Gamze Tillem
email: g.tillem@tudelft.nl

Beyza Bozdemir

Melek Önen
email: melek.onen@eurecom.fr

SwaNN: Switching among Cryptographic Tools for Privacy-Preserving Neural Network Predictions

Keywords: privacy, neural networks, secure two-party computation, homomorphic encryption

The rise of cloud computing technology led to a paradigm shift in technological services that enabled enterprises to delegate their data analytics tasks to cloud servers which have domain-specific expertise and computational resources for the required analytics. Machine Learning as a Service (MLaaS) is one such service which provides the enterprises to perform machine learning tasks on the cloud. Despite the advantage of eliminating the need for computational resources and domain expertise, sharing sensitive data with the cloud server brings a privacy risk to the enterprises. In this paper, we propose SwaNN, a protocol to privately perform neural network predictions for MLaaS. SwaNN brings together two well-known techniques for secure computation: partially homomorphic encryption and secure two-party computation, and computes neural network predictions by switching between the two methods. The hybrid nature of SwaNN enables to maintain the accuracy of predictions and to optimize the computation time and bandwidth usage. Our experiments show that SwaNN achieves a good balance between computation and communication cost in neural network predictions compared to the state-of-the-art proposals.

INTRODUCTION

Neural networks (NN) are a method of supervised machine learning (ML) which aims to solve a classification problem. Although the research on NN dates back to 1980s [START_REF] Fukushima | Neocognitron: A neural network model for a mechanism of visual pattern recognition[END_REF], they had not been commonly used due to their long training times. With the recent technological advances and the adaptation of GPUs in computation systems, the training time for NN is reduced significantly [START_REF] Ciresan | Multi-column deep neural networks for image classification[END_REF] and this improvement triggered the popularity and outstanding success of NN in certain fields such as image classification [START_REF] Ciresan | Multi-column deep neural networks for image classification[END_REF].

The success of NN attracted many companies to apply it to their businesses. MLaaS enables them to outsource their ML tasks to a cloud server which has computational resources and ML expertise [START_REF] Ribeiro | MLaaS: Machine learning as a service[END_REF]. A major risk in using MLaaS is the sensitivity of the data sent to the cloud. The concern of exposing privacy-sensitive data in MLaaS requires the design of privacy-preserving protocols for ML methods.

In this paper, we aim to design one such protocol for MLaaS to compute NN predictions under privacy preservation. We assume that the network model has already been computed during a previous training phase, and we only focus on the privacy of data items during the prediction phase. Privacy problem in MLaaS drew the attention of researchers recently and several mechanisms have already been proposed. Solutions are either based on homomorphic encryption (HE) [START_REF] Gilad-Bachrach | CryptoNets: Applying neural networks to encrypted data with high throughput and accuracy[END_REF][START_REF] Chabanne | Privacy-preserving classification on deep neural network[END_REF][START_REF] Barni | A privacypreserving protocol for neural-network-based computation[END_REF][START_REF] Orlandi | Oblivious neural network computing via homomorphic encryption[END_REF] or secure two-party computation (2PC) [START_REF] Mohassel | SecureML: A system for scalable privacy-preserving machine learning[END_REF][START_REF] Mohassel | ABY 3 : A mixed protocol framework for machine learning[END_REF][START_REF] Liu | Oblivious neural network predictions via minionn transformations[END_REF]. HE-based solutions usually incur high computation cost and the interactive nature of 2PC-based solutions leads to a higher bandwidth usage.

Having studied existing solutions, we aim to take the simple cryptographic tools of both worlds and optimize the computational and the communication overhead at the same time. We propose a hybrid protocol, SwaNN, which switches the computations between HE and 2PC. We make use of partially HE (more specifically the additively homomorphic Paillier encryption) to perform linear operations over encrypted data. Non-linear operations are supported thanks to the use of 2PC. We show how to easily switch from one cryptographic tool to the other. The combination of these two cryptographic tools helps maintain the accuracy of predictions.

SwaNN is designed to support two different settings: a client-server setting and a non-colluding twoserver setting. In the client-server setting, the majority of operations are delegated to the server, and the client helps the server in intermediate steps. In the two-server setting, the servers perform all operations simultaneously, with a balanced workload. Our contributions can be summarized as follows:

• We propose a hybrid protocol for NN predictions, which is based on the additively homomorphic Paillier encryption scheme and 2PC. We show how each underlying operation can be supported easily with the use of these two schemes, only.

• Our protocol is flexible since it is suitable both for the client-server setting and the non-colluding two-server setting.

• Compared to existing works, our protocol deploys several optimizations for the computations in the linear layers of neural networks which improves the efficiency in terms of computation cost. These optimizations consist of some data packing dedicated to the Paillier cryptosystem and the use of multi-exponentiation algorithm to reduce the cost of multiplications.

• The empirical results show that our protocol can compute the prediction within a neural network with two activation layers in 10 seconds with 1.73 MB bandwidth usage which is 30-fold better in computation cost than the HE-based solution and 28-fold more efficient in bandwidth usage than the 2PC-based solution.

PRELIMINARIES

Convolutional Neural Networks. CNNs are specifically designed for image recognition. They combine a series of layers to perform classification. The first layer of NN is the input layer, where the input image is provided to the network. The last layer is the output layer, where the result of the classification is returned.

The layers in between are called hidden layers. Each hidden layer takes an input X, evaluates a function f on the input optionally along with a weight matrix W, and returns an output Y to the subsequent layer. More details on CNNs' hidden layers can be found in the full version of this paper [START_REF] Tillem | SwaNN: Switching among cryptographic tools for privacypreserving neural network predictions[END_REF]. [START_REF] Paillier | Public-key cryptosystems based on composite degree residuosity classes[END_REF] which supports additive homomorphism. Secure two-party computation (2PC) enables two parties to jointly compute a function f on their inputs without revealing the inputs to each other. In our work, we use arithmetic secret sharing [START_REF] Beaver | Efficient multiparty protocols using circuit randomization[END_REF] and Boolean secret sharing [START_REF] Goldreich | How to play any mental game, or a completeness theorem for protocols with honest majority[END_REF]. In arithmetic sharing, additions can be computed locally without any additional cost. A multiplication operation requires some additional computation and communication cost; however, it is less expensive than the multiplication in Boolean sharing [START_REF] Demmler | ABY -A framework for efficient mixed-protocol secure twoparty computation[END_REF]. Therefore, in our protocol, we use arithmetic sharing for addition and multiplication operations. When other types of operations such as comparisons are needed, we use Boolean sharing.

We use the following notation throughout the paper: [x] represents a Paillier encryption of plaintext x and x i represents party i's share x for 2PC operations.

PRIOR WORK

We provide a sketch of the analysis of existing privacy-preserving neural networks (PP-NN). For the complete analysis, we refer the reader to the full version of this paper [START_REF] Tillem | SwaNN: Switching among cryptographic tools for privacypreserving neural network predictions[END_REF].

Existing PP-NN solutions can be regrouped into two main categories based on the underlying cryptographic technique. The first category of solutions [START_REF] Mohassel | SecureML: A system for scalable privacy-preserving machine learning[END_REF][START_REF] Mohassel | ABY 3 : A mixed protocol framework for machine learning[END_REF][START_REF] Liu | Oblivious neural network predictions via minionn transformations[END_REF][START_REF] Rouhani | DeepSecure: scalable provably-secure deep learning[END_REF],Riazi et al., 2018[START_REF] Dahl | Private machine learning in tensorflow using secure computation[END_REF][START_REF] Wagh | SecureNN: Efficient and private neural network training[END_REF][START_REF] Riazi | XONN: xnor-based oblivious deep neural network inference[END_REF] consists of solutions based on secure multi-party computation. The most relevant work to SwaNN is MiniONN [START_REF] Liu | Oblivious neural network predictions via minionn transformations[END_REF] which defines oblivious transformations for each CNN operation and implements these transformations using ABY [START_REF] Demmler | ABY -A framework for efficient mixed-protocol secure twoparty computation[END_REF]. The second category of solutions [START_REF] Gilad-Bachrach | CryptoNets: Applying neural networks to encrypted data with high throughput and accuracy[END_REF][START_REF] Chabanne | Privacy-preserving classification on deep neural network[END_REF][START_REF] Ibarrondo | Fhe-compatible batch normalization for privacy preserving deep learning[END_REF][START_REF] Hesamifard | Cryp-toDL: Deep neural networks over encrypted data[END_REF][START_REF] Bourse | Fast homomorphic evaluation of deep discretized neural networks[END_REF][START_REF] Sanyal | TAPAS: tricks to accelerate (encrypted) prediction as a service[END_REF][START_REF] Hesamifard | Privacy-preserving machine learning as a service[END_REF][START_REF] Jiang | Secure outsourced matrix computation and application to neural networks[END_REF][START_REF] Chou | Faster CryptoNets: Leveraging sparsity for real-world encrypted inference[END_REF] correspond to those based on fully homomorphic encryption (FHE). To the best of our knowledge, CryptoNets [START_REF] Gilad-Bachrach | CryptoNets: Applying neural networks to encrypted data with high throughput and accuracy[END_REF] is the first PP-NN based on FHE and uses the SEAL library [START_REF] Seal | Simple Encrypted Arithmetic Library[END_REF] to compute CNN predictions on encrypted inputs.

In comparison with existing solutions from these two categories, we propose to take advantage of both cryptographic techniques and design a hybrid protocol that combines 2PC with partially HE. To reduce the computational cost, FHE is replaced with the additively homomorphic Paillier encryption scheme. This algorithm is used to compute linear operations and the x 2 function using a dedicated interactive protocol. Additionally, we obtain better performance results for computing nonlinear operations thanks to 2PC.

Few early approaches, such as [START_REF] Barni | A privacypreserving protocol for neural-network-based computation[END_REF][START_REF] Orlandi | Oblivious neural network computing via homomorphic encryption[END_REF], also use Paillier and Yao's garbled circuits (GCs). Gazelle [START_REF] Juvekar | GAZELLE: A low latency framework for secure neural network inference[END_REF]] is a secure NN inference scheme implemented under a dedicated lattice-based HE scheme. This solution also makes use of Yao's GCs to perform ReLU and to reduce the noise in the ciphertext.

SWANN

In the Machine Learning as a Service (MLaaS) model, the client has limited computation capabilities. Thus, he outsources the computations to the server who has expertise in performing ML with adequate computation power. We consider two different scenarios both of which aim to maintain privacy: In the 1 st Scenario -Client-Server, a client shares a private image with a server. The server, which holds the NN model, computes the prediction result on the private image. The majority of the computations are performed by the server. The client helps the server perform decryptions and/or circuit evaluations when it is necessary. To reduce the workload on the client side further, we design a 2 nd Scenario -Two-Server whereby two semi-honest non-colluding servers perform the computations together. The client provides the servers their shares on the input and private keys. Thus, the computations on the client side are completely delegated to the servers. In such a setting, to fully utilize the capabilities of both servers, one image can be provided to each server such that at one execution two images are evaluated simultaneously.

In both scenarios, we assume a semi-honest security model, where the parties do not collude: Parties exactly follow the protocol steps but they are curious to obtain some information from the output and intermediary messages. The client's goal is to hide the image content and the result of classification from the server(s). On the other hand, the server(s) does not want to reveal the model parameters used during com-putations to the client. The protocol mainly consists of two phases: The non-interactive phase during which the operations are performed by the server without the client's involvement; and, the interactive phase which requires the collaboration of both parties. Below, we explain how each NN layer is executed in the client-server scenario1 .

Scenario 1: Client -Server

Non-interactive phase

In this phase, the server, who has received the encrypted image, computes the linear NN layers as follows. Convolutional Layer (Conv): The main operation in the convolutional layer is the dot product. Given an input image X and a weight matrix W, their dot product is computed as Y = ∑ x i, j × w i, j . When the input image is encrypted with Paillier and the weight matrix is in plaintext, using the homomorphic property of encryption, the dot product is computed as

[Y] = ∑ x i, j × w i, j = ∏ [x i, j] w i, j .
(1) Fully Connected Layer (FC): The fully connected layer requires to compute a matrix multiplication. The underlying operation for matrix multiplication is the dot product (1) which has to be performed for each column and row pair.

Mean Pool Layer (Pool):

Similar to [START_REF] Gilad-Bachrach | CryptoNets: Applying neural networks to encrypted data with high throughput and accuracy[END_REF][START_REF] Liu | Oblivious neural network predictions via minionn transformations[END_REF] we use a linear approximation of the mean pooling operation: We compute the scaled mean pool instead of the mean pool, where the division is omitted. Hence, the scaled mean pool can be computed when using Paillier without interaction.

Interactive phase

In this phase, the server computes the nonlinear NN layers in collaboration with the client. Activation Layer (Act): Computing the nonlinear activation function in NN is a challenging task when data is encrypted. In the existing literature, there are two approaches to compute the activation function: The first approach [START_REF] Gilad-Bachrach | CryptoNets: Applying neural networks to encrypted data with high throughput and accuracy[END_REF][START_REF] Liu | Oblivious neural network predictions via minionn transformations[END_REF] is to compute a polynomial approximation, namely x 2 . In SwaNN, since Paillier does not support multiplications, we design a dedicated, interactive secure square function. Our solution mainly adapts the secure multiplication protocol in [START_REF] Toft | Sub-linear, secure comparison with two non-colluding parties[END_REF] (see Protocol 1). Alternatively, we also propose to compute x 2 with arithmetic sharing. The multiplication requires to switch the computations from HE to arithmetic sharing which is explained later in this section.

Protocol 1: Secure Square Computation Client (pk, sk) Server (pk) [x], r ∈ R {0, 1} +κ x r ← decr([x r]) [x r] ←--- [x r] ← [x] • [r] x 2 r ← x r • x r [x 2 r] ← enc(x 2 r) [x 2 r] ---→ [x 2] ← [x 2 r] • [r 2] • [x] 2r -1
The second approach [Liu et al., 2017, Mohassel and[START_REF] Mohassel | SecureML: A system for scalable privacy-preserving machine learning[END_REF] is the computation of the ReLU function using 2PC techniques. In SwaNN, we compute ReLU using a comparison gate under Boolean sharing. Max Pool Layer: We implement the maximum pooling using the comparison gates under Boolean sharing. We perform the max pool layer right after the activation to reduce the number of switching operations between 2PC and PHE.

Switching between HE and 2PC. Since linear and nonlinear operations follow each other repetitively, we design secure switching mechanisms between PHE and 2PC (see Protocols 2 and 3) which is similar to the secure decryption mechanism in [START_REF] Henecka | TASTY: tool for automating secure two-party computations[END_REF].

Switching from PHE to 2PC (Protocol 2) requires a secure decryption of the encrypted value masked with a random r. Once the client securely decrypts the masked value x + r, he creates the secret shares of it for himself and for the server as x + r c and x + r s . In the mean time, the server creates the secret shares of r as r c and r s to remove the mask from the original value x. Finally, both parties perform a local subtraction on their shares x + r and r to compute the secret shared value x which is going to be used in 2PC operations.

Protocol 2: Switching from PHE to 2PC Client (pk, sk)

Server (pk) [x], r ∈ R {0, 1} +κ x + r ← decr([x + r]) [x+r] ← --- [x + r] ← [x] • [r] x + r → x + r c + x + r s x+r s ----→ r c ← -- r → r c + r s x c ← x + r c -r c x s ← x + r s -r s
Switching from 2PC to PHE (Protocol 3) reverses the former procedure. It starts with a secret shared value x . Similar to the previous protocol, to prevent the leakage of the original value the parties reveal it after masking. Thus, the server generates a random mask r and sends a secret share of it r c to the client. Both parties perform an addition operation to mask x , and then the server sends the masked value x + r s to the client. The client reveals x+r by adding the two shares and encrypts it with his public key. In the final step, the server removes the random mask from [x + r] with a homomorphic subtraction.

Protocol 3: Switching from 2PC to PHE Client (pk, sk) Server (pk)

x c x s , r ∈ R {0, 1} +κ x + r c ← x c + r c r c ←--r → r c + r s x + r ← x + r c + x + r s x+r s ← ----x + r s ← x s + r s [x + r] ← enc(x + r) [x+r] ---→ [x] ← [x + r] • [r] -1

Scenario 2: Two-Server

To reduce the workload at the client side, we consider a second scenario which introduces two noncolluding servers: The client provides the input to both servers and delegates all operations. Furthermore, if only a single image is provided to the servers, one of the servers is going to be idle during the noninteractive phase. Thus, we propose to provide one different image to each server to fully utilize the computation capabilities of the servers and classify two images at once. As illustrated in Figure 2, the client encrypts two images with his public key and provides one image to each server. Furthermore, he creates and sends shares of the private key for each server as in [START_REF] Damgård | A generalisation, a simplification and some applications of paillier's probabilistic public-key system[END_REF]. Similar to the first scenario, during the non-interactive phase, the servers compute the linear operations on their inputs in the same way as described in Section 4.1.1. The interactive phase and the switching phase also perform similarly to the description in Section 4.1.2 except at the decryption procedure. In the two-server scenario, the decryption task is also delegated to the two servers along with their shares on the secret key. Therefore, the decryption function decr([•]) in Protocols 1 and 2 is performed by both servers. In the full version of our paper [START_REF] Tillem | SwaNN: Switching among cryptographic tools for privacypreserving neural network predictions[END_REF], Protocol 4 defines the secure square protocol using this new decryption procedure.

Security Analysis

SwaNN aims to compute private NN predictions in the semi-honest adversarial model. We assume that the semi-honest adversary is non-adaptive and computationally bounded. For both scenarios, the two communicating parties should not be able to retrieve any additional information from the protocol execution apart from their inputs, outputs, and intermediary messages. SwaNN's security is ensured thanks to the security of the underlying cryptographic tools. Details of the security analysis can be found in the full version of the paper [START_REF] Tillem | SwaNN: Switching among cryptographic tools for privacypreserving neural network predictions[END_REF].

PERFORMANCE EVALUATION

We implemented SwaNN in C++ using the GMP 6.1.2 library for big integer operations and the ABY framework [START_REF] Demmler | ABY -A framework for efficient mixed-protocol secure twoparty computation[END_REF] for 2PC operations. For the homomorphic operations, we used the Paillier implementation of ABY due to its efficiency.

We selected 2048 bits modulus size in Paillier operations to meet the current security standards. For the ABY operations, we selected 32-bit shares. The experiments are run in a machine with Intel Core i5-3470 CPU@3.20GHz and Ubuntu 16.04.

Optimizing Computations

In our implementation, we use several optimization techniques which help reduce the computation and communication cost by enabling simultaneous execution. To optimize 2PC operations, we use single instruction multiple data (SIMD) techniques [START_REF] Smart | Fully homomorphic SIMD operations[END_REF]. SIMD techniques cannot be fully utilized for the computations with the Paillier cryptosystem. Therefore, to improve the efficiency in HE, we adapt two techniques to Paillier which enables simultaneous computation. We first use data packing [START_REF] Bianchi | Composite signal representation for fast and storage-efficient processing of encrypted signals[END_REF]: It packs multiple data items into a single ciphertext. Accordingly, we create slots of t + κ bits for each data item where κ is the security parameter and t is the length of the data item. Given the plaintext modulus N, we can pack ρ = log 2 N t+κ items in a single ciphertext as in (2).

[x] = ρ-1 ∑ m=0 [x i, j] • (2 t+κ) m (2)
With data packing, we can use the full plaintext domain in the Paillier cryptosystem and perform additions on the packed ciphertext simultaneously. Furthermore, in interactive protocols, using data packing helps reduce the bandwidth usage and the cost of decryption operations.

The second technique we use to improve efficiency is using a multi-exponentiation algorithm to simultaneously perform the operations in the form of

w ∏ i=1 a b i i = a b 1 1 • a b 2 2 . . . a b w w . (3)
Lim-Lee's multi-exponentiation algorithm [START_REF] Lim | Efficient multi-exponentiation and application to batch verification of digital signatures[END_REF]Lee, 1994, Lim, 2000] enables to perform (3) simultaneously by modifying the binary exponentiation algorithm using several precomputation techniques.

In our work, we can apply multi-exponentiation for the computation of dot product (in (1)) over encrypted data thanks to Paillier. To summarize, the perlayer optimizations are the following: (i) For Conv, multi-exponentiation reduces the cost of dot products; (ii) Data packing is used before Act and SIMD is used if Act is performed with 2PC; (iii) Pool does not require any optimization; (iv) For FC, multiexponentiation reduces the cost of matrix multiplications.

Experiments

We design three experiments with respect to Act used in NN. In the first experiment, we used x 2 and retrained the NN structure in [START_REF] Gilad-Bachrach | CryptoNets: Applying neural networks to encrypted data with high throughput and accuracy[END_REF]. In the second and third experiments, we used ReLU and re-trained the NN structure for MNIST and Cifar-10 in [START_REF] Liu | Oblivious neural network predictions via minionn transformations[END_REF]. It is worth to note that in these experiments, we have achieved the same accuracy stated in [START_REF] Gilad-Bachrach | CryptoNets: Applying neural networks to encrypted data with high throughput and accuracy[END_REF][START_REF] Liu | Oblivious neural network predictions via minionn transformations[END_REF].

Experiment 1. We measured the performance of SwaNN with the x 2 activation function in the clientserver and the two-server scenario. We designed two different cryptographic settings. The first setting is an only-PHE setting which is totally based on Paillier.

x 2 is implemented as described in Protocol 1. The second setting is a Hybrid setting where we implemented the secure switching protocols in Protocols 2 and 3 and x 2 is implemented using ABY.

Table 1 shows the performance of SwaNN for both scenarios in the only-PHE and the hybrid setting and when optimizations are integrated. For the only-PHE setting, we also provide results without using any optimization. In the client-server scenario, when no optimizations are used, the prediction of one image approximately takes 43 seconds. This computation time is reduced to 30 seconds with optimizations. In the hybrid setting, the prediction takes 10 seconds. In the two-server scenario, there is a slight increase in computation time. Nevertheless, two images can be processed simultaneously (for example, 10 seconds are needed to classify two images in the hybrid setting).

In Table 2, we provide the details of the computation time for Act in the hybrid setting. The packing, decryption, and unpacking operations are performed during the switching from PHE to 2PC. The encryptions are computed by both parties when switching from 2PC to PHE. In the client-server scenario, the client spends 2.3 seconds for the computations while the server spends 581 milliseconds, approximately. In the two-server scenario, both servers spend around 6 seconds for two simultaneous instances. We have also analyzed the bandwidth usage of SwaNN. Table 3 shows the communication cost in both scenarios for the only-PHE and the hybrid settings. The packing technique used in the activation layers helps reduce the bandwidth usage by half. Due to the interactive nature of 2PC, the bandwidth usage in the hybrid setting is higher than in the only-PHE setting. Finally, in Table 4 we compare SwaNN with CryptoNets [START_REF] Gilad-Bachrach | CryptoNets: Applying neural networks to encrypted data with high throughput and accuracy[END_REF] and Min-iONN [START_REF] Liu | Oblivious neural network predictions via minionn transformations[END_REF]. The performance results of CryptoNets and MiniONN are taken from the respective papers. According to [START_REF] Gilad-Bachrach | CryptoNets: Applying neural networks to encrypted data with high throughput and accuracy[END_REF], which uses FHE for computations, one prediction requires 297.5 seconds. The protocol enables simultaneous computation by packing 4096 images into a single ciphertext. This is an advantage when the same client has a very large number of predic-tion requests. With the same NN, MiniONN ([START_REF] Liu | Oblivious neural network predictions via minionn transformations[END_REF]) takes 1.28 seconds. This computation requires 47.6 MB of bandwidth usage. SwaNN computes the same prediction in 10 seconds. Although the computation time of SwaNN is higher than Min-iONN, SwaNN achieves a 28-fold less bandwidth usage. [START_REF] Tillem | SwaNN: Switching among cryptographic tools for privacypreserving neural network predictions[END_REF]. We provide the timings for the max pooling along with ReLU since we implemented them together. The prediction takes 24 seconds in the clientserver scenario and 26 seconds in the two-server scenario (for two images). The first activation layer is the dominant layer in the run time. As expected, this is due to the decryption operations during the switching from PHE to 2PC. In Table 6, we compare the performance of SwaNN with MiniONN. Clearly, MiniONN outperforms SwaNN almost 3-fold in computation time. However, in terms of communication, SwaNN is more efficient with a bandwidth usage of 160 MB (compared to 657 MB in MiniONN).

Experiment 3. We measured the performance of SwaNN with ReLU for the network described in Table X in Appendix in the full version [START_REF] Tillem | SwaNN: Switching among cryptographic tools for privacypreserving neural network predictions[END_REF]. In Table 7, we compare the performance of SwaNN with MiniONN and Gazelle. Clearly, SwaNN outperforms MiniONN in computation time and bandwidth usage. Nevertheless, Gazelle seems perform better than SwaNN. It is worth to note that these results are taken for the reference paper [START_REF] Juvekar | GAZELLE: A low latency framework for secure neural network inference[END_REF] and were hard to reproduce in our environment. Furthermore, in SwaNN, compared to Gazelle, we make use of simple mechanisms such as Boolean sharings for ReLU and Max Pool instead of Garbled Circuits.

CONCLUSION

We have proposed a privacy-preserving neural network prediction protocol that combines the additively homomorphic Paillier encryption scheme with 2PC. Thanks to the use of Paillier for linear operations and x 2 , the solution achieves better computational cost compared to existing HE-based solutions. Different computation optimizations based on the use of data packing and multi-exponentiation have been implemented. Furthermore, the communication cost is also minimized since 2PC is only used for non-linear operations (max pooling and/or RELU). SwaNN can be executed in the two-server setting, in case the client lacks resources. Experimental results show that SwaNN actually achieves the best of both worlds, namely, better computational overhead compared to HE-based solutions and, better communication overhead compared to 2PC-based solutions.

Figure 1

 1 Figure 1 illustrates our first scenario. The client encrypts an image with his public key and sends it to the server. Depending on the NN operation the client may be involved in the computations or not.

Figure 2 :

 2 Figure 2: Two-Server scenario in SwaNN.

Table 1 :

 1 Computation time per layer in both scenarios (in ms). * shows the simultaneous run time of SwaNN for two images.

			Non-optimized -PHE only		Optimized -PHE only			Optimized -Hybrid	
	Layer Client Server Server-1 Server-2 Client Server Server-1 Server-2 Client Server Server-1 Server-2
	Conv	-	1831	1883	1883	-	892	917	911	-	917	919	900
	Act	12651 15805	33442	33319	2487 19253	23973	23941	2292	566	2947	2984
	Pool	-	35	34	34	-	34	34	33	-	33	33	34
	Conv	-	2799	2911	2948	-	1329	1347	1344	-	1386	1378	1364
	Pool	-	37	37	37	-	38	38	37	-	37	37	39
	FC	-	6420	6579	6536	-	3809	3802	3818	-	3989	3973	3977
	Act	1504	1879	3993	4009	314	2231	2795	2797	273	266	607	573
	FC	-	10	10	10	-	11	11	10	-	11	11	11
	Total	42972	48892*	30399	32902*	9841	9904*	

Table 2 :

 2 Computation time for the activation layer for the hybrid setting (in ms).

	Operation Client	Server Server-1 Server-2
	Packing	-	409	413	406
	Decryption 72	-	147	146
	Unpacking 0.1	-	0.1	0.1
	ABY	11	14	28	28
	Encryption 2220	158	2373	2685
	Total	2884		3265*

Table 3 :

 3 Bandwidth usage for the two settings in SwaNN (in MB).

		Client-Server	Two-Server
	PHE only (w/o opt.)	0.97	0.96
	PHE only (w/ opt.)	0.51	0.51
	Hybrid (w/ opt.)	1.69	1.69

Table 4 :

 4 Comparison with the state-of-the-art in exp. 1. We measured the performance of SwaNN with the ReLU activation function for the network described in Table IX in the appendix of the full version

		Computation	Bandwidth
		time (s)	usage (MB)
	CryptoNets	297.5	372.2
	MiniONN	1.28	47.6
	SwaNN	9.9	1.69
	Experiment 2.		

 Table 5 details the computation time for each layer.

Table 5 :

 5 Computation time per layer in the two scenarios (in ms).

	Layer	Client Server	Server-1 Server-2
	Conv	-	10192	10196	10195
	Act+Pool 6852	2593	11968	10613
	Conv	-	1148	1150	1153
	Act+Pool 778	467	1448	1411
	FC	-	1325	1332	1360
	Act	274	508	801	866
	FC	-	5	5	6
	Total		24242	26099

Table 6 :

 6 Comparison with the state-of-the-art in exp. 2.

		Computation	Bandwidth
		time (s)	usage (MB)
	MiniONN	9.32	657.5
	SwaNN	26.00	160.9

Table 7 :

 7 Comparison with the state-of-the-art in exp. 3.

		Computation	Bandwidth
		time (s)	usage (MB)
	MiniONN	544	9272
	Gazelle	12.9	1236
	SwaNN	394.1	1939

For more detail on CNNs' architecture, we refer the reader to the full version of this paper[Tillem et al.,

2020]

ACKNOWLEDGEMENTS

This work was partly supported by the PAPAYA project funded by the European Union's Horizon 2020 Research and Innovation Programme, under Grant Agreement no. 786767.