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Vanessa Haykal1, Hubert Cardot, Nicolas Ragot

Université de Tours, LIFAT (EA 6300), France

Abstract

Time series forecasting models have fundamental importance to various practical

domains. It is desirable that these methods can learn non-linear dependencies

and have a high noise resistance. In this paper, we propose a novel architecture

using deep learning to address this challenge. We have adapted a new hybrid

noise reduction architecture that use recursive error segments for learning and

adjusting the predictions. The solution is based on a simultaneous fusion be-

tween the outputs of a Convolutional Neural Network (CNN) and a Long Short

Term Memory (LSTM) network. This novel model is able to capture di↵erent

types of properties which combination can substantially outperform their sepa-

rate use. Applications involving electricity and financial datasets illustrate the

usefulness of the proposed framework.

Keywords: Deep learning, convolutional neural network, long short-term

memory, noise reduction, recursive error segments, time series forecasting.

1. Introduction

The main aim of time series modeling is to carefully collect and rigorously

study the past observations to develop an appropriate model that describes the

inherent structure of the series. Time series forecasting thus can be termed

as the act of predicting the future by understanding the past. Due to the5

indispensable importance of time series forecasting in numerous practical fields
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such as economics, finance, science and engineering, proper care should be taken

to fit an adequate model to the underlying signals. It is obvious that a successful

time series forecasting depends on an appropriate model fitting. Researchers

have done many e↵orts over years to develop e�cient models and to improve10

the forecasting accuracy. As a result, various important time series forecasting

models have evolved in literature.

The well-known linear autoregressive moving average (ARMA) models [1] are

examples of statistical formalism for time series analysis and forecasting. Many

extension of ARMA models have failed to capture the behavior of complex series15

such as the generalized autoregressive conditional heteroskedasticity model [2,

3]. Therefore, researchers have introduced some machine learning techniques

including Artificial Neural Network (ANN) [4], Support Vector Machine (SVM)

[5], and Decision Trees [6] etc. The main challenge of these models has been

to adjust their parameters like connection weights, architecture and learning20

algorithms. In this way, it has been usual to spend considerable computational

resources in order to select the best model. These strategies commonly use some

evolutionary computation techniques such as genetic algorithms [7] and particle

swarm optimization [8, 9].

The turning point starts when introducing deep learning approaches that25

recently become very popular in various domains. The recurrent neural net-

works (RNN) models [10], for example, become very useful in recent natural

language processing (NLP) research. Long Short Term Memory (LSTM) [11]

and the Gated Recurrent Unit (GRU) [12] are considered as variants for RNN.

They have significantly improved the state-of-the-art performance in machine30

translation, speech recognition and other NLP tasks as they can e↵ectively cap-

ture the meanings of words based on the long-term and short-term dependencies

among di↵erent documents [13, 14]. In the field of computer vision, the convolu-

tion neural network (CNN) models [15, 16] have shown outstanding performance

by successfully extracting local and shift-invariant features at various granular-35

ity levels from input images. But deep neural networks have also received an

increasing amount of attention in time series analysis [17, 18].
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In this paper, we use deep learning models inside a hybrid noise reduction

architecture to improve the forecasting results. The objective from this study

is to maximize the model properties and minimize its error by using a novel40

hybrid structure. On the one hand, we use convolutional layers on the inputs

to extract local features. On the other hand, we calculate the error segments

for noise reduction based on a recursive residual method, and then we stack

memory layers for long short-term dependencies. All the procedures are built

on non-linear activation functions. The results of this work reveal that the45

proposed model is able to adjust the performance more e�ciently than other

approaches.

The rest of this paper is organized as follows: Section 2 introduces the basics

of forecasting models used in this study namely the ARMA extension models,

convolutional neural networks, and long short-term memory networks. Section 350

shows the key novelty of our study by explaining the properties and the structure

of our proposed model. The overall experimental results are detailed in Section

4 where all models are compared based on a performance indicator. Finally,

some concluding remarks are given in Section 5.

2. Forecasting Models55

2.1. ARMA extensions

Due to the linear limitations [19, 20] of the autoregressive moving average

(ARMA) model, researchers have proposed di↵erent extensions for this model

in order to improve its performance. In ARMA model, the future value of a

variable is assumed to be a linear function of several past observations with

their errors. It is modeled by the following equation:

x̂t =
pX

i=1

'ixt�i +
qX

j=1

✓j(xt�j � x̂t�j)

where x̂t is the predicted value at time t and xt�i are the lagged inputs. The

integers p and q are often referred as orders of the model. If q = 0, then the

equation becomes an AR model of order p. When p = 0, the model reduces to
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a MA model of order q. In some papers, the equation is formulated using the60

backshift operator (B), where we considerBixt = xt�i. Many ARMA extensions

models have been used in literature to capture the nonlinear characteristics of

the data. Di↵erent studies [21, 22] work on the noise reduction architecture

(NRA) illustrated in Figure 1. Many e↵orts in this direction have shown an

improvement in the results by combining linear with non-linear models such as65

ANN and SVM etc.

Figure 1: The Standard Architecture (SA) as part of the Noise Reduction Architecture (NRA)

The NRA works on a two-steps training procedure for correcting the forecast

model. The first step reflects the elaboration of the trained forecaster, gener-

ally used as a Standard Architecture (SA), and the second step corresponds

to the recursive error calculation procedure where we separately train the sec-70

ond model from the first model. The objective from this step is to detect any
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new tendency of the phenomena not already captured by the original forecast-

ing model. Consequently, the prediction of the recursive error series is used to

correct the future values of the forecaster that deals with linear and nonlinear

patterns.75

2.2. Convolutional Neural Network

In the last few years, deep neural networks have led to breakthrough results

on a variety of pattern recognition problems, such as computer vision and voice

recognition [23, 24, 25]. Convolutional neural network (CNN) extract features

from input signal through a convolution operation with a filter (or kernel). The

activation unit represents the result of the convolution of a kernel with an input

signal. Each activated unit is connected only to a local region of the input. These

units form a feature map as shown in Figure 2. These activated units filtered by

Figure 2: Overview of a convolutional neural network with 1D input

the same kernel share the same parameterization (weights and bias). The shared

weights aspect of the convolutional layer reduces the total number of learnable

parameters resulting a more e�cient training process [26, 27]. To understand
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the CNN, it might be su�cient to understand the formulation of convolution

operator. A discrete convolution of two one-dimensional (1D) signals f and g is

defined as:

(f ⇤ g)(i) =
1X

j=�1
f(j)g(i� j)

where depending on this equation, nonexistent samples in the input may be

considered as zero-padding values. A convolution at point i is computed by

shifting the signal g over the input f along j and computing the weighted sum

of the two signals. Moreover, we can also add some transfer functions such as80

the sigmoid and the rectifier linear unit (Relu) to capture the non-linear rela-

tionships. Another component of the CNN architecture is the pooling layer. It

performs a down-sampling operation along the spatial dimensions. It is common

to periodically insert it in-between successive convolutional layers using the max

or mean operators. Its function is to progressively reduce the spatial size of the85

representation, hence to reduce the amount of parameters and computations

in the network. Finally, the last layers are fully-connected and correspond to

traditional ANN. The input to the first fully-connected layer is the set of all

feature maps at the previous layer.

2.3. Long Short Term Memory Network90

Long Short Term Memory networks (LSTM) are a special kind of Recurrent

Neural Network (RNN), they are among the most widely used models in Deep

Learning for NLP today. LSTM are explicitly designed to avoid the long-term

dependency problem through gating mechanism [28, 29, 30]. Remembering

information for long periods is practically their default behavior.95

The LSTM structure depicted in Figure 3 is implemented through the fol-
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Figure 3: The components of the LSTM unit [29]

lowing equations:

ft = �(wfhht�1 + wfxxt + bf )

it = �(wihht�1 + wixxt + bi)

c̃t = tanh (wghht�1 + wgxxt + bg)

ct = ft ⇥ ct�1 + it ⇥ c̃t

ot = �(wohht�1 + woxxt + bo)

ht = ot ⇥ tanh (ct)

Here, it, ft, ot are called the input, forget and output gates, respectively. Note

that they have the exact same equations, just with di↵erent weights (w.h is the

recurrent connection at the previous hidden layer and current hidden layer, w.x

is the weight matrix connecting the inputs to the current hidden layer). The

input gate defines how much of the newly computed state for the current input100

you want to let through. The forget gate defines how much of the previous

state you want to let through. Finally, the output gate defines how much of

the internal state you want to expose to the external network. c̃t is a candidate

hidden state that is computed based on the current input and the previous

hidden state. ct is the internal memory of the unit. It is a combination of the105

previous memory, multiplied by the forget gate, and the newly computed hidden

state, multiplied by the input gate. Thus, intuitively it is a combination of how

we want to combine previous memory and the new input. ht is output hidden
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state, computed by multiplying the memory with the output gate. Denote ⇥ as

elementwise multiplication and b. the bias term. The � and tanh represent the110

activation functions of the LSTM [31, 32, 33].

3. Proposed model

Despite the availability of numerous time series models, the accuracy of time

series forecasting for many applications are not up to the needs. Consequently,

many researches have argued that hybrid models could improve predictive per-115

formance. Indeed, their aim is to reduce the risk of using an inappropriate model

by combining several models. Typically, the motivation for combining models

comes from the assumption that a single one may not be su�cient to identify

all the characteristics of the time series. A hybrid methodology [21, 22, 34, 35]

that has di↵erent modeling capabilities is a good strategy for practical use. By120

combining interacting models, di↵erent aspects of the underlying patterns may

be captured.

3.1. Model structure overview

In this paper, we use di↵erent deep learning models fused inside a new hybrid

noise reduction architecture (HNRA) with recursive forecast error. Recursive125

error prediction methods are frequently used in the field of ARMA extensions,

as discussed in section 2.1. Based on this method, we propose a new model

that generalize the principle of noise reduction and add additional properties

based on deep learning. Figure 4 shows the structure of this novel hybrid noise

reduction architecture to clarify the di↵erence between our contribution and the130

state-of-the-art procedure as shown previously in Figure 1.

Firstly, the deep learning models of Figure 4 replace the classical linear mod-

els or non-linear algorithms used in Figure 1. CNN is applied to the sequential

inputs using local receptive fields by taking into account the convolution opera-

tor and the LSTM is used for error correction mechanism to capture long-term135

dependencies. Secondly, in our model, the error correction mechanism is based
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Figure 4: Novel Hybrid Noise Reduction Architecture (HNRA)

on the simultaneous fusion between the past inputs predictions and their lagged

errors predictions, whereas in classical systems, as mentioned in Figure 1, the

error series are based on the forecast of the first model only. Thirdly, in our

model, both autoregressive inputs and recursive errors parameters are learnt140

jointly using one-step hybrid training procedure. During the training phase,

we simultaneously optimize the cost function that integrates the whole param-

eters of both models, which di↵ers from the classical recursive forecast error

architecture (NRA) where a two-steps training is used.

In Table 1, we compare the di↵erent properties of our architecture against145

state-of-the-art models. The checklist refers mainly to ARMA extensions and

to CNN-LSTM models. Indeed, in some recent literature review, we found that
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Properties HNRA-CNN-LSTM CNN-LSTM [34, 35] ARMA Extensions [21, 22]

Sequential inputs ⇥ ⇥ ⇥

Error series ⇥ ⇥

Convolutional layers ⇥ ⇥

Memory layers ⇥ ⇥

Non-linear functions ⇥ ⇥ ⇥

Principle HNRA SA NRA

Table 1: Checklist comparison with our HNRA-CNN-LSTM

di↵erent articles use the principle of SA (Standard Architecture) with CNN

and LSTM as a combination of successive layers where the output of CNN is

considered as the input of LSTM. We mention it in this checklist to show exactly150

the di↵erence between them. Contrarily, our model takes into consideration the

error series properties which it is not the case of the SA-CNN-LSTM model. It

is clear that the idea of the error segments is derived from the ARMA extensions

using NRA architecture. By combining all the sub-models properties, we can get

the NRA-CNN-LSTM and the HNRA-CNN-LSTM models as new contributions155

to explore. HNRA di↵erence relies mainly on the one-step hybrid training and

on the error calculation based on the final output as explained in Figure 1 and

4.

3.2. Model formulation

The proposed model formulation is based on ARMA extensions, and it is

generalized by using advanced non-linear modeling techniques, thanks to deep

learning. The system could be presented as follows:
8
<

:
x̂t = fHNRA(fCNN (xt�1, ..., xt�p), fLSTM (et�1, ..., et�q))

et = xt � x̂t

The details of the system formulations are given in the Appendix. The resulting

output x̂t of the proposed model is:

x̂t = x̂(L00)
t
� ê(L

0)
t

 !

8
<

:
x̂t = x̂(L00)

t
+ ê(L

0)
t

et = xt � x̂t
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where x̂(L00)
t

corresponds to the final layer output of the CNN and ê(L
0)

t
is the final160

forecasted error derived from LSTM. Then, the calculated error et is updated

and reused for the next prediction.

3.3. Model diagram & learning process

In order to facilitate the understanding of the model during the training

phase, we draw its diagram in Figure 5 to describe the propagation steps of165

its mechanism. The main objective is to predict x̂t at time t. We start with a

window [xt�1, ..., xt�p], it is an input signal containing the past observed values.

In the diagram, it is expressed with an start point xt�p followed by a series of

forward shift operators (B�1) up to xt�1. A filter with size z slides over the

input and computes the dot product between the window and the shared weights170

of CNN. A pooling layer down-samples the convolved array by averaging each

k neurons. Then, a fully connected layer is used to get the temporary output

x̂(L00)
t

of CNN that is fused with error forecast ê(L
0)

t
. Initially, the error series

are set to zero, then they are updated on each iteration. The final output x̂t

is then subtracted from the true observed value xt at the next step in order to175

get the forecast error et. We add backshift operators (B) on these errors to get

their lagged window [et�1, ..., et�q]. Then, we stack a memory layer to the error

segments for long short-term dependencies modeling (LSTM) which output is

ê(L
0)

t
used to compute x̂t.

In our example, we design the diagram with p equal to six and q equal to180

four, so the overall inputs of the model are equal to ten. We use five forward

shift operator to get the lagged window of the observed values, and a filter

slide gradually on the whole input signal with a length equal to three. Once

we calculate the current error, we use four backshift operators to get the lagged

window of the previous error values. We stack to it four LSTM units with a given185

initial condition for c0 and h0. The blue arrows represent the final regression

value of each model, and the black arrow gives the final output prediction. We

note that all the calculations are built on non-linear mathematical functions

such as hyperbolic tangent.
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Once the structure of the system is specified, it is ready for the training

phase. The estimators are optimized by minimizing the cost function that com-

bines all the parameters of the CNN and LSTM models. In our case, we use the

mean squared error (MSE) as a cost function. The computation of this criterion

is given as follows:

MSE =

P
N

n=1 (xt � x̂t)2

N

where the expected output is compared with the desired output. After that, the190

weights are adjusted accordingly using the stochastic gradient descent optimiza-

tion. This process is repeated among the whole sample size N with a specific

number of epochs.

Figure 5: Novel approach diagram used during the learning phase
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4. Experimentation

4.1. Data description & training195

Based on these references [35, 36], we take into account the same data sam-

ples to compare our results. For benchmarking, we used the Carbon Copy

model. Its predictions are exactly the same value as the previous one. This

simple model is not often used in literature, whereas it provides already inter-

esting behavior since the original and predicted curves are close to each others.200

In our study, we work on three datasets that are shown in Figure 6. The

first dataset is the daily closing price of the Nikkei 225 index. The observations

from 1984 to 2014 are used as an in-sample set and from 2014 to 2015 are

considered as the out-sample set. The second dataset represents the electrical

consumption that records the market capacity price at each hour in 2017 as205

shown in the second subplot of Figure 6. We can see that the series has large

spread and sudden peak values occurrence that increase the forecasting di�culty

of the algorithms. The sample contains three months as training data, and one

month as testing data. Furthermore, the third dataset is the daily closing price

of the S&P 500 index. The first observations from 1980 to 2014 are used as210

a training set. The testing set starts from 2014 to 2015. For all the datasets,

we get the stationary phase by di↵erentiating and normalizing on each signal.

After that, we split the training sample into two parts to get a validation set.

The goal is then to select the model that performed the best. We use the grid

search method for hyper-parameters optimisation. It’s a searching algorithm215

that intends to find the best combination among all the hyper-parameters. We

train each of these models and evaluate them using the validation set. Indeed,

deep learning models have di↵erent hyper-parameters that should be tuned in

order to adjust the results. According to the following experimentation, the

number of layers and units have an e↵ective influence on the overall model220

performance.

For the Nikkei dataset, the obtained model topology has three convolutional

layers where each one is followed by a mean pooling layer. We use 82, 64 and
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Figure 6: Overview of the three datasets: Nikkei 225, Electricity & S&P 500 (from up to

down)

20 filters respectively. A fully connected layer is added to the architecture with

30 neurons. Using the temporary forecast of CNN as discussed previously in225

section 3, we can make the calculation of errors and take into account twelve

lagged values to create the error segments. We stack one LSTM layer with 43

units. The model use a window with twenty-two observations.

For the Electricity dataset, the model is based on the past twenty-five se-

quential observations. In our topology, we use two convolutional layers where230

each one is followed by a mean pooling layer. We use 64 and 32 filters respec-

tively. A fully connected layer is added to the architecture with 32 neurons.

Using the temporary forecast of CNN, we can make the calculation of errors

and take into account fourteen-lagged values to create the error segments. We

add two LSTM layers with 25 and 8 cells respectively.235

For the S&P 500 dataset, the model is based on the past thirty-one sequential

observations. In our topology, we use three convolutional layers where each one

is followed by a mean pooling layer. We use 128, 32 and 32 filters respectively.

A fully connected layer is added to the architecture with 50 neurons. Using
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the temporary forecast of CNN, we can make the calculation of errors and take240

into account seventeen-lagged values to create the error segments. We add two

LSTM layers with 30 and 10 cells respectively.

4.2. Results

In these experiments, we used the root mean squared error (RMSE) as a

performance indicator already mentioned in Section 3.3. A small value of RMSE245

means that the predicted time series values are closed to the actual values.

Based on the test sample and the optimal models described in Section 4.1, we

produced the summary of the RMSE values in Table 2. In our proposed model,

we step through the test sample to make future predictions by multiplying the

CNN coe�cients with the observed test signals and the LSTM coe�cients with250

the error test window. For each new input series, we calculate the actual error

and update the error series lag values so that we can estimate the error at the

next time step. Consequently, for the new error segment, we mainly replace the

previous estimated errors by their true observed values as explained in [37].

As shown in Table 2, the RMSE of Nikkei 225 decreases from 185.37 as255

obtained in [36] to 177.3. Even when comparing our model to recent models like

CNN-LSTM, we found a decline in the error from 178.47 to 177.3 and like NRA-

CNN-LSTM, it is reduced from 178.29 to 177.3. For the electricity dataset, we

find a slight decrease in the RMSE comparing to [35] from 16.89 to 16.53. The

RMSE of the NRA-CNN-LSTM corresponds to 16.8, and then it diminishes to260

16.53 when replaced by the HNRA. Since the series has a high peaks, applying a

denoising technique on inputs may help the deep learning algorithms to improve

their performance. For S&P 500 in [36], the RMSE drops from 14.8 to 12.4.

Even when comparing our model to already existing models like CNN-LSTM,

we found a decrease in the error from 13.19 to 12.4 and like NRA-CNN-LSTM,265

the RMSE goes down from 12.86 to 12.4. These results illustrate the interest of

the hybrid noise reduction architecture on this experimentation.

In Figure 7, we visualize the RMSE percentage change of all the models

among all the datasets. It is calculated by di↵erencing and dividing the new
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Models RMSE Percentage Change (%)

Nk225 Carbon Copy 188.17 1.51

GA-WA [36] 185.37 0

LSTM 184.60 -0.41

CNN 179.79 -3.01

CNN-LSTM 178.47 -3.72

NRA-CNN-LSTM 178.29 -3.81

HNRA-CNN-LSTM 177.30 -4.35

Electricity Carbon Copy 20.57 21.78

RF [35] 19.46 15.21

LSTM [35] 17.35 2.72

CNN [35] 17.30 2.42

CNN-LSTM [35] 16.89 0

NRA-CNN-LSTM 16.80 -0.53

HNRA-CNN-LSTM 16.53 -2.13

S&P500 Carbon Copy 15.17 2.5

GA-WA [36] 14.80 0

LSTM 14.67 -0.87

CNN 14.01 -5.33

CNN-LSTM 13.19 -10.87

NRA-CNN-LSTM 12.86 -13.10

HNRA-CNN-LSTM 12.40 -16.21

Table 2: RMSE values for di↵erent models on the test samples

RMSE result by the already existing one. The percentage is equal to zero270

for the best existing model in the literature review. All the models that are

based on deep learning give a high decrease compared to other classical artificial

intelligence models. Many adjustments have been made using the NRA and

HNRA principles. Following the histograms, the HNRA outperforms the NRA

in the three cases. The percentage change has an improvement of 4.35% for275

Nikkei 225. Further, it has a slight enhancement of 2.13% for the electricity

dataset and a significant amelioration of 16.21% for the S&P 500.

As a complement of information, we notice that applying the auto-correlation

function on the final errors of the carbon copy (worst RMSE) and the HNRA-
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Figure 7: RMSE percentage change comparison for each dataset

CNN-LSTM gives us values that tend to zero for both models. Consequently, we280

can assume the existence of white noise due to the closeness of the predicted and

original series on both forecasters. It is important to calculate it to verify this

assumption, but it is not considered as a su�cient indicator in our experiment
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Figure 8: Original versus predicted time series for each dataset

to evaluate the overall forecast system, since we get null values to the worst

model as well as to the best model. In this case, the RMSE is more e�cient285

and commonly used to evaluate the results. In Figure 8, we plot the original

and the predicted series for each test sample of the three datasets.
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5. Conclusion

The objective of this study is to maximize the model properties and minimize

its error by using a novel hybrid structure known as the HNRA-CNN-LSTM.290

The approach combines CNN and LSTM using a hybrid noise reduction archi-

tecture. It shows how to model and use recursive errors to correct predictions

and improve the overall time series forecast performance. The hybrid model

exploits the strength of CNN model as well as LSTM model to determine dif-

ferent patterns. CNN uses the convolution operator to extract local important295

features from the input data, whereas the long-term dependencies of LSTM can

correct these predictions. Both sequential inputs and error series are learnt

simultaneously to minimize the global loss function of the model.

Based on the RMSE values, we can conclude that deep learning approaches

are more e�cient than existing reference models such as random forest or sup-300

port vector machines. Further, the noise reduction architecture is better than

the standard approaches since it corrects and minimizes the error. Hence, the

NRA-CNN-LSTM outperforms the single CNN and LSTM forecasting methods.

It integrates non-linear models that are trained separately. We also conclude

that our HNRA model outperforms the state-of-the-art approaches by achiev-305

ing the smallest RMSE values for the three datasets. It can be adequate to

work on it for complex non-linear problems. Its hybrid training mechanism is

more e�cient than the two-steps procedure training used in NRA. For future

research, applying some denoising techniques [38, 39, 40] on the input data may

be convenient to adjust the results.310
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Appendix

As discussed in Section 3.2, more details of the proposed model formula-

tions are given in this part. Recall our HNRA-CNN-LSTM model, we get the
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following system:
8
<

:
x̂t = fHNRA(fCNN (xt�1, ..., xt�p), fLSTM (et�1, ..., et�q))

et = xt � x̂t

By developping these functions, we get the following mathematical formulations.

Output of the convolutional layers:

a(l)
j
(⌧) = �(

F
(l�1)X

f=1

[
S

(l�1)X

s=1

k(l�1)
if

(s) ⇤ a(l�1)
f

(⌧ � s)] + b(l�1)
j

)

We consider P (a(l
”�1)

F (l�1)
(⌧)) as an output of the pooling layer. It is common to

periodically insert it between convolutional layers.

Output of the fully connected layers:

m(l00)
i

= �0(
m

(l00�1)X

z=1

w(l00�1)
i,z

(a(l
00�1)

F (l�1) (⌧)) + b(l
00�1)

i
)

Output of the CNN regressor:

x̂(L00)
t

= wxmm(L00)
i

+ bxm

LSTM gates: 0
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1
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A

LSTM internal cell state:

c(l
0)

t
= f 0 ⇥ c(l

0)
t�1 + i0 ⇥ g0

LSTM hidden state:

h(l0)
t

= o0 ⇥ tanh(c(l
0)

t
)

Output of the LSTM regressor:

ê(L
0)

t
= wehh

(L0)
t

+ beh
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HNRA principle:

x̂t = x̂(L00)
t
� ê(L

0)
t

 !

8
<

:
x̂t = x̂(L00)

t
+ ê(L

0)
t

et = xt � x̂t

Nomenclature425

�,�0 Activation functions 2 {sigmoid, tanh, relu}

a(0)
f

Initial input p-vector

a(l>1)
f

Hidden feature map f in layer (l)

b(l�1)
j

, b(l
00�1)

i
Bias

e(0)
t

Initial error q-vector430

e(l
0
>1)

t
Hidden error state in layer (l’) in timestep t

F (l�1) Number of feature maps in layer (l-1)

K(l�1)
if

Kernel convolved over feature map f in layer (l-1) to create the feature

map i in layer (l)

L00, L0 The final layer of the CNN and LSTM respectively.435

m(l00�1) Number of units in layer (l”-1)

m(l00)
i

The output of ith unit with layer (l”) of the fully connected network

P (.) Pooling operator 2 {max,mean}

S(l�1) Length of kernels in layer (l-1)

Tn,m A�ne Transformation (Wx+b) from Rn to Rm space [33]440

w(l00�1)
i,z

The weighted connection from zth unit layer in (l”-1) to the ith unit

layer (l”)
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