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Abstract. In this paper, we propose to study privacy concerns raised
by the analysis of Electro CardioGram (ECG) data for arrhythmia clas-
sification. We propose a solution named PAC that combines the use of
Neural Networks (NN) with secure two-party computation in order to
enable an efficient NN prediction of arrhythmia without discovering the
actual ECG data. To achieve a good trade-off between privacy, accuracy,
and efficiency, we first build a dedicated NN model which consists of
two fully connected layers and one activation layer as a square function.
The solution is implemented with the ABY framework. PAC also sup-
ports classifications in batches. Experimental results show an accuracy
of 96.34% which outperforms existing solutions.

Keywords: privacy · neural networks · arrhythmia classification.

1 Introduction

Artificial intelligence and machine learning have gained a renewed popularity
thanks to the recent advances in information technology such as the Internet of
Things that help collect, share and process data, easily. This powerful technology
helps make better decisions and accurate predictions in many domains includ-
ing finance, healthcare, etc. In particular, Neural Networks (NN) can support
pharmacists and doctors to analyse patients’ data and quickly diagnose a par-
ticular disease such as heart arrhythmia. Nowadays, this disease can be detected
at early stages with the help of smart wearable devices such as Apple Watch 41

that can record electric heart activities using Electro-Cardiograms (ECG) data.
Nevertheless, we are experiencing severe data breaches and these cause crucial
damages. A recent research2 concludes that in 2018, the global average cost of
a data breach is 3.86 million dollars and the healthcare sector is the first sector
facing huge costs. ECG data is considered as very sensitive. Therefore, there is
an urgent need for tools enabling the protection of such data while still being
able to launch predictive analytics and hence improve individuals’ lives. These
tools will also help stakeholders be compliant with the General Data Protection
Regulations (GDPR)3.

1 https://www.apple.com/lae/apple-watch-series-4/health/
2 https://www.ibm.com/security/data-breach
3 https://eur-lex.europa.eu/eli/reg/2016/679/oj
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In this work, we aim at addressing privacy concerns raised by the analysis
of the ECG data for arrhythmia classification. Our goal is to enable service
providers (data processors) perform classification without discovering the input
(the ECG data). On the other hand, we also look into the problem from the
service providers’ point of view as they care about keeping the design of their
services confidential from the users (data subjects or data controllers). Users
using these systems/solutions should not be able to discover the details about
the underlying system (such as the Neural Network model). The challenge often
manifests as a choice between the privacy of the user and the secrecy of the
system parameters. We propose to reconcile both parties, namely the service
providers and the users and combine the use of neural networks with secure
two-party computation (2PC). Since 2PC protocols cannot efficiently support
all kinds of operations, we propose to revisit the underlying neural network
operations and design a new, customized neural network model that can be
executed to classify arrhythmia accurately, and this, without disclosing neither
the input ECG data to the service provider nor the neural network parameters
to the users.

With this aim, we reduce the input size of neural network by employing
Principal Component Analysis (PCA) [6]. The proposed methodology is illus-
trated with a case study whereby some arrhythmia dataset from the PhysioBank
database4 is used. With this dataset, we show that the newly designed model
only involves 2 layers with 54 hidden neurons. The resulting model is imple-
mented in a realistic environment and uses the ABY framework [11] for 2PC.
Experimental results show that the most optimal resulting model reaches an
accuracy level of 96.34%. Our solution helps predict the class of one heartbeat
in 1 second, approximately. In order to improve the performance of the solution
even further, we propose to make predictions in batches and thus help the anal-
yser (the doctor) receive the prediction of a set of heartbeats for a given period
(e.g., 30s). We show that by using the Single Instruction Multiple Data (SIMD)
packing method offered by ABY, the computational overhead is significantly
reduced.

In the next section, we introduce the problem of arrhythmia classification
and identify the main challenges to ensure the privacy of the ECG data at the
same time. Section 3 focuses on the case study and presents the newly proposed
privacy-preserving variant of the neural network that we name PAC together
with experimental results. In section 4, we describe the additional optimisation
method which consists of executing predictions in batches. Finally, we review
the state of the art in Section 5.

2 Problem Statement

As defined in [22], cardiac arrhythmias are abnormal heart rhythms, which cause
the heart to beat too fast (tachycardia) or too slow (bradycardia) and to pump
blood less effectively. These irregularities can be detected and classified by an-

4 https://www.physionet.org/physiobank/database/mitdb/



PAC: Privacy-preserving Arrhythmia Classification with neural networks 3

alyzing the Electro-Cardiogram (ECG) signals of a heart. Doctors classify ar-
rhythmia to several types according to such behaviors of the heart.

In this work, we focus on the classification of heartbeats extracted from ECG
signals into different classes of arrhythmia using machine learning techniques.
In order to design an efficient arrhythmia classifier, we propose to use Neural
Networks (NN). ECG signals representing patients’ heartbeats can be consid-
ered as sensitive information. Thus, we aim at finding a solution where a service
provider can execute the classification model without leaking and even discov-
ering information about the input data. On the other hand, the classification
model can also be considered as confidential against users, namely parties who
will send their queries for classification. This model itself can also have some
business value and therefore be protected. For this respect, we assume that the
model should be unknown to the parties sending queries.

Performing some operations over data while these are kept confidential re-
quires the use of advanced cryptographic tools such as homomorphic encryp-
tion [13, 14, 31, 5] or secure multi-party computation [23, 25]. While the integra-
tion of such tools offers better privacy guarantees, they unfortunately introduce
some non-negligible overhead in terms of computation and communication. Fur-
thermore, these tools may not always be compatible with the complex NN oper-
ations. Hence, we propose to follow a privacy-by-design approach and consider
privacy requirements at the design phase of the neural network. We have identi-
fied the following three main challenges when building a neural network model
customized for the use of privacy enhancing technologies:

– Large size of the NN: The size of the neural network directly depends
on the size of the input and output vectors, the number of layers, and the
number of neurons in the model. These parameters have a significant impact
on the complexity of the model. Hence, the size of the neural network has to
be optimized when designing privacy-preserving variants. Such an optimiza-
tion, on the other hand, should not have an impact on the actual accuracy
of the model.

– Complex NN operations: A neural network involves various operations
executed by each neuron during the classification phase. These include so-
phisticated operations such as sigmoid or hyperbolic tangent that may not
be easily and efficiently supported by existing cryptographic tools. Hence,
the underlying operations should be optimized and sometimes even trans-
formed when designing the privacy-preserving variant of the neural network
classification model.

– Real numbers instead of integers: Most of the operations in the neural
network are executed over real numbers whereas cryptographic tools usually
support integers. Therefore, there is a need for either supporting floating
point numbers or approximating them to integers. Such an approximation
should nevertheless not have a significant impact on the accuracy of the
model.

To summarize, when designing a neural network model customized for the
use of privacy enhancing technologies, one should address the trade-off between
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privacy, performance, and accuracy. The dedicated model should involve an op-
timized number of “simple” operations that advanced cryptographic tools can
support while reaching a good accuracy level.

3 Privacy-preserving Neural Network Arrhythmia
Classifier - A case study with PhysioBank

In this section, we describe the privacy-by-design approach in details and use a
publicly available database, namely the PhysioBank database, to build a concrete
model as an example and evaluate the accuracy and performance of the newly
developed model.

3.1 Solution Idea

In order to address the three main challenges identified in the previous section,
we propose to build a neural network model from scratch. This approach is illus-
trated with a case study where a publicly available arrhythmia dataset is used.
The design of the NN model is combined with secure two-party computation
(2PC) which enables two parties to jointly compute a function over their private
inputs without revealing any extra information about these inputs than what
is leaked by the result of the computation. This setting is well motivated and
captures many different applications to ensure privacy protection5. We propose
to use ABY [11], a mixed-protocol framework that efficiently combines the use
of Arithmetic shares, Boolean shares, and Yao’s garbled circuits.

As for the design of the appropriate model, we propose to define a small
neural network with two fully connected (FC) layers, one activation layer, and
one softmax layer. This architecture seems sufficient to achieve a good accuracy
level (see next section). The number of intermediate neurons can be optimized
based on several simulations evaluating the accuracy of a model for each case.
Additionally, to reduce the number of input neurons, we propose to apply Prin-
cipal Component Analysis (PCA) [6] and filter out the most significant inputs.
Furthermore, because of the complexity of the activation functions, we propose
to use the square function, only. This operation can be supported by 2PC more
efficiently. The design of the new model customized for the use of 2PC should
not result in a significant decrease on the accuracy of the classification.

All operations within the newly designed neural network model will be exe-
cuted through a client-server system, whereby the client who could be considered
as the patient (Data Subject) or the hospital (Data Controller) holds the input
vector and the server (Data Processor) holds the model’s parameters. The un-
derlying protocol should therefore ensure (i) the secrecy of the input supplied
by the client which means that the client would like to get the prediction results
without leaking any information about the heartbeat signal; (ii) the secrecy of
the model parameters supplied by the server while assuming that the client
knows the architecture of the model, only; (iii) the secrecy of the prediction
results with respect to the server.

5 Lectures 1&2: Introduction to Secure Computation, Yao’s and GMW Protocols,
Secure Computation Course at Berkeley University
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3.2 The optimized neural network model

In order to ensure data privacy during the arrhythmia classification phase, a
dedicated neural network model should be computed. Because the use of crypto-
graphic primitives adds a non-negligible overhead, the complexity of the model
should be optimized as much as possible. Hence, the primary goal while building
a new prediction model, is to optimize the number of neurons at each layer while
keeping an adequate accuracy level. As mentioned in the previous section, the
cryptographic tool that we chose to ensure data privacy is 2PC [23] whereby the
client holds the input vector, and the server has the NN prediction model which
consists of the weight matrices and bias vectors. Similarly to [12] and [7], non-
linear operations such as the activation functions should be replaced with more
efficient operations such as low degree polynomials. In this section, we describe
our approach with a case study using the MIT-BIH arrhythmia dataset from the
PhysioBank database. The resulting neural network model is presented with an
incremental approach.

Table 1. Heartbeats for Arrhythmia classification and frequency in datasets

Our Dataset PhysioBank Dataset

Arrhythmia Class Symbol # % # %

Normal beat N 14985 34.02% 59926 66.593%

Left bundle branch block beat L 6450 14.64% 6450 7.168%

Right bundle branch block beat R 5794 13.15% 5794 6.439%

Premature ventricular contraction V 5712 12.97% 5712 6.347%

Paced beat / 5608 12.73% 5608 6.232%

Atrial premature beat A 2042 4.64% 2042 2.269%

Rhythm change + 1005 2.28% 1005 1.117%

Fusion of paced and normal beat f 786 1.78% 786 0.873%

Fusion of ventricular and normal beat F 647 1.47% 647 0.719%

Ventricular flutter wave ! 378 0.86% 378 0.42%

Nodal (junctional) escape beat j 184 0.42% 184 0.204%

Non-conducted P-wave (blocked APB) x 155 0.35% 155 0.172%

Aberrated atrial premature beat a 123 0.28% 123 0.137%

Ventricular escape beat E 85 0.19% 85 0.094%

Nodal (junctional) premature beat J 68 0.15% 68 0.076%

Atrial escape beat e 26 0.06% 13 0.014%

Signal quality change V NA NA 508 0.565%

Comment annotation ” NA NA 352 0.391%

Isolated QRS-like artifact — NA NA 112 0.124%

Unclassifiable beat Q NA NA 29 0.032%

Start of ventricular flutter/fibrillation [ NA NA 5 0.006%

End of ventricular flutter/fibrillation ] NA NA 5 0.006%

Premature or ectopic supraventricular beat S NA NA 2 0.002%

We first extract heartbeats from the Electro-Cardiogram (ECG) signals. Each
heartbeat is composed of 180 samples with 90 samples before the R-peak, 1
sample for the R-peak, and, 89 samples after the R-peak. Once heartbeats were
extracted, we have performed various filtering operations to create an appro-
priate dataset to build the neural network model. The PhysioBank database is
shown in Table 1 and contains 23 different annotations for the extracted heart-
beats. We have decided to only consider 16 out of 23 annotations representing
meaningful arrhythmia classes that have significant number of instances in the
dataset. Secondly, we realized that normal beats were dominating the dataset
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(67.3%) and hence resulting in an unbalanced dataset for model training pur-
poses. We have reduced the number of normal beats in order for the model to
predict anomalies more accurately while keeping this number sufficiently large
so that it reflects reality. Moreover, we have used the over-sampling method to
enforce the learning of low frequent classes such as class “e”. Table 1 provides
details about the final dataset we are actually using. We have removed some
heartbeats from the dataset since the classes of V, ”, —, Q do not represent any
arrhythmia class, and also [, ], S are rare. This dataset is further split such that
80% of the heartbeats are used to train the network and 20% of the heartbeats
are used as a test dataset. We propose a model with 2 fully connected (FC)
layers, one activation function, and a final softmax function that would provide
the resulting arrhythmia class.

We now aim at optimizing the number of neurons in each layer. The number
of neurons in the output layer corresponds to the number of arrhythmia classes.
As shown in Table 1, we decide to take the first 16 out of the 23 arrhythmia
classes in the studied dataset. Hence, the number of neurons in the output layer
is set to 16.

In order to choose the appropriate number of neurons within the hidden
FC layer, we have evaluated the accuracy of models on the validation dataset
whereby the number of neurons varies from 2 to 100. We not only evaluate the
overall accuracy but compute the confusion matrix that indicates the accuracy
with respect to each arrhythmia class. We observe that 38 is a good choice as this
implies less complexity in the model as well as its corresponding confusion matrix
shows better fairness toward less frequent classes (see [26] for more details). The
accuracy of our model is 96.51%. We represent the model’s performance on the
test dataset with the confusion matrix as illustrated in Figure 1.

Fig. 1. Confusion matrix of the model for each class in the test dataset
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The other parameter that affects the complexity of the NN model is the size
of the input vector. This inherently reduces the dimension of the first matrix
used for the FC layer. The main tool to adequately reduce the number of neu-
rons of the input layer is the principal component analysis technique (PCA) [20].
PCA uses orthogonal linear transformations to find a projection of all input data
(ECG heartbeats) into k dimensions which are defined as the principal compo-
nents. Hence, PCA outputs the k features with the largest variance. The first k
eigenvectors of the covariance matrix (of the dataset) are the target dimensions.
The efficiency of using PCA for the ECG analysis domain has also been proved
in [6]. It also helps reduce the noise in the ECG signals and hence improve the
accuracy of the model. This is due to the fact that dimensions with low vari-
ance noise are automatically discarded. To identify the appropriate number of
eigenvalues we run a simulation with 100 hidden neurons and change the value
of the input size n starting from n = 180. The same simulation is executed us-
ing the the square operation as for the activation function. From this analysis,
we choose to set the input size to 16, mainly because the resulting prediction
model provides good accuracy with acceptable complexity. Hence, the number
of neurons of the input layer is now set to 16 (please see [26] for more details).

The resulting model: To summarize, the developed model, compatible with
the use of 2PC, consists of 2-FC layer involving matrix multiplication, one ac-
tivation layer implementing a square function and one softmax function. The
architecture of the proposed neural network model is shown in Figure 2.

x1

xi

x16

X.Wh1+Bh1

X.Whj+Bhj

X.Wh38+Bh38

y'12

y'i2

y'382

Y.Wo1+Bo1

Y.Woj+Boj

Y.Wo16+Bo16

Input Layer FC Layer Square Function Softmax
Function

ymax{y'1,..,y'16}

FC Layer

Fig. 2. The proposed NN model

The first layer consists of a fully connected layer and its main operations
are: Y ′

h = XT .Wh + Bh. In this equation, X represents the input vector (PCA
transform of a heartbeat). This input vector X of size 16 is multiplied with
the weight matrix of the hidden layer, Wh, of size 16 × 38. This intermediate
result is further added to the bias vector of the hidden layer, Bh, of size 38. The
resulting vector Y ′

h becomes the input of the activation layer which consists of
computing the square of each element of Y ′

h. The resulting vector Yh is the final
output of the hidden layer. This vector further becomes the input for another
FC layer which is defined as: Y ′ = Y T

h .Wo + Bo. Wo and Bo denote the weight
matrix and the bias vector, respectively. The output is the vector Y ′ of size 16.
Finally, a softmax function is executed over the components y′j of Y ′. The aim of
this function is to mainly identify the actual predicted class (the one that shows
the greatest probability). The result y is the index of one of the 16 arrhythmia
classes.
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In total, the prediction phase consists of: 16 × 38 + 38 × 16 + 38 = 1254
multiplications, 15×38+38+37×16+16 = 1216 additions, 16 exponentiations,
16 divisions and 1 argmax operation.
Discussion on Principle Component Analysis: As previously mentioned,
the NN model is revised and designed from scratch in order to be compatible
with 2PC and remain as efficient as possible. To improve the performance of
the classification phase, the size of the input is reduced using the Principle
component analysis (PCA) method. PCA is a statistical method which identifies
patterns, highlights similarity between elements within the dataset and finally
reduces the dimension of the feature space. More formally, let S be a dataset
and xi an element of it with dimension d. The first step of PCA (executed
by the server) consists of computing the mean µ of all the elements xi. Then,
the covariance matrix A of S is computed. The eigenvectors and corresponding
eigenvalues of matrix A are further evaluated and the first k eigenvectors with
the largest eigenvalues are selected. In this particular case, where the dataset
consists of 44048 heartbeats of 180 samples, the server obtains he 180×16 matrix
of the most relevant eigenvectors. This matrix along with the vector µ is sent to
the client who reduces the dimension of its input to 16 by first by subtracting his
signal with the mean vector and further multiplying the result with the received
matrix.

The use of the PCA transformation at the client side can result in some
information leakage. The leakage resulting from the use of PCA mainly are the
mean of the dataset and the 180×16 covariance matrix. We argue that the mean
of all the signals in the training dataset does not carry any valuable information
since the labels of the training signals are not included in the computation of
the mean. On the other hand, the matrix of 16 eigenvectors does not correspond
to the entire matrix of eigenvectors. Additionally, without the knowledge of the
eigenvalues there exist an infinite number of inverse transformations back to the
original covariance matrix. Therefore, one cannot discover the training dataset
and hence the model from this reduced and transformed matrix.

On the other hand, we can also choose not to leak such information while
designing the privacy-preserving NN classification. In this case, we either do
not use PCA (which causes high bandwidth and computational cost) or include
the PCA steps to the 2PC solution (additional overhead but less costly at the
first FC layer). Accordingly, in this work, we propose the following three design
approaches for PAC (as shown in Figure 3) and evaluate the performance for
each of them:

– Model 1: PCA is not integrated to 2PC (original and most efficient solution
implies some leakage),

– Model 2: PCA is integrated to 2PC (less efficient but no leakage),
– Model 3: PCA is not used (worse performance but no leakage).

SIMD circuits: In addition to reducing the size of the neural network and
decreasing the cost of the underlying operations, we also take advantage of Single
Instruction Multiple Data (SIMD) circuits which allow the packing of multiple
data elements and the execution of operations in parallel. We use this technique
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Fig. 3. PAC Overview

to perform the matrix multiplications and additions more efficiently. In more
details, since the number of hidden neurons is 38, the client creates the SIMD
version of its input X (of size 16) repeated 38 times (i.e. the size of the share is
38∗16 = 608). Similarly, the server creates a SIMD version of the weight matrices
Wh (of size 16x38) and Wo (of size 38x16) by flattening them to two vectors of
608 elements. Once these versions obtained, one single SIMD multiplication gate
can be used to perform element-wise multiplication. The server also creates a
SIMD version of the bias vectors and adds them to the vector resulting from the
previous SIMD matrix multiplication. The square activation function can also
be computed using one SIMD multiplication gate. To implement the argmax
function, we transform the SIMD share of the previous layer to a non-SIMD
share (i.e., the SIMD share is composed of 1 wire holding all the 16 values of Y ′

while the non-SIMD share is composed of 16 wires each wire will hold one value
of Y ′).

Moreover, we propose a secure computation of PCA in Model 2. As previ-
ously described, the computation of the PCA can eventually introduce a limited
leakage of the training dataset. Therefore, in Model 2, we propose to introduce
the computation of the PCA vector into the 2PC. The two parties will first col-
laboratively compute PCA of the signal (using the confidential mean and the 16
eigenvectors) and further perform classification similarly to Model 1. This PCA
computation layer adds 181 SIMD addition gates and 1 SIMD multiplication
gate.

3.3 PAC: Detailed description

As previously mentioned, we propose to use 2PC to obtain the privacy-preserving
variant of the arrhythmia prediction model, i.e., PAC. Since the underlying
model involves several different operations (such as additions, multiplications



10 M. Mansouri et al.

and comparisons), we propose to use the ABY framework which supports all ba-
sic operations in a flexible manner using Arithmetic, Boolean or Yao’s circuits.
ABY supports Single Instruction Multiple Data (SIMD) gates. Furthermore,
the current ABY implementation6 also supports floating point representation
if Boolean circuits are used. Hence, we first implement the privacy-preserving
model using Boolean circuits. Nevertheless, floating point representation and the
use of Boolean circuits appear to be inefficient. We therefore propose some im-
provements using fixed point representations that may result in some truncations
of the inputs or intermediate values in the circuit. Additionally, since operations
executed over Boolean shares are much more expensive than those executed over
arithmetic shares, we propose to replace Boolean gates with arithmetic gates as
much as possible, hence improve the system. Due to the space limitation, we
have not included the model using Boolean circuits and refer to [26] for more
details.

As the multiplication of two fixed-point numbers can yield numbers with a
number of bits higher than the two initial numbers, hence to an overflow, these
numbers need to be truncated and/or rounded in order to ensure that all inter-
mediate values can be represented in 64 bits. We mainly propose two truncation
methods: The first method consists of applying truncation at intermediate stages
in the circuit and hence try to continuously keep a good accuracy level whereas
the second method truncates the inputs before the prediction process starts,
only. In this section, we only present the second truncation method since it
shows better performance gains. The description of the first truncation method
is given in the full version of the paper. In this truncation approach, only the
inputs to the circuits are truncated and this before the actual execution of the
circuit. In order to avoid overflows, we multiply X, Wo and Wh by 103, Bh by
106 and Bo by 1015 and truncate the fractional part afterwards. We observe that
this method is as safe as the maximum number a signed 64-bit integer variable
can take is 9.223372037×1018 and the upper bound for the values of Y ′ is 9, 223
and the lower bound is −9, 223. We observe that the risk of overflow is very low.

Thanks to this new approach, the actual circuit only consists of arithmetic
gates except at the last stage where an argmax operation needs to be executed.
We have tested the accuracy of the new model using the test dataset and we
have achieved an accuracy of 96.34% which is very close to the accuracy of the
original model (96.51%). The confusion matrix of the new model shows the same
accuracies as presented in the original model (see Figure 1).

To evaluate the computational and communication overhead of the model
in a real setting, experiments were carried out by a computer which has four
3.60GHz Intel Core i7-7700 processors, 32GB of RAM acting as the server and
a laptop which has two 1.70GHz Intel Core i5-4210U processors, 4 GB of RAM
acting as the client. On the other hand, the client and the server communicate
through a local area network (LAN). The client is connected to the LAN through
a wireless access point. A simulation of the bandwidth and the latency of the
connection between the client and the server showed the values of 39Mbit/sec

6 https://github.com/encryptogroup/ABY
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for the bandwidth and 3.36 ms for the latency. Furthermore, we run the client
and the server on two separate processes communicating through the localhost
of the same computer, specifically the one with the four 3.60GHz Intel Cores to
evaluate the performance of the model without considering the limitation of the
bandwidth. In ABY, we set the security parameter to 128 bits.

Table 2 shows the performance results in terms of prediction time and band-
width consumption for the original Boolean circuits as well as for the 3 models
implementing arithmetic circuits, mainly. Moreover, we have repeated all eval-
uations on a local set-up, i.e., the localhost on one machine, to give an insight
about the overhead incurred by the low bandwidth (please see the full version
for details). The prediction time of one heartbeat is measured as the total time
adding to the BaseOT time.

We have also evaluated the performance of the prediction model without
using any privacy enhancing technologies and making use of Tensorflow7. It takes
7.29ms to predict one heartbeat in cleartext while this value becomes 117,859ms
with PAC (without any truncation). Nevertheless, from Table 2, we observe some
significant performance gain in terms of computational and communication cost
by employing the truncation method. Compared to the model built with Boolean
circuits, the Total time with the second truncation method is reduced by a factor
of 108. Table 2. Performance results for each model

Boolean Circuits Truncation v1 Truncation v2

Proposed NN models Model 1 Model 1 Model 2
Model 1

without ARGMAX
Model 1 Model 2 Model 3

Circuit

Gates 553925 35477 36418 128 34329 34696 34660

Depth 4513 160 168 5 146 147 146

Time (ms)

Total8 117571.82 1218.613 2776.862 735.357 1082.804 2641.846 4723.203

Init 0.046 0.076 0.071 0.056 0.062 0.037 0.033

CircuitGen 0.046 0.074 0.062 0.067 0.078 0.055 0.047

Network8 272.867 268.39 94.142 248.92 51.391 89.46 34.221

BaseOTs 288.047 309.288 310.06 311.387 291.705 294.698 298.294

Setup8 107481.557 851.397 2373.818 714.511 817.807 2354.391 4409.689

OTExtension 106645.796 847.424 2369.377 714.278 816.069 2351.584 4407.521

Garbling 812.573 2.502 3.268 0.002 1.405 1.851 1.252

Online 10090.26 367.21 403.042 20.844 264.995 287.453 313.512

Data Transfer (Sent/Rcv, in KB)

Total 319269 / 309573 2629 / 2252 7113 / 6651 1910 / 1900 2171 / 2095 6560 / 6461 12266 / 12139

BaseOTs 48 / 48 48 / 48 48 / 48 48 / 48 48 / 48 48 / 48 48 / 48

Setup 305915 / 304815 2240 / 2227 6591 / 6579 1881 / 1881 2086 / 2071 6406 / 6391 12025 / 12010

OTExtension 301095 / 304815 2057 / 2227 6377 / 6579 1881 / 1881 2053 / 2071 6373 / 6391 11992 / 12010

Garbling 4819 / 0 183 / 0 214 / 0 0 / 0 33 / 0 33 / 0 33 / 0

Online 13354 / 4757 389 / 25 522 / 72 29 / 19 85 / 24 154 / 70 240 / 129

Model 2 still provides better results than Model 3 of which is built without
the use of the PCA method: The time and bandwidth consumption of Model 3
is larger with a factor of 1.8 than Model 2. We have also implemented Model 2
without the argmax layer (the output is a vector of 16-value where its argmax

7 https://www.tensorflow.org/
8 The Total time corresponds to the Setup time and the Online time. The Network time

represents the time for the connection to be established. The Setup time corresponds
to the OTExtension time and the Garbling time.
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can be computed locally by the client) to show the size and performance of
the arithmetic circuit without introducing any Boolean gates. Finally, the time
performance presented in the table is highly affected by the low bandwidth of the
communication channel between the client and the server. The time performance
difference can be easily seen by comparing the results in Table 2 with the one in
Table 5 in the full paper which represent the result of when the client and the
server resides on the same machine and so no bandwidth limitation can affect the
result. We observe that the time consumption of the model evaluated locally on
the same machine can reach 39.785 ms which is 27 times less than the remotely
evaluated model. This limitation comes from the core of the 2PC protocol which
suffers from high bandwidth consumption. We believe this problem can be easily
solved by a decent connection between the client and the server.

4 PAC in batches

In this section, we propose to perform arrhythmia predictions in batches, namely,
with several heartbeat inputs. This can be justified as the classification of a
single heartbeat may not be sufficient to diagnose the disease for a patient and
the doctor may need to receive the classification of the n consecutive heartbeats.

We also realize that, the online time becomes relatively short when the pro-
posed design is used and that 21.2% (82.2% in case of evaluation on the same
machine) of the Total time corresponds to the BaseOT phase. This phase is
only processed once the two parties initiate the protocol. Hence, the overall time
may again be decreased by performing predictions in batches (i.e., performing
prediction of many ECG signals at once) using the SIMD technique, once again.

Indeed, the client may first record N signals, prepare the inputs, and further
store them in a matrix S(N) (see the full paper [26]). This matrix is further
flattened into a vector of 16.N elements. Similarly, the server transforms the
weight matrix vectors Wh and Wo and obtains vectors of 16.38.N elements. The
server also creates the bias vectors Bh(N) and Bo(N) of size 38.N and 16.N ,
respectively (see their representations in the original paper) by expanding the
two original bias vectors Bh and Bo, respectively.

Fig. 4. Arithmetic circuit representation of the model with Truncation v2

The Arithmetic circuit of the NN model is implemented as described in Figure
4 whereby only the structure of the inputs and output differ (ie. SIMD vectors
result in larger size). The number of SIMD multiplications does not change since
all values are regrouped in one SIMD share and the multiplication is further
performed. The number of SIMD additions also remains the same.
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Finally, the Boolean circuit which represents the argmax layer is also per-
formed with SIMD gates. Values of each class in each individual output in the
vector Y (N) are grouped in separate SIMD vectors. The same comparison and
multiplexers gates described before are used but this time the inputs are SIMD
shares. The output of the Boolean circuit is the vector y(N) whereby each value
represents the index of the class of the corresponding individual.

Table 3. Performance results for the multi-signal model

# Input signals
1 10 100 200 400

Circuit

Gates 33741 39552 40918 42422 45426

Depth 148 148 148 148 148

Time (ms)

Total 1084.713 8002.287 77867.26 160114.6 314311

Init 0.061 0.09 0.062 0.059 0.058

CircuitGen 0.041 0.043 0.052 0.053 0.066

Network 7.115 7.681 7.513 5.34 4.307

BaseOTs 290.672 294.094 293.867 300.302 285.169

Setup 814.036 7575.32 75821.76 155921.4 306985

OTExtension 808.49 7509.797 75149.46 154673.2 304616

Garbling 5.056 62.455 650.642 1214.046 2310

Online 270.673 426.961 2045.492 4193.194 7325.77

Bandwidth (Rcv/Sent in KB)

Total 2095 / 2167 21010 / 21652 209912 / 216247 419805 / 432465 839588 / 864898

BaseOTs 48 / 48 48 / 48 48 / 48 48 / 48 48 / 48

Setup 2071 / 2084 20782 / 20936 207647 / 209107 415276 / 418186 830533 / 836342

OTExtension 2071 / 2053 20782 / 20612 207647 / 205947 415276 / 411876 830532 / 823732

Garbling 0 / 31 0 / 315 0 / 3159 0 / 6309 0 / 12609

Online 24 / 83 227 / 716 2264 / 7139 4528 / 14278 9055 / 28555

We have run experiments with different batch sizes using the local and remote
setups. The results are given in Table 3 for the remote setup (see Table 6 in the
full paper [26] for the local setup). We can observe that the number of gates y
slightly increases with respect to the number of heartbeats, which is much better
than performing prediction on signals individually which will cost y = 34329N
gates. Also, the depth is constant regardless of the number of input heartbeats
the model predicts.

We observe that the Total time still increases linearly with the number of
signals but with a much better rate. More specifically, the batches model can
decrease the time consumption with a percentage of 27% (70% in case of local
evaluation) compared to performing prediction on signals one by one which takes
t = 1082.8N ms (t = 39.7N in case of local evaluation). Finally, the BaseOT
time is approximately 290ms and remains constant regardless to the number of
input signals the model predicts. This is, again, much better than performing
prediction on signals, one by one, where the BaseOT time bt costs bt = 290 ms.
Table 3 also shows that the bandwidth grows linear with the number of signals.

To summarize, prediction in batches does improve performance in terms of
computational cost but the size of the batch should be bounded according to
bandwidth limitations.
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5 Related Work

Existing privacy-preserving neural network classification techniques mostly focus
on Convolutional Neural Networks (CNN) with the goal of classifying images and
achieve data privacy using homomorphic encryption [12, 7, 15, 18, 4, 34, 16, 19, 9],
secure multi-party computation [27, 24, 28, 33, 32, 10, 1, 8, 36], both techniques [3,
30, 21], or, trusted hardware [29, 17, 35]. Similarly to our work, these methods
aim at reducing the complexity of the underlying neural networks. However, the
application scenarios (image classification with CNNs) significantly differ from
ours (arrhythmia classification) and their models are more complex and not
easily comparable to our solutions.

The closest study to our work is [2] which specifically focuses on privacy-
preserving arrhythmia classification with neural networks. Authors in [2] use
2PC combined with a partially homomorphic encryption [31]. Their protocol is
executed between the client who protects the input vector and the server who
stores the model. Similarly to our model, their neural network is also composed
of two layers: one hidden layer with SATLIN (a symmetric saturating linear) as
an activation function and the output layer implementing the argmax function to
decide on the arrhythmia class. Although this work uses the same dataset from
the PhysioBank datasets as we do, authors achieve an accuracy of 86.3% whereas
PAC reaches 96.43% for the classification of each heartbeat. Furthermore, while
our model seems slightly more complex than the one in [2] (38+16=54 neurons
instead of 6+6=12 neurons), it shows better accuracy and performance results:
The communication channel used in [2] is set to 1 Gbit/sec which is much larger
than our bandwidth estimation (39 Mbit/sec). Authors evaluated the timing
complexity to be about 7 seconds whereas our solution predicts one heartbeat
in 1 second within a more realistic scenario (less performance in the client-
side and lower bandwidth). This may be considered acceptable in applications
wherein heartbeats are classified at the same pace at which they are produced.
Additionally, the accuracy of the predicted heartbeat is higher and further, the
number of output neurons is set to 16, PAC detects more arrhythmia classes.
Moreover, the solution in [2] combines the use of homomorphic encryption with
garbled circuits. The use of both techniques renders the prediction protocol more
time consuming compared to PAC whereby mostly arithmetic circuits are used.
Finally, while both solutions use packing at the encryption stage and thus allow
for prediction in batches, our solution additionally parallelizes each operation in
the model (using the SIMD packing method, once again) and hence optimizes
the timing complexity.

6 Conclusion

In this paper, we have presented PAC, a methodology for designing Privacy-
preserving Arrhythmia Classification that keeps users’ ECG data confidential
against service providers and the neural network model confidential against
users. As a case study, we have designed a new model based on the PhysioBank
dataset. The proposed model involves a customized two-layer neural network
with 54 neurons. This model was built from scratch in order to be compatible
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with 2PC. The solution is implemented with the ABY framework which required
the truncation of input values and model parameters. The second truncation
method combined with Arithmetic circuits consists of multiplying the input val-
ues with 103 and shows significant improvement in terms of performance and
accuracy. PAC achieves an accuracy of 96.34% and experimental results show
that the prediction of one heartbeat takes approximately 1 second in real world
scenarios. We show that more savings can be achieved with the use of SIMD for
performing predictions in batches.
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