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Abstract

Plasmonic biosensors represent a rapidly expanding interdisciplinary field

with numerous transducers which are based principally on the optical mea-

surement of the plasmon shift, that is induced by the change of surrounding

water optical index, due to the presence of biomaterials, in a binding event.

A functionalization layer is practically used for selective detection of the

molecules of interest. In this paper we show how this material can mod-

ify the sensitivity of the biosensor and we propose an optimization of the

biosensor.
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1. Introduction

Among the large family of biosensors, those that are based upon the mea-

surement of the perturbation of the Surface Plasmon Resonance, have an in-
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creasing expansion since the success in the engineering control of nanolayer

fabrication that was first applied in 1983. Since, the Surface Plasmon Reso-

nance (SPR) biosensor has become one of the most successful label-free sen-

sor. The SPR technique is currently employed in biomolecular engineering,

drug design, monoclonal antibody characterization, virus-protein interaction,

environmental pollutants detection, among other interesting problems. A

review of the various experimental setups and principles can be found in

Refs. [1, 2, 3]. Surprisingly, the optimization of such structures [4, 5, 6, 7, 8]

and the influence of the functionalization layer have rarely been addressed.

Therefore, the thickness of the gold layer is commonly chosen to 50 nm [9]

or 55 nm [10] and neither the stick layer of Gold on glass nor the function-

alization layer have been included in the models.

The sensing principle relies on the shift of the plasmonic resonance caused

by the surrounding dielectric environmental change in a binding event. The

basic principle of such transducer is the use of the existence of mathematical

complex poles of the intensity of the reflected light, under particular illumi-

nation conditions (p-polarization), corresponding to a sudden absorbtion of

light by the thin metallic layer, for a specific angle of incidence of the illumi-

nation varies [11, 7], leading to a highly sensitive device [4, 5]. Kolomenskii

et al proposed model and experiments that demonstrate that the measure-

ment of the SPR shift is proportional to the concentration of the NaCl and

ethanol. They also discussed the limit of detection according to the specifi-

cations of the detector and the source. Friebel and Meinke also proved the

linear dependance of the optical index on the concentration of hemoglobin

using Fresnel reflectance measurements [12]. Older studies focused on the re-
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fractive index of solutions at high concentrations and produced results with

non linearities in dependance on concentration [13]. Conversely, using nano-

biosensors, where the plasmon is localized due the geometry of nanoparticles,

the normalized LSPR response has the same functional form as the Langmuir

adsorption isotherm [14].

Nowadays, the basic principle of such commercial SPR biosensors is based

on the measurement of the shift of the reflected intensity peak, which cor-

responds to the shift of the surface plasmon resonance induced by a change

of optical index in the upper medium. This change of optical property is

commonly related to the bending of biological molecules on a chemical func-

tionalization of the metallic surface of the biosensor. Even in the case of the

planar SPR biosensor, the problem of optimization is intrinsically NP-hard as

it involves the inverse function of the reflected intensity, which is the square

modulus of a transcendant function of complex variables. The sensitivity of

the biosensor also depends on the contrast of the plasmon peak which op-

timization has been addressed without including the functionalization layer,

with various numerical methods [7, 15, 16, 17].

In this paper, we will show the influence of the relative permittivity of

a specific functionalization layer on the sensitivity of the SPR biosensor.

Section 2 is devoted to the description of the model of the SPR biosensor

and of the sensitivity. In Sec. 3 numerical results are presented and discussed,

before concluding in Sec. 4.
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2. The model of biosensor

The SPR biosensor under investigation is made of two metal layers, which

are deposited on a glass prism (Fig. 1). The relative permittivity of the

glass prism is ε1. The relative permittivities ε2 and ε3 of the chromium and

gold layers are complex numbers and depend on the incoming wavelength

λ0 which is fixed in this study to 670 nm. We suppose that the variations

of permittivities related to the small thickness of materials and the mode of

deposition is not a critical parameter [18]. The thicknesses of chromium ans

gold layer are e1 and e2. The functionalization is an homogenous medium of

thickness e3 and relative permittivity ε4. This parameter differs from relative

permittivity of the medium of detection is ε5 and its variations could influence

the design of the metal layers, with the aim of improving the sensitivity of

the biosensor. In the following, the modification of ε5 due to the presence or

the absence of biological molecules is supposed to be ∆ε5. The roughness of

the gold layer is nanometric and will be neglected in this study. The angle of

incidence of the incoming, monochromatic, p-polarized plane wave is θ. For

a particular parameters set (θ, e1, e2), the reflected intensity R vanishes, sign

of the energy transfer of the incoming light to the thin metal layer (excitation

of a plasmon resonance).
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(a) (b)

Figure 1: Schematic of the biosensor used to measure variations of the optical index of

the above medium as a function of biomaterials concentration.

The detection being based on the measurement of the angular shift of the

minimum of reflectivity, the sensitivity can be defined as a function of the

shift:

∆θ = θ(min(R(θ, ε5 +∆ε5)))− θ(min(R(θ, ε5 −∆ε5))) (1)

The maximum of ∆θ is searched as a function of the metal thicknesses e1

and e2. This function is implicit and therefore requires numerical inversion.

The well known Nelder-Mead method is used in this study.

On the other hand, the quality of the resonance depends on the reflected

intensity R(θ) and is characterized by the shape and the minimum of this

function. The shape depends on the relative permittivity of materials. The

minimum of R(θ) must be as small as possible to get the higher transfer of

the incoming energy to the metal layers. Therefore, the visibility V of R(θ)

is also a guarantee of the quality of measurements [19, 4, 10]:
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V =
max(R)−min(R)

max(R) + min(R)
(2)

Therefore, the sensitivity S of the SPR biosensor can be therefore de-

duced, in order to take into account both V and ∆θ:

S = S(e1, e2) =
V

∆θ
(3)

The calculation of the reflected intensity R = |r15|2 uses the Fourier trans-
form of the Maxwell partial differential equations, to generate a linear system

between the amplitudes of the plane waves in each medium, the boundary

conditions at infinity to select the wave vectors and the continuity of the

tangential magnetic field and the normal component of the electric excita-

tion [20, 21, 7]. The reflected amplitude of field is proportional to r15 which

can be deduced after some basic algebra :

r15(εi, ei, θ) =
N

D
, (4)

with:

N = e2ıe2(w3+w4)r2r3r4 + e2ı(e1w2+e2(w3+w4))r1r3r4 + e2ı(e1(w2+w3)+e3w4)r1r3r3 +

e2ı(e1w2+e2w4)r4 + e2ı(e1w3+e3w4)r3 + e2ı(e2w3+e3w4)r2

+e2ı(e1w2+e2w3+e3w4)r1, (5)

and:

D = (r2e
2ıe1w2 + r1)(e

2ı(e1w3+e2w4)r4 + e2ı(e1w3+e3w4)r3) +

(r2r1 + e2ıe1w2)(e2ı(e2(w3+w4))r3r4) + e2ı(e2w3+e3w4), (6)
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with ı =
√
−1 and ri the Fresnel’s reflection coefficient on the interface

separating two mediums of relative permittivities εi and εi+1 respectively:

ri =
εi+1wi − εiwi+1

εi+1wi + εiwi+1
, (7)

and wi =
2π
λ0

√

εi − sin2(θ), the z component of the wave vector in medium of

permittivity εi (Fig. 1).

The result in Eq. 4 has been verified by considering mediums with equal

permittivities to get the simple Fresnel coefficients, and only one non null

thickness to recover the coefficient of reflection by single slab. Moreover, it

has been checked with Eq. (40) of Ref. [22].

As shown in [15], both reflected intensity R and θSP = θ(min(R)) depend

strongly on the metal thicknesses e1 and e2. The purpose of the following

section is to give insights and numerical results on the sensitivity of the

biosensor.

3. Numerical study of the sensitivity of the SPR biosensor

The goal is to determine thicknesses e1 and e2 for the best sensitivity

S. The starting values for the Nelder-Mead algorithm are those of experi-

ments [10] and previous optimizations, without the functionalization layer [7].

Two modes of detection are considered: in water (ε5 = 1, 7689) and in air

ε5 = 1 (dry mode). The target variation of the relative permittivity of the

above medium is ∆ε5 = 0.001. This variation is due to the presence of

the molecules to be detected. The relative permittivity of the glass prism is

ε1 = 2.25. The relative permittivities ε2 = −1.75+20.6ı and ε3 = −11.9+1.1ı
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of the chromium and gold layers are complex numbers at the incoming wave-

length λ0 = 670 nm. The functionalization is an homogenous medium of

thickness e3 = 5 nm and relative permittivity ε4 = 1.96. This value has been

measured by ellipsometry for a monolayer of Keyhole Limpet Hemocyanin

(KLH), deposited on a 50 nm thick gold slab. This molecule is typical of

many functionalization layers in terms of optical properties.

In this study, the optimization of the two parameters e1 and e2 is made

with Nelder-Mead algorithm. Nevertheless, we have verified the results

that could depend on the starting value, and are not constrained in a lim-

ited physical domain of variations, by using heuristic methods described

in Refs. [7, 15, 16, 17]. The four investigated cases are combination of

with/without functionalization and detection in water or air. In the ab-

sence of functionalization the relative permittivity of the corresponding layer

is ε4 = ε5. An equivalent way consists in considering e3 = 0.

The figures 2 and 3 shows exemples of maps of the visibility V (Eq. 2),

the shift ∆θ of the plasmon resonance (Eq. 1), the sensitivity S (Eq. 3) and

the minimum of R(θ). Figures 2 differs from Figs. 3 because the conditions of

plasmon excitation vary in water and air. The contrast of permittivities ε5/ε1

and therefore the critical angles [20] are not the same. Moreover, the sensi-

tivity S is twice in water than that in air (c). Nevertheless, the plasmon shift

is greater if the detection is made in water (b). This difference is mainly due

to the behavior of the visibility V (a). The figure 4 illustrates the influence of

the functionalization layer on both sensitivity as defined above, and the shift

of plasmon resonance, for both modes of detection. The computation have

been made for ∆ε5 = 0.001, that corresponds to a variation of the above op-
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tical index equal to 3.10−2. The shift decay in water is greater than in air but

remains small compared to the uncertainty on angular measurements. The

sensitivity is also slightly modified. Nevertheless, both exhibit flat maximum

around the commonly used set of thickness (e1 ≈ 50nm, e2 ≈ 2nm).

(a) (b)

(c) (d)

Figure 2: Characteristic of the three layers SPR biosensor as a function of metal thicknesses

e1 and e2. The detection is in water. The functionalization layer is included. (a) Visibility

V (e1, e2) , (b) Shift of SPR ∆θ(e1, e2), (c) Sensitivity S(e1, e2), (d) min(R)(e1, e2).
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(a) (b)

(c) (d)

Figure 3: Characteristic of the three layers SPR biosensor as a function of metal thicknesses

e1 and e2. The detection is in air. The functionalization layer is included. (a) Visibility

V (e1, e2) , (b) Shift of SPR ∆θ(e1, e2), (c) Sensitivity S(e1, e2), (d) min(R)(e1, e2).
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(a) (b)

(c) (d)

n

Figure 4: Influence of the functionalization layer. Difference of the shift of SPR ∆θ(e1, e2)

in water (a), in air (c). Difference of the sensitivity S in water (b), in air (d).

Therefore, for the illuminating wavelength λ0 = 670 nm, the numerical

optimization of the thicknesses deserves to be computed. The table 1 gives

the optimized parameters obtained from the Nelder-Mead method. As ex-

pected by the visual inspection of Fig.2, 3 and of course 4, the best set of

thicknesses is not the same if the detection is made in water or in air. More-

over, surprisingly, the tiny difference of the results obtained with inclusion of

the functionalization layer lead to an non negligible difference of thicknesses.
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Some conclusions could be drawn from these results. The sensitivity of the

biosensor is better in air than in water. Actually, the plasmon resonance is

more efficient if ε5/ε1 is smaller. The thickness of chromium should be as

small as possible, the chromium being highly dispersive at these wavelength.

Nevertheless, the relative permittivity of the functionalization layer is slightly

different from that of water and more for air and even if the thickness e3 is

only 5 nm and located more than 50 nm away from the glass/Cr interface,

it influences on the sensitivity. The optimal thickness of gold is more than 2

nm less in the case of detection in air than in water, but the functionalization

layer modify these values of less than 1 nm. Of course, this variation could

be increased if the thickness of the functionalization layer is increased.

Water Air

With F Without F With F Without F

e1 (nm) 1.2 1.0 1.6 1.0

e2 (nm) 51.7 52.4 49.7 49.1

S 3.3 3.5 8.1 16.8

Table 1: Optimization of the metal thicknesses e1 and e2, with or without functionaliza-

tion, with detection in air or in water.

4. Conclusion

In this study, the sensitivity of the SPR biosensor has been defined as a

function of the quality of the plasmon resonance and of its shift, to describe

the method of measurement. The numerical results show that the sensitivity

depends on the thin functionalization layer, the detection being made either

12



in water or in air. Moreover, the thicknesses of both the chromium stick layer

and the gold layer have been optimized for the two modes of detection. The

sensitivity of the SPR biosensor should be also determined, for example by

using the method described in Ref [18] to determine if the tolerance on the

thickness falls within the nanometric differences mentioned above. Moreover,

the nanometric roughnesses could be introduced, but it would require a more

expensive model and an experimental evaluation of the RMS of the gold layer.
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