is then carried out
on the same structure with a two-domain (Beavers-Joseph)
approach in a second step.

The starting point of our analysis is a Brinkman type
of description at Darcy scale for one-phase incompressible
flow in a vugular or fractured media, i.e., a Darcy-Brinkman
equation in the ω-region and Stokes flow in the η-region
with an interface Aωη separating the two on which velocity
and stress continuity boundary conditions are applied. This
description results from a first upscaling performed on the
Stokes model at the pore-scale as presented in [33] using
the averaging volume Vη either in the η-region containing
the fluid phase β only or Vω in the ω-region containing
both the solid rigid phase σ and the β phase. The model
is chosen based on the idea that (i) it must account for any
flow pattern whatever the distribution and shapes of matrix
and vugs; (ii) the ensuing macroscopic model is expected
to be predictive without adjustable parameters; (iii) Darcy
scale properties in the ω-region do not evolve significantly
over a distance from Aωη larger than

√
Kω or grain size

of the matrix. The macroscopic model operating at scale
L is obtained from a second up-scaling that makes use of
the averaging volume V (Fig. 1) where matrix and vugs
are clearly identified with their characteristic length scale



lω and lη, the final macroscopic structure having a generic
length L. The main outcome of the work resulting from this
procedure is a large-scale momentum conservation equa-
tion formally identical to a Darcy equation that involves an
effective permeability entirely defined by the associated clo-
sure. Illustrative results obtained from numerical solutions
of the closure problem over simple unit cells representative
of a model fractured medium and vugular porous struc-
ture are provided and commented through comparisons with
existing works.

3 Volume averaging

We start the derivation of the macroscopic model by recall-
ing the averaged form of the mass and momentum balance
equations in the two regions that can be written as [44]

∇ · Vω
β = 0 (15)

0 = −∇P ω
β + ρβg + μβ

εω

∇2Vω
β − μβK−1

ω · Vω
β

in the ω-region (16)

∇ · Vη
β = 0 (17)

0 = −∇P
η
β + ρβg + μβ∇2Vη

β in the η-region (18)

To arrive at this result, one must specify that the radius r0
(Fig. 1) of the averaging volume Vκ (κ = ω, η) satisfies the
following length-scale constraints [64]

r0 � lβ, r20 � LεLp1, r20 � LvLv1, r20 � LεLv2 (19)

In this scales hierarchy, the respective length-scales Lε,
Lp1, Lv , Lv1, and Lv2 are defined as the distances over
which ε, ∇pβ , vβ , ∇vβ , and ∇∇vβ are experiencing sig-
nificant changes with respect to an a priori fixed criterion.
Here, ε is considered as a constant and, due to the hetero-
geneous structure with characteristic lengths lη and lω, the
three last constraints in Eq. 19 can be replaced by

r0 � lη, r0 � lω (20)

As detailed in the introduction, this description—coupled
with velocity and stress continuity boundary conditions—
is formally equivalent to the single-domain approach where
the Darcy-Brinkman equation is valid everywhere (i.e., with
εη = 1 and Kη → ∞). Since no jump is assumed on Aωη, it
can be easily shown that the boundary conditions associated
to the above balance equations are

Vω
β = Vη

β at Aωη (21)

nωη ·
[(

P
η
β − P ω

β

)
I + μβ

[(
ε−1
ω ∇Vω

β − ∇Vη
β

)

+
(
ε−1
ω ∇Vω

β − ∇Vη
β

)T
)]

= 0 at Aωη (22)

We now proceed with the development of the macroscopic
model by averaging Eqs. 16–18 and 21–22 using the volume
V (see Fig. 1). We refer the reader to the cited literature for a
complete overview of the volume averaging technique, and
the associated developments.

In the following, we use the notations for the large-scale
averages:
{

κ

β

}
κ

= 1

V

∫

Vκ


κ
β dV (κ = ω, η) (23)


∗
β = {


β

} = 1

V

∫

V


β dV =
{

ω

β

}
ω

+
{



η
β

}
η

(24)

3.1 Mass balance equation

As for the pore-scale problem, the superficial average of the
mass conservation equation, Eq. 15, can be formed to obtain

{
∇ · Vω

β

}
ω

= ∇ ·
⎛
⎜⎝ 1

V

∫

Vω

Vω
β dV

⎞
⎟⎠+ 1

V

∫

Aωη

nωη · Vω
β dA

= 0 (25)

and this is achieved by making use of the volume averaging
theorem [23]
{
∇
κ

β

}
κ

= ∇
{

κ

β

}
κ

+ 1

V

∫

Aωη

nωη

κ
β dA (26)

The same procedure can be used with Eq. 17 to obtain

{
∇ · Vη

β

}
η

= ∇ ·
⎛
⎜⎝ 1

V

∫

Vη

Vη
β dV

⎞
⎟⎠+ 1

V

∫

Aωη

nηω · Vη
β dA

= 0 (27)

If Eqs. 25 and 27 are added, one readily finds:

∇ ·
⎛
⎜⎝ 1

V

∫

Vω

Vω
β dV + 1

V

∫

Vη

Vη
β dV

⎞
⎟⎠

+ 1

V

∫

Aωη

(
nωη · Vω

β + nηω · Vη
β

)
dA = 0 (28)

and if the boundary condition, Eq. 21, is used with the fact
that

nωη = −nηω on Aωη (29)



Equation 28 then writes:

∇ · V∗
β = 0 (30)

3.2 Momentum balance equation

For the momentum balance equations, Eqs. 16 and 18, one
can easily arrive at

0 = −∇
{
P ω

β

}
ω

− 1

V

∫

Aωη

nωηP
ω
β dA + ρβgφω

+ μβ

εω

∇ ·
{
∇Vω

β

}
ω

− μβ

{
K−1

ω · Vω
β

}
ω

+ μβ

εω

1

V

∫

Aωη

nωη ·
(
∇Vω

β + ∇VωT
β

)
dA (31)

and

0 = −∇
{
P

η
β

}
η

− 1

V

∫

Aωη

nηωP
η
β dA + ρβgφη

+ μβ∇ ·
{
∇Vη

β

}
η

+ μβ

1

V

∫

Aωη

nηω ·
(
∇Vη

β + ∇VηT
β

)
dA (32)

Here, we have used the fact that, due to the mass balance
Eqs. 15 and 17, ∇ · ∇VωT

β = 0 and ∇ · ∇VηT
β = 0.

Summing up both equations leads to

0 = −∇P ∗
β − 1

V

∫

Aωη

nωη

(
P ω

β − P
η
β

)
dA + ρβg

+ μβ

εω

∇ ·
{
∇Vω

β

}
ω

+ μβ∇ ·
{
∇Vη

β

}
η

+ μβ

1

V

∫

Aωη

nωη ·
(

1

εω

∇Vω
β − ∇Vη

β

)
dA

+ μβ

1

V

∫

Aωη

nωη ·
(

1

εω

∇Vω
β − ∇Vη

β

)T

dA

− μβ

{
K−1

ω · Vω
β

}
ω

(33)

From the boundary condition on Aωη, Eq. 22, we write

1

V

∫

Aωη

nωη ·
[(

P
η
β − P ω

β

)
I + μβ

(
ε−1
ω ∇Vω

β − ∇Vη
β

)

+ μβ

(
ε−1
ω ∇Vω

β − ∇Vη
β

)T
]

dA = 0 (34)

which leads to the following averaged form of the Darcy-
Brinkman equation

0 = −∇P ∗
β + ρβg + μβ

εω

∇ ·
{
∇Vω

β

}
ω

+ μβ∇ ·
{
∇Vη

β

}
η

− μβ

{
K−1

ω · Vω
β

}
ω

(35)

Substituting decompositions for local velocity and pressure
[21]

P κ
β = P ∗

β + P̃ κ
β κ = ω, η (36)

Vκ
β = V∗

β + Ṽκ
β κ = ω, η (37)

where the quantities P̃ κ
β and Ṽκ

β are referred to as spatial
deviation terms, we get

0 = −∇P ∗
β + ρβg + μβ

(
φω

εω

+ φη

)
∇2V∗

β

+ μβ

εω

∇ ·
{
∇Ṽω

β

}
ω

+ μβ∇ ·
{
∇Ṽη

β

}
η

− μβφωK−1
ω · V∗

β − μβK−1
ω ·

{
Ṽω

β

}
ω

(38)

Here, V∗
β and ∇V∗

β are considered as constant over the
integration volume V .

3.3 Closure

At this point, a way of closing our problem is to set up
the governing equations of the deviation fields. Subtract-
ing unclosed equations, Eqs. 30 and 38, from the set of
pore-scale equations, Eqs. 15–18, leads to the following
relationships

Deviation equations in the ω-region

∇ · Ṽω
β = 0 (39)

0 = −∇P̃ ω
β + μβφη

(
1

εω

− 1

)
∇2V∗

β + μβ

εω

∇2Ṽω
β

− μβ

εω

∇ ·
{
∇Ṽω

β

}
ω

− μβ∇ ·
{
∇Ṽη

β

}
η

− μβφηK−1
ω · V∗

β − μβK−1
ω · Ṽω

β + μβK−1
ω ·

{
Ṽω

β

}
ω

(40)

Deviation equations in the η-region

∇ · Ṽη
β = 0 (41)

0 = −∇P̃
η
β − μβφω

(
1

εω

− 1

)
∇2V∗

β + μβ∇2Ṽη
β

− μβ

εω

∇ ·
{
∇Ṽω

β

}
ω

− μβ∇ ·
{
∇Ṽη

β

}
η

+ μβφωK−1
ω · V∗

β + μβK−1
ω ·

{
Ṽω

β

}
ω

(42)



At this point, simplifications can be made in the momentum-
like equations for the deviations on the basis of an order of
magnitude analysis carried out on the various terms while
keeping in mind the constraint of separation of scales,

lω, lη � L (43)

First, the definition of V∗
β allows the straightforward

following order of magnitude estimate

V∗
β = O

(
φηṼ

η
β + φωṼω

β

)
(44)

from which we can derive

φηṼ
η
β = O

(
V∗

β

)
; φωṼω

β = O
(
V∗

β

)
(45)

with the idea that these two last relationships represent
upper bound estimates for Ṽη

β and Ṽω
β . As a consequence,

an upper bound for the estimate of the Brinkman-like terms
in the right-hand side of Eq. 40 is

μβ

εω

∇ ·
{
∇Ṽω

β

}
ω

+ μβ∇ ·
{
∇Ṽη

β

}
η

=

O
(

μβ

L

(
1

εωlω
+ 1

lη

)
V∗

β

)
(46)

This clearly indicates that these two Brinkman-like terms
are fully negligible compared to the Darcy term μβφηK−1

ω ·
V∗

β and this is due to the fact that, in any practical situation,

O
(
1

L

(
1

εωlω
+ 1

lη

))
� O

(
φηK−1

ω

)
(47)

Similarly, the first Brinkman-like term in the right-hand side
of Eq. 40 is such that

μβφη

(
1

εω

− 1

)
∇2V∗

β︸ ︷︷ ︸
V∗

β

L2

� μβφη K−1
ω · V∗

β︸ ︷︷ ︸
K−1

ω ·V∗
β

(48)

due to the fact that, in all real configurations,

O (Kω) � O
(

L2

1
εω

− 1

)
(49)

Similar relations hold for Eq. 42 so that the pore-scale
boundary value problem for the deviation equations takes
the following form

Deviation equations in the ω-region

∇ · Ṽω
β = 0 (50)

0 = −∇P̃ ω
β + μβ

εω

∇2Ṽω
β − μβφηK−1

ω · V∗
β

−μβK−1
ω · Ṽω

β + μβK−1
ω ·

{
Ṽω

β

}
ω

(51)

Boundary conditions

B.C. 1 Ṽω
β = Ṽη

β at Aωη (52)

B.C. 2 nωη ·
((

P̃
η
β − P̃ ω

β

)
I

+ μβ

(
1

εω

∇Ṽω
β − ∇Ṽη

β

)
+ μβ

(
1

εω

∇Ṽω
β − ∇Ṽη

β

)T
)

= 0 at Aωη (53)

In this last boundary condition, we have omitted the

macro-scale term μβ

(
1
εω

− 1
)
nωη ·

(
∇V∗

β + ∇V∗T
β

)
since

this term is completely negligible compared to the deviation
terms of the viscous shear. This straightforwardly follows
from the order of magnitude estimate of V∗

β given in Eq. 44
and scale hierarchy expressed in Eq. 43.

Deviation equations in the η-region

∇ · Ṽη
β = 0 (54)

0 = −∇P̃
η
β + μβ∇2Ṽη

β

+μβφωK−1
ω · V∗

β + μβK−1
ω ·

{
Ṽω

β

}
ω

(55)

Because the problem is fully linear, the above form sug-
gests that we can express the Darcy-scale deviations as
linear functions of the unique macroscopic source term
V∗

β remaining in the closure problem. Thus, a macroscopi-
cally uniform flow over the representative unit cell can be
described by the following mapping variables

Ṽω
β = Bω · V∗

β ; Ṽη
β = Bη · V∗

β (56)

P̃ ω
β = μβ bω · V∗

β ; P̃
η
β = μβ bη · V∗

β (57)

where B and b are, respectively, the closure tensor and
closure vector of the system. Any additive constant in the
relationships (56) and (57) would have no contribution to
the final result as discussed in [64].

Introducing these representations into Eqs. 50–55, we
obtain

Closure problem

∇ · Bω = 0 (58)

0 = −∇bω + 1

εω

∇2Bω −K−1
ω · (φηI + Bω − {Bω}ω

)
(59)

B.C. 1 Bω = Bη at Aωη (60)

B.C. 2 nωη ·
[ (

bη − bω

)
I +

(
1

εω

∇Bω − ∇Bη

)

+
(

1

εω

∇Bω − ∇Bη

)T
]

= 0 at Aωη (61)

∇ · Bη = 0 (62)

0 = −∇bη + ∇2Bη + K−1
ω · (φωI + {Bω}ω) (63)



bκ (r + l) = bκ (r) ; Bκ (r + l) = Bκ (r) κ = ω, η (64)

{b} = 0 (65)

The periodic boundary condition imposed by Eq. 64 is clas-
sically used in the volume averaging method. It must be seen
more as a device for obtaining a local solution—because
it usually imposes less severe constraints on the problem,
than, for instance, a Dirichlet condition would—than a real
limitation on the kind of medium under consideration. In
other words, the use of periodic boundary conditions does
not necessarily imply that the porous medium is periodic
(see a discussion on this issue in [18]). Note also that Eq.
65 directly results from the average of Eq. 57, keeping in
mind that the average of a spatial deviation is zero. Without
this constraint, the problem would be solved to within an
arbitrary but undetermined constant. Equation 56 leads to a
similar condition of zero average for B but this one is not
required for the explicit determination of the closure fields
b and B.

At this point, a more simple and numerically tractable
version of the closure problem may be derived. This is
achieved by transforming the closure variables Bκ , bκ into
Dκ , dκ , (κ = ω, η) in the following manner

bκ = dκ · K−1
ω · (φωI + {Bω}ω) κ = ω, η (66)

Bκ = Dκ · K−1
ω · (φωI + {Bω}ω) − I κ = ω, η (67)

In this way, the closure problem is given by

Closure problem

∇ · Dω = 0 (68)

0 = −∇dω + 1

εω

∇2Dω − K−1
ω · Dω + I (69)

B.C. 1 Dω = Dη at Aωη (70)

B.C. 2 nωη ·
( (

dη − dω

)
I +

(
1

εω

∇Dω − ∇Dη

)

+
(

1

εω

∇Dω − ∇Dη

)T
)

= 0 at Aωη (71)

∇ · Dη = 0 (72)

0 = −∇dη + ∇2Dη + I (73)

dκ (r + l) = dκ (r) ; Dκ (r + l) = Dκ (r) κ = ω, η (74)

{d} = 0 (75)

Finally, it should be noted that the additional condition of
zero average for B leads to the subsequent relation

{D} = (φωI + {Bω}ω)−1 · Kω (76)

The closure problem expressed with dκ and Dκ , (κ = ω,
η) has clearly a Darcy-Brinkman-Stokes structure similar to
the initial Darcy scale problem which means that a unique
numerical tool can be used for both the direct solution of
the flow problem in the ω and η regions and the solution
to the closure problem yielding the macroscopic coefficient
that appears in the average momentum equation given in
the following section. This closure problem is also consis-
tent with the upscaling performed by Popov et al. [50] from
a two-scale asymptotic expansion of the Darcy-Brinkman
equation. To the best of our knowledge, this is the very first
time that the closure relations governing the effective per-
meability of a vugular rock is rigorously derived within the
framework of the volume averaging method.

3.4 Large-scale momentum equation

The macroscopic momentum equation is obtained while
introducing the previous decomposition, Eq. 56, into the
macroscopic Eq. 38. When the remapping Eq. 67 is used
along with the relation (76), the following averaged equa-
tion is obtained

0 = −∇P ∗
β − μβ {D}−1 · V∗

β + ρβg (77)

In this result, all the Brinkman terms in Eq. 38 have been
neglected. The first one in the right-hand side of this equa-
tion can be discarded following an argument fully similar
to that expressed in Eqs. 48 and 49. The two remaining

ones, involving ∇ ·
{
∇Ṽκ

β

}
κ
(κ = ω, η), can be completely

neglected due to the scale contrast expressed in Eq. 43 along
with the fact that the closure variables Bκ (κ = ω, η) are
periodic.

The averaged momentum equation, Eq. 77, can finally be
rewritten as a large-scale Darcy’s law given by

V∗
β = −K∗

eff

μβ

·
(
∇P ∗

β − ρβg
)

(78)

where the effective permeability K∗
eff is given by

K∗
eff = {D} (79)

Equation 78 is consistent with the form of the macroscopic
model obtained by Arbogast and Lehr [1] from a two-scale
homogenization of a Darcy-Stokes system, although their
expression of the closure problem is different due to the
use of the Beavers-Joseph boundary condition. A compar-
ison between both solutions on a simple geometry will be
performed in the next section.

4 Results and discussion

As discussed in the previous section, the solution to the clo-
sure problem is conducted over some representative periodic



unit cells. As illustrative examples, two different geometries
are considered here. Although simple, they are represen-
tative of natural systems (e.g., flow through a fracture or
a vuggy porous medium) and provide useful information
about the macroscopic flow behavior in such media.

The closure problem was solved using a commercial
finite-element solver (COMSOL Multiphysics, Comsol,
Inc., Los Angeles) on some model two-dimensional unit
cells. Convergence analyses were conducted for these sim-
ulations to assure that the physics is appropriately resolved.
Equations 68–75 were solved using a weak formulation
to a prespecified relative convergence criterion. The per-
meability tensor was determined using the straightforward
relationship of Eq. 79.

4.1 Case 1: stratified geometry

The study of coupled parallel flows within a two-region
domain is a classical problem in interfacial flow theory.
Historically, the analysis of Poiseuille flow past over a
porous block by Beavers and Joseph has led to the empirical
derivation of the slip boundary condition as detailed in the
introduction. Various configurations of stratified systems
have been also subsequently studied within the framework
of a Darcy-Brinkman equation (single-domain approach) or
a double-domain approach with a Beavers-Joseph condition.

4.1.1 Darcy-Brinkman approach

Here, we consider the periodic stratified system illustrated
in Fig. 3, where a fluid channel is embedded between
two parallel porous layers. The interface between the two
regions is parallel to the plane y = 0 and the flow is
one-dimensional in the x-direction. This kind of interfacial
problem is interesting for several reasons.

Fig. 3 Sketch of a porous-fluid domain with flow parallel to the layers

First, an explicit analytical solution is tractable that can
be directly compared to the numerical solution of the clo-
sure problem given by Eqs. 68–75. For the configuration of
Fig. 3 indeed, the boundary value problem describing the
fluid-porous system takes the form:

−dP

dx
+ μβ

∂2V
η
β

∂y2
= 0 in the η region (80)

−dP

dx
− μβ

Kω

V ω
β + μβ

εω

∂2V ω
β

∂y2
= 0 in the ω region (81)

B.C.1 V
η
β = V ω

β at y = ±h

2
(82)

B.C.2
∂V

η
β

∂y
= 1

εω

∂V ω
β

∂y
at y = ±h

2
(83)

B.C.3 V
η
β (y) = V

η
β (y + h + h1)

V ω
β (y) = V ω

β (y + h + h1)

P (y) = P (y + h + h1)

(84)

Here, we have denoted P the Darcy-scale pressure in
both ω- and η-regions that is indeed independent of y, dP

dx

being the constant pressure applied to the system. The x-
velocities V ω

β and V
η
β can be explicitly determined from

the solution of this boundary value problem as shown in
Appendix A. From these expressions, the effective per-
meability of the system, K∗

eff , can be readily identified
as:

K∗
eff = Kω + Kω

h

h + h1
+ h2

12

(
h

h + h1

)

+√
εωKω

h2

2 (h + h1)

(
1 + exp

(
−
√

εω

Kω
h1

))
(
1 − exp

(
−
√

εω

Kω
h1

)) (85)

As shown in Appendix A, the region-averaged permeabili-
ties K∗

ω and K∗
η can be also defined by:

V
η

β = 1

h

∫ h/2

−h/2
V

η
β dy = −K∗

η

μβ

dP

dx
(86)

V
ω

β = 1

h1

∫ −h/2

−(h/2+h1)

V ω
β dy = −K∗

ω

μβ

dP

dx
(87)

where V
η

β and V
ω

β represent the two region-averaged intrin-
sic velocities. After derivation, we obtain:

K∗
ω = Kω

(h1 + h)

h1
(88)

K∗
η = h2

12
+ Kω +

√
εωKω

2
h

(
1 + exp

(
−
√

εω

Kω
h1

))
(
1 − exp

(
−
√

εω

Kω
h1

)) (89)

Note that the effective permeability K∗
ω of the porous

layer is larger than its intrinsic permeability Kω. This mod-
ification is due to the presence of the so-called Brinkman



layer corresponding to an increase of the velocity at the
vicinity of the fluid-porous interface. In other words, the
porous zone may be seen as a two-region domain made
of a porous layer of thickness (h1 − hB) and permeability
Kω and a more permeable (Brinkman) layer of thickness
hB and effective permeability Kω

h+hB

hB
. As discussed in the

introduction, theoretical studies [40, 57] have shown that
the thickness hB of this interfacial zone is of the order of√

Kω, although the experimental work in [17] suggests that
it might be much larger, of the order of the grain diameter.
In the case under consideration, the influence of this tran-
sition zone appears not to be negligible and directly related
to the ratio h/h1. Indeed, for a fluid channel relatively
thin compared to the thickness of the porous layer, i.e., for
h/h1 → 0, the intrinsic permeability of the porous medium,
Kω, is recovered. We will discuss further this question of
region averaged velocity in Section 4.1.3 after introduc-
ing the results obtained with the Beavers-Joseph boundary
condition.

The first term of the fluid-averaged permeability, given
by Eq. 89, corresponds to the classical permeability of a
Poiseuille flow between two impermeable parallel plates.
The two additional terms represent the correction due to the
non-zero velocity boundary condition at Aωη. It should be
emphasized that the exponential contribution which appears
in the last term reflects the periodic boundary condition,
Eq. 84, and characterizes the relative influence of the upper
and lower fluid channels on the adjacent porous layer. For
an infinite porous medium, i.e., h1 → ∞, this correction
disappears.

The comparison between this analytical solution and the
computational results of K∗

eff derived from the solution of
the closure problem and the volume averaging technique
is presented in Fig. 4 for a wide range of Kω values. The
following numerical data were used for the computations:
h = 0.3, h1x = 0.7, and εβ = 0.3. Note that the value
of Kη theoretically tending to infinity, was taken large
enough in numerical simulations so that the resulting solu-
tion is unaltered. Typically, Kη was taken equal to 106.
One observe a perfect agreement between the analytical
and computational results. For small enough values of Kω(
Kω ≤ 10−6 m2

)
, the porous region can be considered as

quasi-impermeable to longitudinal flow. The macroscopic
permeability K∗

eff remains constant and is mainly depen-

dent upon the permeability of the channel, h2/12. When
the matrix permeability increases, the contribution of the
porous layers to the flow as well as the impact of the slip
condition becomes significant. The solution obtained from
a Darcy-Darcy approach is also represented on this figure
for comparison. The equivalent permeability within the fluid
region is taken equal to h2/12 while that in the ω-region
is taken uniformly equal to Kω. If solutions are similar for
low values of Kω (typically smaller than 10−5 m2), the

Fig. 4 Effective permeability,K∗
eff , for a fractured medium or layered

domain as a function of the porous region permeability, Kω

contribution of both the slip-flow in the η-region at Aωη

and the Brinkman layer (not considered in the Darcy-
Darcy formulation) becomes significant for larger values
of Kω for which the Darcy-Darcy approach underestimates
K∗

eff .

4.1.2 Comparison with the Darcy-Stokes approach
(Beavers-Joseph formulation)

If these results validate our upscaled model, they also con-
firm the difficulty of obtaining an appropriate and unique
macroscopic representation of one-phase flow in such
media. This uncertainty, due to the choice of the momentum
transport model and to the associated coupling conditions
at the interface, can be further enlighted through the com-
parison of the Darcy-Brinkman approach used here and the
Beavers-Joseph formulation. Indeed, several authors [29,
40] have shown the similarity between both approaches for
Poiseuille or Couette flow in layered systems in terms of
the velocity profile within the fluid vein. As discussed in
the introduction, for a Poiseuille-type flow (see Fig. 2i), this
equivalence is verified provided one identifies the coeffi-

cient α in Eq. 8 with
√

μ̃
μβ
. It shall be emphasized that this

analogy, initially restricted to the geometry specified in Fig.
2, is classically extrapolated to any fluid/porous configu-
ration without any theoretical justification. Following this
idea, a comparison of the solution for K∗

eff , given by Eq.
85, to the one obtained from the Darcy-Stokes approach
(with a Beavers-Joseph boundary condition) can be car-
ried out. Indeed, Arbogast and Lehr [1] recently derived
a macroscopic model based on such an approach. A sim-
ple analytical solution is given to illustrate their results in
the case of a periodic layered domain, similar to the one
illustrated in Fig. 3. This solution, which can be directly



compared to the one given by Eq. 85, is expressed as
follows,

K∗
eff,BJ = Kω

h1

h + h1
+ h2

12

(
h

h + h1

)

+
√

Kω

α

h2

2 (h + h1)
(90)

Introducing the analogy condition cited above for a
Poiseuille flow,

α =
√

1

εω

(91)

we finally obtain

K∗
eff,BJ = Kω

h1

h + h1
+ h2

12

(
h

h + h1

)

+√εωKω

h2

2 (h + h1)
(92)

This result can also be interpretated in terms of region-
averaged permeabilities which leads to the following
expressions for K∗

η,BJ and K∗
ω,BJ :

K∗
ω,BJ = Kω (93)

K∗
η,BJ = h2

12
+

√
εωKω

2
h (94)

The comparison of these expressions with Eqs. 88 and
89 clearly shows that the analogy condition is violated. In
the porous region, as expected, the intrinsic permeability
(i.e., without the additional term associated to the Brinkman
layer) is recovered, whereas the fluid region permeability
exhibits a correction term that is different, although small if
Kω is small. Apparently, in the case under consideration, the
hydrodynamic coupling between the different layers is more
complex than for a classical Poiseuille flow with an immo-
bile wall and induces a discrepancy between the solutions.
This clearly indicates that the condition on α (see Eq. 8) for
the analogy mentioned above should be used with caution
even for layered media. Nevertheless, this should be rela-
tivized since this difference has a significant impact on the
effective permeability only for large values of both Kω and
the relative fluid channel thickness, as illustrated in Fig. 5.
Three distinct values of the η-region volume fraction, φη,
(i.e., the ratio of h to h+h1) were considered while εω fixed
to 0.2.

4.1.3 Discussion on the porous medium regional velocity
predicted by the Darcy-Brinkman formulation

Regional velocities play an important role in porous media
modeling when dual-media effects are important. This is
classically the case while working with dual-heterogeneous
media, i.e., when upscaling from a Darcy scale to a large

Fig. 5 Comparison of effective permeabilities obtained from the
Darcy-Brinkman and Beavers-Joseph formulations for the layered
system of Fig. 3. Values of the parameters are those for Fig. 4

scale. Indeed, regional velocities play a key role for solute
transport in generalized dual-porosity models, the so-called
mobile-mobile systems, as discussed in [10, 11, 16]. The
theoretical derivation of regional Darcy’s laws and regional
permeabilities is discussed in [51]. Regional Darcy’s laws
may also arise from pore-scale to Darcy-scale upscaling
problem as discussed in [55]. In the case of a stratified het-
erogeneous porous medium, the ω-region permeability was
given by K∗

ω = φωKω in [51] with a different definition
of the regional velocity, namely in terms of a large-scale
filtration velocity. If we adopt the definition used in this
paper, this result can be recast into K∗

ω = Kω which
is exactly equal to the result for K∗

ω,BJ in Eq. 93. Why
is the Darcy-Brinkman result so different? As indicated
above, Darcy-Brinkman equations generate a kind of vis-
cous boundary layer of thickness hB that penetrates into
the porous domain. This is illustrated in Fig. 6 which rep-
resents the velocity variation in the lower ω-region versus
the reduced position yr = (y + h/2)/h1 for different val-
ues of the permeability. Here, the velocity V ω

β (Eq. 100) is
reduced by the reference velocity V ω

D classically obtained
from Darcy’s law:

V ω
D = −Kω

μβ

dP

dx
(95)

Two mechanisms may be observed. First, the thickness of
the Brinkman boundary layer, i.e., the zone where V ω

β 
=
V ω

D , increases with the permeability. To be more precise
about this variation, we arbitrarily define the extent of this
viscous layer relative to the velocity V ω

β within the zone
such that

V ω
β ≥ 1.01V ω

D (96)

and we identify the value of yr at which this condition is
fulfilled as hB/h1. The behavior of hB/h1 as a function



Fig. 6 Dimensionless velocity as a function of the reduced position
for various permeabilities (εω = 0.38)

of
√

Kω is represented in Fig. 7. The viscous layer starts
from 0 at exceedingly small values of Kω and increases,
after a transient stage at low permeability, linearly with√

Kω and, eventually, changes its behavior to reach the mid-
dle of the porous stratum for a given value of Kω. At this
point, the boundary layer occupies the entire porous domain
and Darcy’s law is nowhere verified. The second important
aspect is that the measure of the viscous layer goes to zero
as the permeability decreases; however, the velocity inside
goes up such that the average velocity (or flow-rate) remains
finite within the ω-region. This in turn gives a finite con-
stant contribution to the regional velocity and the regional
permeability, as shown in Eq. 88. This may be a problem
when using the Darcy-Brinkman solution to investigate the
flow of a solute in the porous region since the advection

Fig. 7 Viscous layer thickness as a function of
√

Kω (εω = 0.38)

velocity affected to the ω-region equation would be largely
overestimated. On the contrary, the analysis with the
Beavers-Joseph boundary condition does not suffer from
this effect.

4.2 Case 2: 2D vuggy medium

The configuration under consideration in this section con-
sists of a two-dimensional periodic vuggy system made
of circular fluid inclusion arranged on a regular square
array embedded in a porous matrix. The representative
unit cell of length � is depicted in Fig. 8. The system
is far more complex to be solved analytically, and some
relatively accurate approximated solutions were proposed
(and checked experimentally) in [32]. Additional analyt-
ical or semi-analytical solutions based on single-domain
or double-domain approaches and simplifying assumptions
can also be drawn from the literature. Recently, the veloc-
ity field was explicitly determined in this configuration
for a Darcy-Brinkman flow of a viscous fluid through
a circular—porous or fluid-filled—inclusion embedded in
another porous medium [22]. In [36], a Darcy-Stokes model
coupled with a Saffman boundary condition was employed
to calculate the permeability of an equivalent Darcy-type
inclusion of spherical and circular shapes. The effective
global permeability of the associated vugular system was
then determined by using Maxwell’s method. In the case of
circular inclusions, the following relation is obtained:

K∗
eff,vug = Kω

[
R2

(
1 + φη

)− 2
(
φη − 1

)
Kω

R2
(
1 − φη

)+ 2
(
φη + 1

)
Kω

. . .
−3R

(
1 + φη

)
α
√

Kω

]
+3R

(
φη − 1

)
α
√

Kω

(97)

whereR represents the vug radius. Given the periodic nature
of the system under consideration, vug radius is directly
related to the value of the fluid volume fraction as

R =
√

φη

π
� (98)

Fig. 8 Representative unit cell of a model 2D vuggy porous medium



Fig. 9 Dimensionless effective permeability for a porous medium
with circular fluid inclusions versus the dimensionless porous region
permeability

Comparison between our computational results and this
latter solution is illustrated in Fig. 9 where we have rep-
resented the variation of K∗

eff /Kω as a function of the

dimensionless matrix permeability Kω/�2 for different val-
ues of φη. Here, α is arbitrarily fixed to

√
1/εβ with εω =

0.3 even if the analogy condition of [40] is probably not
verified for this kind of geometry.

The constant solution resulting from Eq. 97 for a given
value of φη deserves a few additional comments. Even
though this relation seems to depend in a complex man-
ner on Kω, the behavior of K∗

eff,vug is quasi-linear (i.e.,
the ratio K∗

eff,vug/Kω is quasi-constant) except for large
values of Kω for which the relation is not verified any-
more. Indeed, application of Saffman’s boundary condition
to curved interfaces requires R � √

Kω. Consequently,
on this figure, we have represented the asymptotic behav-
ior of K∗

eff,vug only. For Kω/�2 � 10−4, good agreement
between both results is achieved in spite of the difference
of treatment of interfacial conditions. This similarity is ver-
ified especially at low volume fractions of the fluid region.
For large values of φη, indeed, the assumption R � � is
not fulfilled (cf. Eq. 98) and hence, the Effective medium
approximation fails.

5 Conclusion

In this paper, the interest is focused on the macroscopic
behavior of one-phase flow in fractured and vuggy porous
media. Volume averaging method is used to derive a large-
scale flow model from a Darcy-Brinkman description at the
Darcy scale. Provided some length-scale constraints are sat-
isfied, it is shown that the incompressible flow through a
fractured or vuggy rock can be described by a macroscopic
Darcy equation. This result is consistent with formulation
obtained in [1] from homogenization of a Darcy-Stokes

system with a Beavers-Joseph interfacial condition and in
[50]. The effective permeability can be determined from
the medium structure by solving the closure problem that
is derived in this paper. Calculations of this large-scale per-
meability for different geometries and comparisons with
theoretical solutions show that:

– The equivalence between the present Darcy-Brinkman
approach and the two-domain (Beavers-Joseph)
approach that is theoretically justified on the Poiseuille-
type configuration—one wall of the fluid channel being
impervious—and which makes use of the analogy
between α in the Beavers-Joseph boundary condition
and μ̃ in the Brinkman term, must be employed with
caution, although it has been used empirically in an
extensive manner in many other configurations. In
particular, region-averaged velocities and associated
regional permeabilities predicted by both methods may
be significantly different under certain conditions.

– Despite this lack of equivalence, effective permeabil-
ities obtained from the two approaches are extremely
close in practice, except at exceedingly large values of
the permeability of the porous region.

More insight could be gained from the analysis of both flux
and stress jump conditions at the porous-fluid interface in a
Darcy-Brinkman-Stokes approach.

Nomenclature

Roman Letters
Aωη Area of the interface Aωη between the ω-region

and the η- region, m2

dκ Closure variable mapping V∗
β onto

P̃ κ
β (κ = ω, η) as defined in Eq. 66, m/s

Dκ Closure variable mapping V∗
β onto

Ṽκ
β (κ = ω, η) as defined in Eq. 67, m2

Kω Permeability tensor in the porous matrix, m2

K∗
eff Effective permeability tensor for the vuggy

porous medium, m2

L Characteristic length associated with the
macroscale, as defined on Fig. 1, m

�β Characteristic length associated with the
pore-scale, as defined on Fig. 1, m

�σ Characteristic length associated with the
pore-scale, as defined on Fig. 1, m

lκ Characteristic length in the κ-region (κ = ω, η)

associated with the Darcy-scale (Fig. 1), m
nωη Unit normal vector at Aωη, pointing from the

ω-region toward the η-region
pβ Fluid pressure in the β-phase, N/m2

P κ
β Intrinsic averaged pressure in the κ-region

(κ = ω, η), N/m2



P ∗
β Averaged fluid pressure in the vuggy rock, N/m2

P̃β Large-scale pressure deviation in the vuggy
or fractured medium, N/m2

vβ Fluid velocity in the β-phase, m/s
Vκ

β Filtration velocity in the the κ-region (κ = ω, η),
m/s

V∗
β Large-scale superficial averaged fluid velocity

in the vuggy or fractured medium, m/s
V Large-scale averaging volume, m3

Vκ Fraction of the large-scale averaging volume
contained in the κ-region (κ = ω, η), m3

Greek letters
α Jump coefficient as defined by Eq. 8
εω Porosity in the ω-region
μβ Fluid dynamic viscosity, Pa s

ρβ Density, kg/m3

φκ Volume fraction of the κ-region, (κ = ω, η)

Subscripts
β Fluid phase
ω Region associated to the porous medium
η Region associated to the fluid inclusions (vugs)

or fluid-filled fractures

Appendix A: Analytical solution of the Darcy-Brinkman
equation in a stratified medium

In this appendix, we detail the solution of the Darcy-
Brinkman flow within a stratified medium depicted in Fig.
3. We consider a steady incompressible flow in a two-
dimensional domain made of a fluid channel of thickness
h between two porous layers of height h1/2 each, as illus-
trated in Fig. 3. The medium is periodic along the y direc-
tion and a constant pressure gradient is imposed along the x

direction. Flow in both zones is assumed to be governed by
the boundary value problem given by Eqs. 80 to 84. Given
the problem geometry and boundary conditions, the flow is
one-dimensional and velocity fields depend only on the y

coordinate.
Longitudinal velocities V

η
β and V ω

β can be easily deter-
mined for such a geometry. The solution within the fluid
region, i.e., -h/2 ≤ y ≤ h/2, leads to:

V
η
β =

⎡
⎢⎣y2

2
− h

√
εωKω

1 + exp
(
−
√

εω

Kω
h1

)

2
(
1 − exp

(
−
√

εω

Kω
h1

))

− h2

8
− Kω

]
1

μβ

dP

dx
− h/2 ≤ y ≤ h/2 (99)

The solution in the porous ω-region is obtained similarly
and takes the following form for y ≤ −h/2:

V ω
β = −

[
Kω + h

2
βω

√
εωKω

]
1

μβ

dP

dx
y ≤ −h/2 (100)

where βω is defined by

βω =
exp

(√
εω

Kω
y
)

+ exp
(
−
√

εω

Kω
(h + h1 + y)

)

exp
(
−
√

εω

Kω

h
2

) (
1 − exp

(
−
√

εω

Kω
h1

)) (101)

From these two results, the region-averaged velocities
V

η

β and V
ω

β can be calculated as follows:

V
η

β = 1

h

h/2∫

−h/2

V
η
β dy ; V

ω

β = 1

h1

−h/2∫

−(h/2+h1)

V ω
β dy (102)

and, after integration, one can identify the region-averaged
permeabilities, K∗

η and K∗
ω, by analogy with Darcy’s law,

such as

K∗
η = h2

12
+ Kω +

√
εωKω

2
h

(
1 + exp

(
−
√

εω

Kω
h1

))
(
1 − exp

(
−
√

εω

Kω
h1

)) (103)

K∗
ω = Kω

(h1 + h)

h1
(104)

At this point, the global effective permeability K∗
eff for

the domain under consideration can be directly derived by
a simple weighted arithmetic average for a stratified system
to give

K∗
eff = h1K

∗
ω + hK∗

η

(h + h1)
(105)

Substituting the solution of K∗
η and K∗

ω, given by Eqs.
103 and 104, respectively, into Eq. 105 and rearranging the
terms, we finally obtain

Effective permeability associated to the layered domain

K∗
eff = Kω + Kω

h

h + h1
+ h2

12

(
h

h + h1

)

+√εωKω

h2

2 (h + h1)

(
1 + exp

(
−
√

εω

Kω
h1

))
(
1 − exp

(
−
√

εω

Kω
h1

)) (106)
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