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 28 

SUMMARY 29 

 It was first predicted in 1988 that there may be an Open Reading Frame (ORF) on the 30 

negative strand of the Human Immunodeficiency Virus type 1 (HIV-1) genome that could 31 

encode a protein named AntiSense Protein (ASP). In spite of some controversy, reports began 32 

to emerge some years later describing the detection of HIV-1 antisense transcripts, the 33 

presence of ASP in transfected and infected cells, and the existence of an immune response 34 

targeting ASP. Recently, it was established that the asp gene is exclusively conserved within 35 

the pandemic group M of HIV-1. In this review, we summarize the latest findings on HIV-1 36 

antisense transcripts and ASP, we discuss their potential functions in HIV-1 infection together 37 

with the role played by antisense transcripts and antisense proteins in some other viruses. 38 

Finally, we suggest pathways that may warrant exploration in the future. 39 

 40 

KEYWORDS HIV-1, Antisense transcripts, AntiSense Protein, Immune response, Evolution  41 

 42 

INTRODUCTION 43 

 The first hypothesis on the existence of the asp gene overlapping env in the -2 frame 44 

on the antisense strand of HIV-1 proviral genome was formulated in 1988 (1) (Fig 1). At that 45 

time, this postulate had little impact on the retrovirology research community, and the bona 46 

fide existence of this gene was highly contested for several years. The discovery of an ORF on 47 

the negative strand of the HIV-1 genome was not in agreement with the generally-accepted 48 
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retrovirology dogma stipulating that retroviral genes are only expressed from an unique 49 

promoter located in the 5’ Long Terminal Repeat (LTR) (Fig.1).  50 

 Despite early skepticism and the lack of specific tools to selectively identify rare 51 

antisense transcripts and detect a strongly hydrophobic and “young” protein like ASP, several 52 

potential antisense ORFs and antisense proteins were described for different Retroviruses. 53 

One ORF was found on the antisense strand of the Human T-Cell Leukemia Virus type 1 (HTLV-54 

1) genome, and antisense transcripts were detected in HTLV-1 infected T-cells (2–4). An ORF 55 

located on the complementary DNA strand of the Feline Immunodeficiency Virus (FIV) 56 

envelope gene was also identified. Although antisense transcripts were detected in FIV-57 

infected cell lines and in tissues of infected cats, their coding capacity has not been 58 

demonstrated yet (5). The first retroviral antisense protein formally identified was the Basic 59 

leucine Zipper factor (bZIP) of HTLV-1 (6), followed by the identification of the antisense 60 

proteins of HTLV-2, HTLV-3, and HTLV-4 (7, 8). More recently, an antisense gene was 61 

characterized in the genome of the Simian T-Leukemia Virus type 1 (STLV-1), and antisense 62 

transcripts were characterized in STLV-1-infected cells (9). This gene encodes a protein in vitro 63 

which displayed functions similar to that of HBZ (9). Antisense transcripts were also detected 64 

in Murine Leukemia Virus (MLV) (10), Bovine Immunodeficiency Virus (BIV) (11) and Bovine 65 

Leukemia Virus (BLV) (12). However, no antisense proteins associated with these transcripts 66 

have this far been identified.  67 

 The presence of antisense transcripts was first observed  in an HIV-1-infected cell line 68 

in 1990 (13), and ASP itself was first detected in 1995 (14). Despite this promising discovery, 69 

very few studies were published on the investigation of ASP and its potential antisense 70 

transcripts. Several HIV-1 in vitro antisense transcripts were described in transfected and 71 

infected cell lines (15–18), and two studies recently detected antisense transcripts in CD4+ T 72 
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cells of infected patients (19, 20). In 2015, two reports were published demonstrating the 73 

presence of CD8+ T cells directed against several ASP peptides in HIV-1-infected patients (21, 74 

22). Recently, the presence of ASP-specific antibodies was confirmed in the plasma of HIV-1-75 

infected individuals (23), thus confirming that ASP is expressed and is immunogenic in vivo.  76 

 77 

ORIGIN, EVOLUTION AND CONSERVATION OF THE ASP GENE  78 

 In 2016, Cassan et al. developed a new approach to characterize the origin, 79 

conservation and evolution of the asp gene within the 4 phylogenetic groups of HIV-1 (M, N, 80 

O and P) (24). As asp overlaps the env gene in the -2 frame (Fig. 1), the ASP ORF could not be 81 

characterized with classical bioinformatics tools based on the measurement of selection 82 

pressures on a DNA fragment. To overcome this difficulty, Cassan et al. considered the 83 

appearance of start and stop codons in the -2 frame of the env gene (24). The ASP ORF was 84 

detected in sequences of the most prevalent HIV-1 subtypes and Circulating Recombinant 85 

Forms (CRFs) of the group M, but it was not observed in sequences from the endemic O group 86 

or in the rare N and P groups. These results indicated that the creation of asp was concomitant 87 

with the emergence of the group M in humans. It is noteworthy that the A subtype and its 88 

recombinant forms display a stop codon at the beginning of the asp ORF that is followed in 89 

more than 90% of the sequences by a start codon which maintains the asp ORF (24). As a 90 

result, the subtype A and its recombinant forms encode a shorter version of ASP devoid of the 91 

first 25 residues (Fig. 2), including the two cysteine triplets of ASP which have been shown to 92 

be involved in ASP multimerization in transfected cells in vitro (25, 26).  93 

Despite the high degree of conservation of asp within the M group (Table 1; Fig. 2), 94 

16% of the sequences from the A, B, C and G subtypes, and from the CRF01_AE did not display 95 

the ASP ORF. This observation, in conjunction with de novo creation of asp, strongly suggests 96 
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that asp is an auxiliary gene which can be lost without compromising virion structure or viral 97 

replication. However, this would not mean that the product of this gene, ASP, is dispensable 98 

in vivo: most de novo created translational products of viral genes play an important role in 99 

viral pathogenicity or spread (27). Computer simulation showed that the high degree of ASP 100 

ORF conservation within the pandemic group M was unlikely to be accidental (24). This 101 

finding, together with the study of asp sequences of the A subtype and its recombinants 102 

provided evidence of a selection pressure acting to maintain asp in the group M, and strongly 103 

suggested that asp is a bona fide gene.  104 

 Altogether, this study strongly suggests that the asp gene, which appeared 105 

concomitantly with, and is uniquely conserved within the HIV-1 pandemic group M, is the 10th 106 

HIV- 1 gene, and that its transcriptional and/or translational products may endow the virus 107 

with an evolutionary advantage (24). Of note, one year after this study, using an extensive 108 

sequence analysis (660 viral strains), a study found that asp mutations were associated with 109 

mutations of the hypervariable region V3 of env, and thereby proposed that asp mutations 110 

could be linked to viral tropism and different co-receptor usage (28). 111 

 112 

THE ANTISENSE TRANSCRIPTIONAL ACTIVITY OF HIV-1   113 

 The antisense transcriptional activity of HIV-1 is initiated from a promoter located in 114 

the 3’ LTR. As a consequence of HIV-1 LTR bidirectionality, initiation of HIV-1 sense and 115 

antisense transcriptions depends on binding of common transcription factors, mainly NF-kB 116 

and SP1 (14–17, 29, 30). As described in eukaryotic cells (31–33), the concomitant initiation 117 

of retroviral sense and antisense transcriptional activities can possibly induce Transcriptional 118 

Interference (TI). In order to prevent TI, HIV-1 sense and antisense transcriptions might 119 

function antagonistically, similarly to what has been described for HTLV-1 (3). Several data 120 
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support this hypothesis. Indeed, in productively HIV-1-infected-cells, sense transcription has 121 

been shown to predominate over antisense transcription, in agreement with the preferential 122 

activation of HIV-1 sense transcription by Tat (15–17, 30, 34–36). Moreover, when the 5’ LTR 123 

is removed, HIV-1 antisense transcriptional activity was showed to increase (16, 37), and the 124 

ratio of HIV-1 sense/antisense transcriptions was found to be 10-fold higher in activated CD4+ 125 

T cells than in resting cells such as monocyte-derived macrophages and Dendritic Cells (DC) 126 

(36). Finally, a study recently reported the expression of antisense transcripts in T cells latently 127 

infected in vitro with a reporter virus, further suggesting that antisense expression can occur 128 

when sense transcription is low (35). 129 

 130 

The antisense transcripts of HIV-1 in vitro.  131 

 Four major kinds of antisense transcripts were characterized so far in vitro (15–18). A 132 

transcript of 2.3 Kb (Transcript I; Fig. 3) was first detected in HIV-1-infected cell lines (15). 133 

Using a strand-specific RT-PCR as previously described (3), a 5 Kb transcript (Transcript II; Fig. 134 

3) initiating at several Transcription Starting Sites (TSS) was subsequently characterized in 135 

transfected HEK 293T cells (16). Using the same technique, a third antisense transcript of 3 Kb 136 

(Transcript III; Fig. 3) was detected in HIV-1-infected MAGIC-5 cells and in several chronically 137 

infected cell lines (17). Transcript III promotes the initiation and maintenance of viral latency 138 

by recruiting the Polycomb Repressor Complex 2 (PRC2) to the 5’ LTR of HIV-1 (19). A role in 139 

the maintenance of viral latency was also reported for a genome-length antisense transcript 140 

devoid of poly-A tail (Transcript IV; Fig. 3), which was detected in two chronically infected T-141 

cell lines (18). In these cells, Transcript IV behaved as a long non-coding RNA by recruiting 142 

chromatin modifying enzymes such as DNA methyltransferase 3a (DNMT3a), Enhancer of 143 

zeste homolog 2 (EZH2) and Histone deacetylase (HDAC)-1 to the 5’ LTR of the provirus (18, 144 
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38). This multiplicity of antisense transcripts characterized in vitro can be explained by the use 145 

of different methodological approaches, however, it is also plausible that HIV-1-infected cells 146 

express one or several types of antisense transcripts during the retroviral cycle.  147 

As we saw above, a number of publications suggested that antisense transcripts are 148 

preferentially expressed in cells displaying low levels of sense transcripts (3, 14, 16–18, 30, 35, 149 

36). Indeed, Transcript IV was detected in latently HIV-1-infected cell lines (18). Antisense 150 

transcripts were also found in CEM T-cells that were latently infected with a VSV-pseudotyped 151 

HIV NL-E∆Env- virus that carries a EGFP reporter gene (35). In this study, infected cells were 152 

sorted by flow cytometry to obtain a cell population of latently HIV-1-infected cells (EGFP-153 

negative) (35). Moreover, it was proposed that the HIV-1 antisense transcripts may interfere 154 

with virus reactivation from latency as the addition of latency reversal agents to the latently 155 

infected cells only reactivated sense transcription in the cells lacking antisense transcripts (35). 156 

Altogether, this study further suggests that HIV-1 antisense transcription might be involved in 157 

the maintenance of latency.  158 

 Antisense transcription can also potentially occur in HIV-1 productively infected cells. 159 

Indeed, Transcript III and various antisense transcripts were detected three days post-160 

infection, in MAGIC-5 cells (17) and H9-infected cells, respectively (13). Finally, in their study, 161 

Kobayashi-Ishihara et al. detected antisense transcripts, even if they are much less abundant 162 

that sense transcripts, in HIV-1 peripherical blood mononuclear cells (PBMCs) stimulated with 163 

phytohaemagglutinin (PHA) (35).  164 

 165 

The antisense transcripts of HIV-1 in vivo. 166 

 In one study, HIV-1 antisense transcripts were only detected in CD4+ T cells isolated 167 

from five HIV-1-infected patients following CD3/CD28 stimulation, but not in unstimulated 168 
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CD4+ T cells (39), whereas another publication reported antisense transcripts in HIV-1-infected 169 

resting CD4+ T cells (40). This apparent discrepancy observed in these two studies is of course 170 

questionable and requires further evaluations. A possible explanation may reside in the 171 

different RT-qPCR methods used to detect antisense transcripts, but also in the small number 172 

of patients that were included in these studies (5  and 3 patients respectively) (39, 40).  173 

However, it cannot be excluded also that antisense transcripts are expressed in both 174 

productively and latently HIV-1 infected cells in vivo. Indeed, productively HIV-1 infected cells 175 

may co-express at a given time antisense mRNAs encoding the ASP protein, and antisense 176 

transcripts that can act as a bona fide lncRNA through the recruitment of histone modifying 177 

enzymes to the 5’ LTR of HIV-1, thereby playing a role in the establishment of viral latency. 178 

Once viral latency is established, HIV-1 antisense transcripts may still contribute to the 179 

maintenance of latency, through the recruitment of enzymes responsible of the silencing of 180 

the 5’LTR. As latently HIV-1-infected cells express very low levels of HIV-1 sense transcripts, it 181 

is possible that these cells also express antisense mRNAs encoding ASP. 182 

 183 

STRUCTURE AND SUBCELLULAR LOCALIZATION OF ASP 184 

Structure of ASP 185 

 The creation of de novo proteins appears to be a significant element in the evolution 186 

of viruses (27, 41). Recent de novo creation of asp gave rise to a translation product which has 187 

been named ASP (1, 14, 21–23, 25, 42, 43), a small strongly hydrophobic protein consisting of 188 

189 amino acids (reference sequence HXB2). ASP contains 14 conserved cysteine residues, 189 

seven of which are located in the N-terminal region (cysteine 7C and 2 cysteine triplets 10CCC12 190 

and 22CCC24), two SH3 domain-binding motifs (47PXXPXXP53) and two strongly hydrophobic 191 

putative transmembrane domains (Fig. 4). Most de novo created proteins are translated from 192 
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overlapping genes whose sequence composition is biased towards disorder-promoting amino 193 

acids (41). However, only 9.52%, 13,76% and 18.52% of ASP amino acids were respectively 194 

predicted to exist in a disordered state according to different softwares (Fig. 4). This relatively 195 

low level of disorder could be explained by the strong constraint exerted by overlap with the 196 

env gene and by structural constraints associated with the Rev Responsive Element (RRE) 197 

sequence (Fig. 4). Due to the overlapping of env/asp genes, ASP domains are unevenly 198 

conserved among the HIV-1 subtypes and CRFs. In fact, the N-terminal extremity of ASP is well 199 

conserved except ASP encoded by subtype A and its recombinants which have shortened N-200 

terminal extremities (Fig. 2) (24). Conversely, the central region and the C-terminal extremity 201 

of ASP, which overlap the hypervariable regions V5 and V4 of env, are subjected to strong 202 

sequence variations among the different subtypes and CRFs of HIV-1 (Fig. 1 and 4). ASP was 203 

reported to multimerize in mammalian cell lines (COS-7 and HEK 293 T cells) expressing a 204 

codon-optimized ASP (25, 26). It was recently demonstrated that the capacity of ASP to form 205 

aggregates in these cells was mediated by its N-terminal region, and more specifically by its 206 

cysteine residues (26). Interestingly, the deletion of the first 15 residues of ASP and the use of 207 

a subtype A ASP both reduced the number of multimers detected by western-blot (26). As 208 

protein aggregates are targeted by constitutive and inducible autophagy (44), it was proposed 209 

that ASP multimerization disturbed the autophagic flux in mammalian cell lines, and induced 210 

its own degradation by autophagy (25). Moreover, mammalian cells expressing ASP had more 211 

abundant levels of LC3b-II and Beclin-1 than non-ASP expressing cells, and ASP was found to 212 

co-immunoprecipitate with LC3-IIb (25, 26). Further analyses performed in transfected HEK 213 

293 T cells showed that ASP co-immunoprecipitated with p62, a protein involved in induced 214 

autophagy (26, 45). In HEK 293T cells co-transfected with expression vectors for ASP and a His-215 

tagged ubiquitin, western-blot analyses performed following a co-immunoprecipitation using 216 
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an anti-His antibody strongly suggested that ASP was ubiquitinated (26). Although these 217 

promising results suggest that autophagy regulates ASP levels in mammalian cells (25, 26), 218 

they might be taken with caution as both of the above mentioned studies used transient 219 

transfection of eukaryotic expression vector harboring a human codon-optimized ASP cDNA 220 

(25, 26). Future studies performed in HIV-1-infected cells will be determinant to exclude the 221 

possibility that ASP multimerization is a side effect of its overexpression in mammalian cells.  222 

 223 

Subcellular localization of ASP  224 

 Different subcellular localizations were described for ASP in vitro, both in transfected 225 

cell lines overexpressing ASP (25, 36, 42, 46) and in HIV-1 infected cell lines expressing 226 

endogenous ASP (43, 46). Endogenous ASP was localized in the nucleus of PMA-activated 227 

chronically infected ACH-2 cells (46), and was distributed in a nonhomogeneous and polarized 228 

manner beneath the nuclear envelope of unstimulated and chronically infected U1C8 T cells 229 

(43). Within the nucleus of these cells, ASP was detected in areas containing actively 230 

transcribed chromatin (43). Endogenous ASP was also observed in the cytoplasm of SupT1-231 

infected cells (46), and PMA-stimulated U1C8 cells (43). ASP was also found within the 232 

cytoplasm of stably transfected A3.01 T cells (42) and of transfected COS-7 cells, a simian cell 233 

line (25). In the latter study, ASP was distributed in a punctuate manner within the cytoplasm 234 

and was partially co-localized with LC3-IIb, suggesting that it may be associated with 235 

autophagosomes (25). Consistent with both its putative transmembrane domains, ASP was 236 

observed at the plasma membranes of  PMA-activated, chronically infected U1C8 T cells and 237 

myeloid OM 10.1 cells (43), of ex vivo infected monocyte-derived macrophages and DC (36), 238 

and also at the plasma membrane of transfected Jurkat cells overexpressing ASP (42). In HIV-239 

1 infected Jurkat cells, ASP was asymmetrically distributed at the plasma membrane (42). 240 
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Recently, polarized distribution of endogenous ASP at plasma membranes was also observed 241 

in chronically infected PMA-activated U1C8 T cells and myeloid OM 10.1 cells, where ASP 242 

strongly co-localized with gp120 (43). Several experiments indicated that ASP is a bona fide 243 

component of viral particles, gold-labelled ASP was detected in viral particles released from 244 

chronically infected SupT1 cells (46), and in vitro fluorescence correlation spectroscopy (FCS) 245 

of cell-free single HIV-1 particles released from PMA-activated U1C8 T-cells suggested that 246 

ASP is present at the surface of the viral envelope (43).  247 

 248 

ASP AND IMMUNE RESPONSE   249 

Despite several in vitro reports of ASP in infected and transfected cells, the expression 250 

of ASP in vivo remained a subject of debate for several years. In this context, the study of the 251 

host immune system gave valuable clues to the expression of ASP in vivo. The first report of 252 

an immune response targeting ASP appeared in 1995, describing the incubation of an in vitro 253 

translated ASP with the sera of 15 infected individuals (14). This led to the detection by 254 

western-blotting of a band at the expected size of ASP in approximately half of the serum 255 

samples (14). Unfortunately, western-blotting did not allow the frequency of patients 256 

displaying antibodies against ASP to be accurately determined. Recently, a quantitative 257 

technique known as Luciferase Immunoprecipitation System (LIPS) was described to assess 258 

the antibody response targeting ASP in a panel of HIV-1-infected patients (23). LIPS is an assay 259 

that was initially developed to quantitatively detect antibodies targeting a particular antigen 260 

in patient biological samples (Fig. 5) (47). Using LIPS, the breadth of the antibody response 261 

directed against different viral antigens, including HIV-1 whole proteome, has previously been 262 

reported (48–51). Of note, the use of this technique allowed the quantitative study of the 263 
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antibody response targeting ASP, which was detected in 10 to 15% of the HIV-1-infected 264 

patients (23).  265 

The frequency of patients displaying antibodies to ASP is similar to those observed for 266 

both HBZ (48, 52) and the auxiliary and regulatory proteins of HIV-1 (53–55). The ASP-specific 267 

antibody response was sustained for at least nine months and seemed to target both the 26-268 

62 residues of ASP bearing the highly conserved proline-rich motif, and the core residues 62-269 

141 of ASP (Fig. 6) (23). Cytotoxic CD8 T cells targeting a panel of ASP overlapping peptides 270 

were also reported in 30% of HIV-1 infected patients (21, 22). Moreover, the CD8 T cells 271 

targeting these peptides produced multiple cytokines and chemokines, indicating that ASP 272 

elicited a functional cytotoxic response in the studied patients (21). 273 

The above mentioned studies brought strong evidence in favor of the expression of 274 

ASP during the course of HIV-1 infection in vivo, and strongly suggest that ASP elicits an 275 

adaptive response in at least some of the HIV-1-infected patients, as previously described for 276 

the other auxiliary and regulatory proteins of HIV-1 that elicit both antibodies and CD8 T cell 277 

responses (53–64). Even though the presence of ASP at the surface of infected cells and viral 278 

particles was only reported in vitro (36, 42, 43, 46), it is worth to highlight that an antibody 279 

response targeting ASP at the surface of viral particles and infected cells would potentially 280 

have interesting implications for the progression of the disease. For future investigations, it 281 

would therefore be of great interest to study the functionality of antibodies targeting ASP in 282 

vivo, and especially their ability to neutralize viral particles or to induce cellular mechanisms 283 

contributing to viral clearance such as complement dependent cytotoxicity (CDC), antibody-284 

dependent phagocytosis (ADCP), and antibody-dependent cell cytotoxicity (ADCC), a 285 

mechanism whose involvement in the partial success of the RV144 Thai vaccine has been 286 

questioned (65). 287 
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FUNCTIONS OF ANTISENSE TRANSCRIPTS AND ASP IN THE LIFE CYCLE OF HIV-1  288 

 The asp gene emerged de novo at the beginning of the last century concomitantly with 289 

the pandemic group M of HIV-1 (24). The creation of asp has several consequences and also 290 

questions the evolution of HIV-1. Firstly, de novo creation and conservation of asp within the 291 

HIV-1 M group altered the repertoire of its auxiliary proteins, meaning that HIV-1 acquired an 292 

additional factor that is probably not involved in the viral replication cycle per se, but could 293 

play a role in pathogenicity or viral transmission (27, 41). Secondly, contrary to the other HIV-294 

1 auxiliary genes, asp doesn’t benefit from centuries of evolution, and it may be assumed that 295 

it is still evolving. Thirdly, since ASP is a young de novo protein, it may not as yet, have adopted 296 

a fully compact and specific structure, but a more rudimentary folding form which may require 297 

the intervention of chaperones to partially avoid aggregation and/or use a cellular mechanism 298 

like autophagy to degrade aggregated forms (Fig. 6). Although the studies of ASP 299 

multimerization and its link with autophagy were performed in cell lines overexpressing ASP 300 

(25, 26) and would need to be confirmed by future studies in HIV-1-infected cells, it is tempting 301 

to speculate that one pool of ASP could fold into a monomeric functional form in infected 302 

cells, while another pool folds into oligomers of non-functional forms. Conversely, we can also 303 

speculate that ASP forms non-toxic and functional oligomers that would represent an 304 

additional way to subvert the autophagic flux of the cell to the benefit of HIV-1. On the one 305 

hand, it is thus possible that the oligomerization of ASP mediates its own degradation by a 306 

process of selective autophagy while at the same time disrupting the autophagic flux of 307 

infected cells, as has been previously described for the viral proteins Tat, Nef and Vif (66–69). 308 

As subtype A ASP is devoid of the N-terminal part required for ASP oligomerization (26), it 309 

could thus be of interest to wonder whether ASP from subtype A represents a form of ASP 310 

which evolved to avoid ASP multimerization and therefore partially counteract its own 311 
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degradation by autophagy. On the other hand, the fact that asp doesn’t benefit from centuries 312 

of evolution to adapt the expression of ASP in host cells could argue in favor of the hypothesis 313 

stipulating that ASP multimers are deleterious both for the cell and the virus.  314 

 Different hypotheses relating to the functions endorsed by ASP can be inferred from 315 

its different subcellular localizations. Like HBZ, a key protein in the establishment and 316 

maintenance of HTLV-1 latency (3, 4, 6), nuclear ASP could contribute to viral latency by 317 

interacting with proteins involved in the regulation of gene expression, for example, 318 

chromatin modifying enzymes or transcription factors. In addition to encoding ASP, antisense 319 

transcripts may also, as previously discussed, exert a role in the establishment and 320 

maintenance of viral latency (Fig. 6) (17–19, 35). 321 

It is possible that at the plasma membrane of infected cells, ASP could modulate the 322 

expression of immune receptors as previously described for other HIV-1 auxiliary proteins (70–323 

78), or interfere with cell signaling pathways by interacting with SH3-proteins through its PxxP 324 

motifs (Fig. 6). ASP might also favor optimal HIV-1 replication at early steps of HIV-1 cycle. 325 

Indeed, HEK 293T cells transfected with a pNL4.3 construction carrying an abortive mutation 326 

in the sequence encoding ASP showed lower extracellular p24 levels than cells transfected 327 

with wild type pNL4.3 (42). Corroborating results were obtained in HEK 293 T cells, HeLa cells 328 

and U937 monocytic cells transfected with a differently ASP-mutated version of pNL4.3, as 329 

well as in U937 cells infected with VSVg-pseudotyped ASP-mutated pNL4.3 virions: the ASP-330 

mutated pNL4.3 led to reduced p24 extracellular levels compared to wild type pNL4.3 (25). 331 

The detection of ASP at the surface of HIV-1 particles released from infected cells may also 332 

indicate that ASP exerts an effect at an early stage of the viral cycle (43, 46).  333 

It may be speculated that ASP could perform different functions according to the stage 334 

of the viral cycle: it might promote viral replication at an early stage, and conversely, it might 335 
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promote the maintenance of viral latency once established. Furthermore, ASP could possibly 336 

be involved in the deregulation of infected cells by disrupting (i) the autophagic flux, (ii) cell 337 

signaling-pathways, or (iii) the expression of immune receptors (Fig. 6). Like the other HIV-1 338 

auxiliary proteins, ASP is therefore probably a pleiotropic protein. The exploration of ASP 339 

presents a particular challenge, and unravelling its potential functions will require the 340 

combined study of productively and latently infected cells, as well as the development or 341 

optimization of tools and techniques to detect this hydrophobic protein which might be 342 

expressed in very low amounts by infected cells. 343 

  344 

FUNCTIONS OF ANTISENSE TRANSCRIPTS AND ANTISENSE PROTEINS IN OTHER VIRUSES345 

 As we saw above, antisense transcription is not exclusive to HIV-1. Indeed, some other 346 

lentiviruses (FIV, BIV), deltaretroviruses (HTLV-1, HTLV-2, HTLV-3, HTLV-4, STLV-1, BLV) and 347 

gammaretroviruses (MLV), but also notably some phylogenetic divergent viruses as 348 

Herpesviridae are also capable of so-called antisense transcription (2, 3, 5, 6, 79–116). In cell 349 

lines infected with laboratory-adapted FIV isolates, but also in various lymphoid tissues of cats 350 

infected by a FIV primary isolate, antisense transcripts arising from an antisense ORF that is 351 

complementary to the FIV env gene were detected (5). Interestingly, the antisense ORF was 352 

shown to be conserved in 5 FIV isolates (5). Antisense transcripts were also detected in HEK 353 

293T cells transfected with the BIV-127 proviral clone and in BIV-permissive cell lines infected 354 

with BIV-127 (93).  355 

 Human T-lymphotropic viruses (HTLVs) are composed of four members:  HTLV-1 which 356 

is the etiological agent of adult T cell leukemia/lymphoma (ATLL) and HTLV-1 associated 357 

myelopathy/tropical spastic paraparesis (HAM/TSP), HTLV-2 for which no clinical correlation 358 

with HAM/TSP or lymphoproliferative disease has been established, though it was initially 359 
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discovered in a patient displaying a rare benign form of hairy T-cell leukemia, HTLV-3 which 360 

might present some transforming abilities and HTLV-4 for which very few clinical data are 361 

available (80, 117–119). HTLV-1, HTLV-2, HTLV-3 and HTLV-4 are complex retroviruses that 362 

encode several regulatory and auxiliary products. The viral transcription of the HTLVs is 363 

stimulated by a complex composed of the transactivator of pX (Tax) and transcription factors 364 

such as the cAMP response element binding protein (CREB) but also histone acetyl 365 

transferases CBP/p300, which binds to sequences called cAMP response element (CRE) within 366 

the retroviral promoter. HTLV-1 encodes Tax-1, a transforming protein in vivo that activates 367 

the viral sense transcription from the 5’LTR, but also many host genes through the activation 368 

of the the NF-κB and CREB/ATF pathways. HTLV-2, HTLV-3 and HTLV-4 respectively encode 369 

Tax-2, which displays transforming abilities in vitro, Tax-3 and Tax-4 transactivators (88, 119–370 

121). The protein derived from the antisense transcripts produced from the 3′ LTR of HTLV-1, 371 

called HTLV-1 Basic leucine Zipper factor (HBZ), together with the hbz mRNA, have been shown 372 

to play a crucial role in HTLV-1 replication and its associated pathologies (ATLL, HAM/TSP) (79–373 

81, 122–124). Indeed, the hbz mRNA promotes the proliferation of ATL cells while HBZ plays 374 

a central role in the process of oncogenesis and is interfering with many cellular processes 375 

(innate immune signaling, apoptosis, autophagy, DNA repair and genes expression) (80, 81, 376 

125, 126). The HTLV-2, HTLV-3 and HTLV-4 nonconventional basic zipper (bZIP) proteins that 377 

are encoded by antisense transcripts are named Antisense Protein of HTLV-2/3/4 (APH-2, 378 

APH-3 and APH-4 respectively), and are functional synologues of HBZ (85, 127). HBZ has been 379 

shown to interact via its bZIP domain with several cellular transcription factors such as CREB, 380 

CREB2, JunD, c-Jun, JunB and the p65 subunit of the NF-B complex. By hetero-dimerizing with 381 

CREB, HBZ is preventing its recruitment to the 5’LTR and therefore inhibiting HTLV-1 sense 382 

transcription, which facilitates the entry of HTLV-1-infected cells into latency (81). Conversely, 383 
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several studies showed that HBZ could have a positive impact on its own expression by 384 

stimulating the transcription from the 3’LTR through the binding of a complex including JunD 385 

and Sp1 on the Sp1 binding sites located in the U5 region of the 3’ LTR (123, 128). Altogether, 386 

HBZ plays an essential role in the regulation of HTLV-1 expression by acting as a negative 387 

regulator of the viral sense transcription, which in turns inhibit Tax-1 expression and viral 388 

particle production, and by positively modulating the viral antisense transcription and thus its 389 

own expression (80, 81, 122). Like HBZ, APH-2 can interact with CREB and thus inhibit the 390 

transactivation of HTLV-2 sense transcription. However, APH-2 does not possess a classical 391 

bZIP domain and interacts with CREB through a leucine-rich pattern LXXLL. Unlike HBZ, APH-2 392 

possesses the ability to interact directly with Tax-2 to inhibit the Tax/CREB-dependent sense 393 

transcription and to positively regulate JunB and c-Jun through an interaction involving its 394 

non-conventional bZIP domain (82–84, 122). Although only few studies have been performed 395 

on APH-3 and APH-4, these antisense proteins display common features with HBZ and APH-2, 396 

suggesting that they might play an important role in HTLV-3 and -HTLV-4 infections. Like APH-397 

2, but unlike HBZ, APH-3 and APH-4 are able to activate c-Jun, JunB and JunD through the 398 

interaction of their non-conventional bZIP domain with these factors. Although some of the 399 

functions of APH-2, APH-3, APH-4 and HBZ are divergent, APH-3 and APH-4 share with HBZ 400 

and APH-2 the ability to inhibit retroviral sense transcription (85, 86).  401 

 In 2013, STLV-1 spliced transcripts corresponding to HTLV-1 tax and HTLV-1 hbz 402 

transcripts were identified in STLV-1-infected cells from naturally infected Japanese macaques 403 

(91). The products of this transcripts, named Tax and SBZ, seem to share similar functions with 404 

their HTLV-1 counterparts (91). The identification of BLV microRNAs and the recent 405 

identification of BLV antisense transcripts represent a major shift in the understanding of BLV 406 

pathogenesis (90, 129, 130). Indeed, in contrast to the previously prevailing paradigm of a 407 
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silent BLV provirus, these discoveries show that the BLV provirus is producing viral microRNAs 408 

and antisense transcripts in all the tumors that were investigated. The consistent expression 409 

of these antisense transcripts in both leukemic and nonmalignant cells suggests that they are 410 

playing a crucial role in the virus life cycle and its tumorigenic potential (90). Besides, it has 411 

been shown that MLV can initiate transcription from the U3 region of the negative strand of 412 

its proviral genome to create transcripts of negative polarity (94).  413 

 Altogether, it appears that antisense transcription is more prevalent within 414 

retroviruses than it has been previously imagined, and it seems possible to consider today that 415 

this characteristic may be a rule rather than an exception. In this context, the study of the role 416 

exerted by antisense transcription and potential/proven antisense proteins in other 417 

retroviruses, as well as in endogenous retroviruses, could be of particular interest to enhance 418 

our understanding of the impact of these retroviruses on human biology and on numerous 419 

pathologies (131).  420 

 Antisense transcription has also been particularly studied in the Herpesviriadae family, 421 

which notably includes Herpes Simplex Virus type 1 (HSV-1), Epstein-Barr Virus (EBV), Human 422 

Cytomegalovirus (HCMV), Varicella-Zoster Virus (VZV), Simian Varicella Virus (SVV), Equine 423 

Herpesvirus 1 and 4 (EHV1, EHV4), Pseudorabies Virus (PRV) and Bovine Herpes Virus type- 1 424 

(BHV-1). Herpesviruses (HVs) are double-stranded DNA viruses which possess large genomes 425 

that encode hundreds of proteins.  426 

 HVs infections can remain unnoticed or on the contrary be associated with a wide 427 

range of pathologies in their natural host (132–139). HVs infections lead to persistent 428 

infections that are characterized by latency and lytic phases. Interestingly, the use of sense or 429 

antisense transcription seems to be strongly associated with these two distinct phases of 430 

infection within HVs (140, 141).   431 
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 The molecular mechanisms underlying viral latency/reactivation of HVs have been the 432 

subject of numerous studies. In the case of HSV-1, both types of infection can be developed 433 

through the coexistence in the viral genome of two alternative gene expression programs that 434 

are notably under the control of epigenetic mechanisms (140). HSV-1 genome possesses an 435 

Unique Long (UL) region which is flanked by the identical but inverted Repeat Longs (RLs) and 436 

the Unique Short (US) region which is flanked by the identical, but inverted Repeat Shorts (RS). 437 

During the lytic phase, a ternary complex including the viral tegument protein VP16/ host cell 438 

factor 1 (HCF1)/ octamer binding protein 1 (OCT1), associated with CBP/p300 and lysine 439 

demethylases (LSD1), interacts with the promoters of very early viral genes, preventing the 440 

formation of repressive heterochromatin and activating the expression of very early proteins: 441 

ICP0, ICP4, ICP22, ICP27 and ICP47. These proteins regulate then the expression of early genes, 442 

with the exception of ICP47 which assist the virus in avoiding the host immune response, that 443 

are coding for proteins involved in DNA replication, and late genes that are coding for capsid 444 

proteins, the tegument and viral envelope. During latent infection, HSV-1 lytic genes are 445 

silenced and the only HSV-1 gene transcripts detected named Latency Associated Transcripts 446 

(LATs) map the RL (141, 142). Among these transcripts, the first described was a RNAs of 8.3 447 

kb that is antisense to the ICP0 and ICP34. Later, spliced products, called “major LATs” of 2.0 448 

kb and 1.5 were also characterized (141).  However, more recently, it has been shown that the 449 

region encoding the LATs is much more transcriptionally complex than originally described 450 

(140–142). Indeed, this region encodes also several additional non-coding RNAs and in 451 

addition to about a dozen miRNAs. A number of phenotypes were found to be associated with 452 

the LAT region, and by extension to the LATs that include establishment and reactivation from 453 

latency, regulating apoptosis, neuronal survival, and modulating aspects of innate immunity 454 

(141, 143–145). Through the viral life cycle, the epigenetic profile of the HSV1 genome was 455 
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shown to change in a manner dependent on the LATs. During the transition into latency 456 

repressive histone modifications (methylated H3K9) accumulate on HSV1 promoters, and a 457 

functional LAT gene results in more heterochromatin. Interestingly, LAT-dependent 458 

heterochromatin formation on lytic virus promoters was found to be may be link to 459 

modifications of host PRC-2 (146, 147). 460 

 Antisense transcription has also been described for different species within the family 461 

of the Herpesviridae. Indeed, EBV (99–104) encodes an oncoprotein named Zta (BZLF1, ZEBRA, 462 

EB1), which is a bZIP transcription factor and a key regulator of the switch from latent to lytic 463 

phases of the virus lifecycle (148–157). Antisense transcription has also been detected in 464 

HCMV (158), VZV (159–161), SVV (106), EHV1 and EHV4 (107–109), and pseudorabies virus 465 

(PRV) (45, 113–116, 162, 163) and  BHV-1 (113–116, 164).  466 

 Altogether, antisense transcription in viruses appears more widespread than expected 467 

and could highlight an evolutionary and functional convergence between families of viruses 468 

that are phylogenetically distant. Indeed, as we saw previously, the antisense proteins and/or 469 

the antisense transcripts may be endorsed with important functions in viral infections, 470 

including the control of viral sense transcription and viral latency. Beyond, this process may 471 

be essential to maintaining a latent reservoir, to modulate virulence which in turn may confer 472 

a tremendous selective advantage for the virus in maintaining a longer lasting source of 473 

spreading infection. Although several proposals have been made concerning the function of 474 

ASP and antisense transcripts in HIV-1 infection the exact roles endorsed by these antisense 475 

actors in HIV-1 replication cycle and physiopathology still remain to be defined (17, 18, 25, 26, 476 

36, 40, 42, 43).  477 

 478 

 479 
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CONCLUSION AND PERSPECTIVES 480 

 HIV-1 has the typical retrovirus genomic organization, but also contains both 481 

regulatory and auxiliary genes. Until recently, retroviral antisense transcription was not 482 

evaluated or even considered as a new source of viral transcripts and proteins playing 483 

important roles in the viral life cycle. However, this viewpoint has evolved with accumulating 484 

evidence of antisense transcription in several retroviruses, and the discovery of HBZ which 485 

plays different roles in the pathogenesis of HTLV-mediated T-cell leukemia (3, 4, 6). The ability 486 

of HIV-1 to produce antisense transcripts and ASP in vitro has been well established; many 487 

studies have described the expression of antisense transcripts and ASP in various HIV-1 488 

infected cells including T-cells, monocyte-derived macrophages and DC (16, 17, 25, 42, 43, 489 

165). Moreover, CD8+ T cells and antibodies targeting ASP were detected in HIV-1 infected 490 

patients (14, 21–23). Bioinformatic approaches demonstrated that a conserved asp gene was 491 

created, concomitant with the emergence of the HIV-1 pandemic group M (24), further 492 

supporting the idea that the asp gene must now be considered as the 10th gene of HIV-1. The 493 

presence of the overlapping asp gene in the -2 frame of the env gene shows that HIV-1 has 494 

evolved to increase its coding capacity, but at the same time has also increased the level of 495 

constraints imposed by overlapping genes.  496 

 The de novo creation of an overlapping gene on the antisense strand of the env gene, 497 

the expression of the “young” and pleiotropic protein ASP, together with the potential 498 

expression of various viral antisense transcripts possibly involved in viral latency all support 499 

the fact that HIV-1 is a complex retrovirus, and provide new evidence of the HIV-1 evolution 500 

process. Future research avenues will be directed to an understanding of the precise functions 501 

of these new elements during the course of HIV-1 infection. The potential role of ASP and its 502 

transcripts in viral replication and latency, the ability of ASP to elicit both arms of adaptive 503 
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immunity, and its potential expression at the surface of infected cells and viral particles could 504 

make ASP an interesting new target for antiretroviral treatment and vaccine strategies.  505 

 506 
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FIGURES 528 

Figure 1: Schematic representation of the asp gene within the proviral genome of HIV-1. The 529 

asp gene overlaps the env gene in the -2 frame. The asp gene overlaps the hypervariable 530 

regions V4 and V5 of env and partly overlaps the Rev Responsive Element (RRE).  531 

 532 

Figure 2: Alignment of the consensus amino acid sequence of ASP encoded by the major 533 

subtypes and CRFs of HIV-1 (sequences were retrieved from HIV-1 data bases, Los Alamos 534 

National Laboratory and analyzed using Unipro UGENE: a unified bioinformatics tollkit” 535 

Okonechnikov; Golosova; Fursov. Bioinfomatics 2012 28: 1166-1167). The first line represents 536 

the reference HXB2 sequence of ASP. The main motifs of ASP are indicated. 537 

 538 

Figure 3: Schematic representation of the principal antisense transcripts that were described 539 

in vitro (transcripts I to IV). The poly-A tails and the ASP ORF (yellow square) are represented 540 

for each transcript.  541 

 542 

Figure 4: Schematic representation of the primary, secondary and tertiary structures of ASP. 543 

(a) Conserved cysteine triplets (CCC), Proline-rich SH3 domain-binding motifs (PxxPxxP), 544 

putative transmembrane domains (TM). The theorical molecular weight of ASP is 20235.26 Da 545 

(reference sequence HXB2 using Predict Protein software). Using PONDR VL3, PONDR VSL2 546 

and PONDR VLXT software, it was predicted that respectively, 9.52%, 13,76% and 18.52% of 547 

ASP amino acids exist in a disordered state. Only four regions of ASP are expected to exist in 548 

disordered states (residues 1-2; 4-4; 44-55; 97-116 predicted using PONDR VSL2 software). (b) 549 

Predicted secondary (alpha-helix in red and beta-sheet in blue) and tertiary structures of ASP. 550 

The reference sequence of ASP was submitted to the I-Tasser server 551 



 24 

(https://zhanglab.ccmb.med.umich.edu/I-TASSER/) to obtain a model via a threading 552 

prediction. C-Score=-4.07, estimated TM-score=0.28±0.09, estimated RMSD = 15.0±3.5Å.   553 

 554 

Figure 5:  The Luciferase Immuno-Precipitation System (LIPS) as a detection assay to measure 555 

antigen-specific antibodies in biological samples of infected patients. The biological samples 556 

(plasma, serum, lactoserum etc.) potentially containing antigen-specific antibodies are 557 

incubated with a fusion protein between the antigen and a luciferase. After an immuno-558 

precipitation step, the substrate of the luciferase is added. The detection of a luminescent 559 

signal indicates the presence of antigen-specific antibodies in the biological sample.  560 

 561 

Figure 6: Potential functions of HIV-1 antisense transcripts and antisense protein (ASP) in 562 

infected cells. (a) Potential functions of ASP motifs and localization of its epitope in vivo. 563 

Patients’ antibodies target the 26–141 core region of ASP encompassing the V5 and proline-564 

rich motifs. (b) Schematic representation of the potential functions of ASP and of antisense 565 

transcripts in infected cells. In addition to their messenger function, the antisense transcripts 566 

of HIV-1 may contribute to the establishment and maintenance of viral latency by recruiting 567 

chromatin-modifying enzymes to the 5’ LTR of the proviral genome. ASP oligomers, by 568 

interacting with LC3-IIb and p62 in autophagosomes, are degraded by a selective autophagy 569 

process and disrupt the autophagic flux of infected cells. At the plasma membrane, ASP could 570 

be involved in deregulating infected cells by disrupting cell signaling-pathways or the 571 

expression of immune receptors. In the nucleus, ASP may be involved in the establishment 572 

and maintenance of viral latency, as was described for HBZ. As ASP was detected at the surface 573 

of viral particles, it may also play a role in the very early stages of the viral cycle, such as viral 574 

replication.   575 

https://zhanglab.ccmb.med.umich.edu/I-TASSER/
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Table 1: Fraction of the sequences displaying the ASP ORF (length > 150 codons) within the 576 

main subtypes and CRFs of HIV-1 group M (24).  577 

 578 

 579 

 580 

 581 

HIV-1 Group M Subtypes 
% of sequences with  

ASP ORF 

A  74% 
B 85% 
C 84% 
D 50% 
F 32% 
G 88% 
H   0% 
J 50% 
K 50% 

CRF01_AE 89% 
CRF02_AG   7% 
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 587 
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