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Kévin Elie-Dit-Cosaque, Véronique Maume-Deschamps
Institut Camille Jordan
Lyon

November 19, 2023

Associate editor and reviewers
Computational Statistics

Dear Editor and Reviewers,

We would like to thank you for your very helpful comments and reports. Please find below our answers
to the points raised by the reviewers.

Reviewer 1

• It seems that the random forest estimator can be replaced by any non-parametric estimator.
Thus, it is better to describe why the random forest algorithm is employed in this paper.
Random forest is known to be an efficient and robust non parametric estimation method. Also,
its use in GSA develops (see e.g. [Antoniadis et al., 2021]) and this is why we focus on it but
other non parametric regression methods could be used. We have added this sentence in the
introduction.

• On page 3 (line 54), we can find the setting of this paper, such as Y = f(X). However, in
the statistical problems, this assumption is quite unnatural, and the proposed estimators can
be applied even for the model Y = f(X) + ε. Although the authors describe some reasons on
page 9 (lines 23-25), this reason is just for the convenience of numerical experiments and not
essential for the estimation procedure. In addition, the theoretical true values can be numerically
calculated by the Monte Carlo method. Thus, it is better to consider the more realistic model
Y = f(X) + ε at least in Sections 2-4.
The setting Y = f(X) is the general Global Sensitivity Analysis framework, see e.g. [Da Veiga et al., 2021].
But this is true that we could also consider noisy models: Y = f(X) + ε with ε a centered noise,
independent of X, which is closer to statistical frameworks. We have added this sentence at the
beginning of Section 2. Also, we have added one simulation with a noisy model (see Table 2 in
Section 6).

• Related to the above comments, all current numerical experiments are performed under the
setting Y = f(X). However, it is important to know whether we can get similar results even
under the more realistic model Y = f(X) + ε. I understand that redoing numerical experiments
with different settings requires a significant amount of effort. Thus, it would be nice if the
authors provided a few additional experiments with the model Y = f(X) + ε to show that the
current experiments are enough to understand the behaviors of all estimators. Especially, I’m
curious about the results in Table 1 under the model Y = f(X) + ε.
We did one simulation for the model Y = X1 −X2 + ε with the Xi’s following an exponential
distribution with parameter 1 and ε following a centered normal distribution with standard
deviation 0.5. We have computed the theoretical QOSA indices with a Monte Carlo method on
a large sample (size 107). We have estimated the QOSA indices with Q1,o and Q2,o which have
the best compromise time cost vs accuracy, and the kernel estimator S̃. The order of magnitude
of the RMSE are the same for the noisy and un-noisy model, this can be seen in Table 2, Section
6.

• If possible, it is better to provide some insights into the results of numerical experiments. For
example, in Figure 5, it seems that the Sα1 with Q2,b

1 , is depending on α. It would be nice if the
authors provided insights into this kind of unexpected behavior.`
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This is indeed an unexpected behavior, we do not have a real explanation, so that we did not
add comments on that point.

Reviewer 2

• The abstract should provide a more detailed overview of the paper’s content. It should high-
light the introduction of quantile-based estimators, minimum-based estimators, and the use of
the original dataset and bootstrap samples. Additionally, the abstract should incorporate key
simulation results and conclusions to better represent the paper’s contributions.
We have added these precisions in the abstract.

• Please ensure proper indentation at the beginning of paragraphs following line breaks, such as
line 25 on page 2.
We are not sure to understand properly the rules on this indentation. We feel that this point
would be treated with the editorial team, if the paper is accepted.

• On page 4, lines 45-46: Clarify whether Θi, (i = 1, 2) used in Θ = (Θ1,Θ2) and (Θ`), ` = 1, ..., k
defined in the previous sentence refer to the same variables or different ones. The use of these
symbols may lead to confusion.
We changed to Θ = (Θ1,Θ2).

• On page 8, lines 18-20: It appears that ... appears to be a scalar. Additionally, please correct
the index l in the outer summation to ` for consistency.
Done.

• On page 9, lines 19-20: Provide an explicit explanation of what E(1) refers to. While on page
18, it is mentioned that E(λi) is an exponential distribution, it should be clarified when first
introduced in the paper.
This has been clarified on page 9.

• In the second line of Algorithm 1: It is unclear what N? represents. Please provide a clear
definition or explanation to avoid confusion.
N? has been replaced by N \ {0}.

• In Figure 5 on page 16: It is observed that Q1,o
i and Q2,o

i exhibit better accuracy in estimation

compared to Q1,b
i and Q2,b

i . It would be valuable to discuss the reasons behind this difference.
Explore why results based on the original sample outperform those based on the bootstrap
method in this particular case.
It seems that the Q-estimators have more bias when the bootstrap sample is reused in the
estimation (instead of the original sample). This could be an over-fitting effect which is also
observed with less amplitude for the bootstrap R-estimator. We added this sentence in Section
6.

We hope our modifications properly address the issues raised in the reports. We are looking forward
to hearing from you.

All the best,

Kévin Elie-Dit-Cosaque, Véronique
Maume-Deschamps
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Abstract

We propose a random forest based estimation procedure for Quantile-Oriented Sensitivity
Analysis - QOSA. In order to be efficient, a cross-validation step on the leaf size of trees is
required. Our full estimation procedure is tested on both simulated data and a real dataset.
Our estimators use either the bootstrap samples or the original sample in the estimation.
Also, they are either based on a quantile plug-in procedure (the R-estimators) or on a direct
minimization (the Q-estimators). This leads to 8 different estimators which are compared
on simulations. From these simulations, it seems that the estimation method based on a
direct minimization is better than the one plugging the quantile. This is a significant result
because the method with direct minimization requires only one sample and could therefore
be preferred.

Keywords: Quantile-oriented sensitivity analysis, Random forest, Cross validation, Out-of-
bag samples.

1 Introduction
Numerical models are ubiquitous in various fields, such as aerospace, economy, environment
or insurance, and allow to approximate the behavior of physical phenomenon. Their main
advantage is that they replace expensive, or even unachievable, real-life experiments and thus
provide knowledge about the natural system. The extremely faithful representation of reality,
favored by easier use of large datasets nowadays thanks to the increase in computing power,
also explains this widespread use. However, this accuracy is often synonymous of complexity,
ultimately leading to a difficult interpretation of models. Besides, model inputs are usually
uncertain due to a lack of information or the random nature of factors, which means that the
resulting output can be regarded as random. It is then important to assess the impact of this
uncertainty on the model output. Global Sensitivity Analysis (GSA) methods solve these issues
by studying how the uncertainty in the output of a model can be apportioned to different sources
of uncertainty in the model inputs (Saltelli et al., 2004). Hence, GSA allows to investigate
input-ouput relationships by identifying the inputs that strongly influence or not the model
response.

∗edckev@gmail.com
†veronique.maume@univ-lyon1.fr
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Variance-based approaches are well-established and widely used for GSA. Among them, the
sensitivity indices developed by Sobol (1993) are very popular. This last method stands on the
assumption that the inputs are independent. Under this hypothesis, the overall variance of a
scalar output can be split down into different partial variances using the so-called Hoeffding
(1948) decomposition. Then, the first-order Sobol’ index quantifies the individual contribution
of an input to the output variance while the total Sobol’ index (Jansen et al., 1994; Homma
and Saltelli, 1996) measures the marginal and interaction effects. However, even if they are
extremely popular and informative measures, variance-based approaches suffer from some lim-
itation. Indeed, by definition, they only study the impact of the inputs on the expectation of
the output as they compare the conditional expectations with the unconditional expectation of
the output distribution, by using the variance as a distance measure.

A new class of sensitivity indices, generalizing the first-order Sobol’ index to other quantities
of interest than the expectation, has been introduced in Fort et al. (2016). These indices called
Goal-Oriented Sensitivity Analysis (GOSA) compare the minimum of a specific contrast function
to its conditional counterpart when one of the inputs is fixed. The unconditional minimum is
reached by the quantity of interest (for instance a quantile).

In this paper, we focus on Quantile-Oriented Sensitivity Analysis (QOSA) measuring the
impact of the inputs on the α-quantile of the output distribution. Browne et al. (2017); Maume-
Deschamps and Niang (2018) introduced a statistical estimator of the first-order QOSA index
based on a kernel approach. Kala (2019) defined the second and higher order QOSA indices as
well as a variance-like decomposition for quantiles in the case of independent inputs. Elie-Dit-
Cosaque and Maume-Deschamps (2022a) thoroughly studied theoretical properties of QOSA
indices and illustrated some of their limitations on various toy models in independent and
dependent contexts. That led them to define new generic indices based on the Shapley values
named Goal-Oriented Shapley effects (GOSE), in particular, Quantile-Oriented Shapley effects
(QOSE) when considering the quantile of the output as feature of interest.
Despite these recents works, the question of the effective estimation of the first-order QOSA index
remains open. Indeed, it turns out to be difficult to compute in practice because it requires an
accurate estimate of either the conditional quantile of the output given an input, or the minimum
of a conditional expectation of the output given an input. Kala (2019) handles this feature with
a brute force Monte-Carlo approach. As a matter of fact, for each value of an input variable,
realizations of the other inputs are generated conditionally to this fixed value. Therefore, this
leads to a computational cost that is too heavy to consider its use in an industrial context
when dealing with costly models. Besides, when dealing with dependent inputs, this approach
requires the knowledge of the dependency structure of inputs in order to sample the conditional
distributions, which is not always the case. Browne et al. (2017); Maume-Deschamps and Niang
(2018) developed kernel-based estimators to avoid this double-loop issue. But, when using a
small dataset, their performance is highly dependent of the bandwidth parameter. Browne
et al. (2017) proposed a cumbersome algorithm for setting an efficient bandwidth that is not
straighforward to implement in practice. As for the estimator of Maume-Deschamps and Niang
(2018), a large dataset is needed in order to have a low estimation error, as no algorithm of
bandwidth parameter selection is established.

To overcome these issues, we explore the random forest algorithm introduced by Breiman
(2001) in order to estimate the conditional distribution of the output given an input. Random
forest is known to be an efficient and robust non parametric estimation method. Also, its use
in GSA develops (see e.g. Antoniadis et al. (2021)) and this is why we focus on it but other non
parametric regression methods could be used. The main contribution of this paper is to provide
different estimation strategies of the first-order QOSA index based on this method. Some of the
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estimators developed provide a better estimation of QOSA indices than the aforementioned ones
while requiring less data. The random forest methodology uses bootstrap samples in order to
construct several trees. Our estimators use either the bootstrap samples or the original sample
in the estimation. Also, they are either based on a quantile plug-in procedure (the R-estimators)
or on a direct minimization (the Q-estimators). This leads to 8 different estimators which are
compared on simulations. The R-estimators need 2 independent samples while the Q ones
require only one sample. The performance of the Q-estimators appears slightly better on our
simulations. Also the Q-estimators require only one sample, so that we would advise to use
them rather than the R ones.

The paper is organized as follows. We recall in Section 2 the definition of the first-order QOSA
index and initiate the estimation process. Section 3 presents the random forest algorithm and
several estimators of the first-order QOSA index based on this method are described in Section
4. The entire process is summarized in Section 5. Then, the performance of the estimators is
investigated in Section 6 on simulated data and the relevance of this index is highlighted on a
real dataset in Section 7. Finally, a conclusion is given in Section 8.

2 Estimation of the QOSA index
Let us consider the input-output system where X = (X1, . . . , Xd) ∈ Rd is a random vector of
d inputs and Y = f (X) is the output random variable of a measurable deterministic function
f : Rd → R which can be a mathematical function or a computational code. This is the
general GSA framework, see e.g. Da Veiga et al. (2021). We could also consider noisy models:
Y = f(X)+ε with ε a centered noise, independent of X. This noisy setting is closer to statistical
frameworks. Then, given a level α ∈ ]0, 1[, Fort et al. (2016) introduced the first-order Quantile-
Oriented Sensitivity Analysis (QOSA) index, related to the input Xi, as

Sαi =
min
θ∈R

E [ψα (Y, θ)]− E
[
min
θ∈R

E [ψα (Y, θ)|Xi]
]

min
θ∈R

E [ψα (Y, θ)] ,

with the contrast function ψα : (y, θ) 7→ (y − θ)
(
α− 1{y6θ}

)
. This function, also called pinball

loss or check function in the literature is the cornerstone of the quantile regression (Koenker and
Hallock, 2001). Quantile and conditional quantile are related to this loss function as follows

qα (Y ) = arg min
θ∈R

E [ψα (Y, θ)] and qα (Y |Xi) = arg min
θ∈R

E [ψα (Y, θ)|Xi] ,

where qα (Y ) is the α-quantile of Y and qα (Y |Xi), the α-quantile of Y given Xi. Thus, the
index Sαi can be rewritten in the following way,

Sαi = 1−
E
[
min
θ∈R

E [ψα (Y, θ)|Xi]
]

min
θ∈R

E [ψα (Y, θ)] = 1− E [ψα (Y, qα (Y |Xi))]
E [ψα (Y, qα (Y ))] = 1− O

P
,

where O refers to E
[
min
θ∈R

E [ψα (Y, θ)|Xi]
]

= E [ψα (Y, qα (Y |Xi))] and P , to min
θ∈R

E [ψα (Y, θ)] =
E [ψα (Y, qα (Y ))].

Hence, as stated in Browne et al. (2017), the index Sαi compares the mean distance between Y
and its conditional quantile to the mean distance between Y and its quantile, where the pinball
loss function ψα is the considered distance. This index has some basic properties requested for
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a reasonable sensitivity index such as 0 6 Sαi 6 1, Sαi = 0 if Y is independent of Xi and Sαi = 1
if Y is Xi measurable.

It should be mentioned that Kucherenko et al. (2019) proposed new indices Kα to assess
the impact of inputs on the α-quantile of the output distribution. They directly quantify the
mean distance between quantiles qα (Y ) and qα (Y |Xi) rather than the mean distance between
average contrast functions like in the first-order QOSA index. Different estimation strategies are
investigated in their paper (brute force Monte Carlo and double-loop reordering approach). But
a major limitation is that a large sample size is required to get an accurate computation of the
index (samples of size 218 are used in their paper). Also, as discussed in the theoretical review
of quantile-oriented indices carried out in Elie-Dit-Cosaque and Maume-Deschamps (2022a), the
practical interpretation of the Kα indices is questionable while QOSA indices give a relevant
interpretation of the impact of the inputs on the α-quantile of the output.

Let us now initiate the estimation procedure for the first-order QOSA index Sαi , associated
to a specific input Xi and a level α.
We consider an i.i.d n-sample D�n =

(
X�j , Y �j

)
j=1,...,n such that Y �j = f

(
X�j

)
, j = 1, . . . , n.

Then, a first natural estimator of the P term of the QOSA index based on the quantity
E [ψα (Y, qα (Y ))] is proposed

P̂1 = 1
n

n∑
j=1

ψα
(
Y �j , q̂α(Y )

)
, (2.1)

with q̂α(Y ), the classical empirical estimator for qα (Y ) obtained from D�n.
The P term can be alternatively estimated as follows by using the quantity min

θ∈R
E [ψα (Y, θ)],

P̂2 = min
θ∈R

1
n

n∑
j=1

ψα
(
Y �j , θ

)
,

where the minimum is reached for one of the elements of
(
Y �j

)
j=1,...,n. As the function to mini-

mize is decreasing then increasing, this estimator therefore requires to compute 1
n

n∑
j=1

ψα
(
Y �j , Y �(k)

)
,

k = 1, . . . , n, until it increases, with Y �(k) the order statistics of
(
Y �1, . . . , Y �n

)
. This process

is much more time-consuming than the first estimator where it is just needed to compute the
quantile and then plug it. Thus, the P̂1 estimator will be used in the sequel.

The O term of the QOSA index is trickier to estimate because a good approximation of the
conditional distribution of Y given Xi is required. Both existing estimators of the QOSA index
currently provided in Browne et al. (2017); Maume-Deschamps and Niang (2018) handle this
feature thanks to kernel-based methods. But in practice, with these methods, we are faced with
determining the optimal bandwidth parameter or using large sample sizes in order to have a
sufficiently low estimation error when employing a non optimal bandwidth. Thus, when dealing
with costly computational models, a precise enough estimation of these indices can be difficult
to achieve or even unfeasible.

We propose in this paper to address these issues by using the random forest method for
estimating the conditional distribution. Therefore, several statistical estimators for the O term
of the first-order QOSA index will be defined in Section 4. Let us first recall the random forest
algorithm.
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3 Random forests
Random forests are ensemble learning methods, first introduced by Breiman (2001), which can
be used in classification or regression problems. We only focus on their use for regression task and
assume to be given a training sample Dn =

(
Xj , Y j

)
j=1,...,n of i.i.d random variables distributed

as the prototype pair (X, Y ).

Breiman’s forest grows a collection of k regression trees based on the CART procedure de-
scribed in Breiman et al. (1984). Building several different trees from a single dataset requires
to randomize the tree building process. Randomness injected in each tree is denoted by Θ`

where (Θ`)`=1,...,k are independent random variables distributed as Θ (independent of Dn).
Θ =

(
Θ1,Θ2) contains indices of observations selected to build the tree and indices of splitting

candidate directions in each cell.

In more detail, the `-th tree is built using a bootstrap sample D?n (Θ`) from the original
dataset. Only these observations are used to construct the tree and to make the tree prediction.
Once the observations have been selected, the algorithm forms a recursive partitioning of the
input space. In each cell, a number max features of variables is selected uniformly at random
among all inputs. Then, the best split is chosen as the one optimizing the CART splitting
criterion only along the max features preselected directions. This process is repeated in each
cell. A stopping criterion, often implemented, is that a split point at any depth will only be
considered if it leaves at leastmin samples leaf samples in each of the left and right child nodes.
After tree partition has been completed, the prediction of the `-th tree denoted bymb

n (x; Θ`,Dn)
at a new point x is computed by averaging the N b

n (x; Θ`,Dn) observations falling into the cell
An (x; Θ`,Dn) of the new point.
Hence, the random forest prediction is the average of the k predicted values:

mb
k,n (x; Θ1, . . . ,Θk,Dn) = 1

k

k∑
`=1

mb
n (x; Θ`,Dn) = 1

k

k∑
`=1

 ∑
j∈D?n(Θ`)

1{Xj∈An(x;Θ`,Dn)}
N b
n (x; Θ`,Dn) Y j

 .

(3.1)

By defining the random variable Bj
(
Θ1
` ,Dn

)
as the number of times that the observation(

Xj , Y j
)
has been used from the original dataset for the `-th tree construction, the conditional

mean estimator in Equation (3.1) is rewritten as follows

mb
k,n (x; Θ1, . . . ,Θk,Dn) =

n∑
j=1

wbn,j (x; Θ1, . . . ,Θk,Dn)Y j , (3.2)

where the weights wbn,j (x; Θ1, . . . ,Θk,Dn) are defined by

wbn,j (x; Θ1, . . . ,Θk,Dn) = 1
k

k∑
`=1

Bj
(
Θ1
` ,Dn

)
1{Xj∈An(x;Θ`,Dn)}

N b
n (x; Θ`,Dn) . (3.3)

A variant of the Equation (3.2) provides another estimator of the conditional mean. Trees are
still grown as in the standard random forest algorithm being based on the bootstrap samples
but, for the tree prediction, the original dataset Dn is used instead of the bootstrap sample
D?n (Θ`) associated to the `-th tree and we get

mo
k,n (x; Θ1, . . . ,Θk,Dn) =

n∑
j=1

won,j (x; Θ1, . . . ,Θk,Dn)Y j , (3.4)
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where the weights won,j (x; Θ1, . . . ,Θk,Dn) are defined by

won,j (x; Θ1, . . . ,Θk,Dn) = 1
k

k∑
`=1

1{Xj∈An(x;Θ`,Dn)}
No
n (x; Θ`,Dn) . (3.5)

It has to be noted that contrary to Equation (3.3) where N b
n (x; Θ`,Dn) refers to the number of

elements of D?n (Θ`) falling into An (x; Θ`,Dn), in Equation (3.5), No
n (x; Θ`,Dn) is the number

of elements of the original dataset Dn that fall into An (x; Θ`,Dn).

Thus, both weighted approaches using, either the bootstrap samples (Equation (3.2)) or the
original dataset (Equation (3.4)), allow to see the random forest method as a local averaging
estimate (Lin and Jeon, 2006; Scornet, 2016) and will be at the heart of the strategies proposed
for estimating theO term of the first-order QOSA index. In the following, to lighten the notation,
the dependence to Θ and Dn in the weights will be omitted.

4 Estimation of the O term of the QOSA index
By using the random forest method aforementioned, five estimators of the O term may be de-
fined. The first two rely on the expression E [ψα (Y, qα (Y |Xi))] and the others on E

[
min
θ∈R

E [ψα (Y, θ)|Xi]
]
.

Since our aim is to estimate conditional expressions with respect to one input variable, say Xi,
we shall consider forests driven by Xi, i.e. the random forest is built with the observations
Din =

(
Xj
i , Y

j
)
j=1,...,n

from Dn, which means that Y is explained with Xi only. When needed,

we shall denote by D?in a bootstrap sample from Din and D�in = (X�ji , Y �j)j=1,...,n an independent
copy of Din.

4.1 Quantile-based O term estimators
In this section, the estimations of the O term of the QOSA index are based on the quantity
E [ψα (Y, qα (Y |Xi))]. Using two training samples Din and D�in , we define

R̂i = 1
n

n∑
j=1

ψα
(
Y �j , q̂α

(
Y |Xi = X�ji

))
,

where the sample Din is used to get q̂α (Y |Xi = xi), an estimator of the conditional quantile
qα (Y |Xi = xi). It is obtained thanks to two approaches based on the random forests, described
in the sequel.

4.1.1 Quantile estimation with a weighted approach

We consider the estimator of the Conditional Cumulative Distribution Function (C_CDF), using
Din to construct the forest, introduced in Meinshausen (2006) and whose the consistency has
been showed in Elie-Dit-Cosaque and Maume-Deschamps (2022b). The C_CDF estimator used
to estimate the conditional quantile is

F ok,n (y|Xi = xi) =
n∑
j=1

won,j (xi)1{Y j6y} ,

where the won,j (xi)’s are defined in Equation (3.5).
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Hence, given a level α ∈ [0, 1], the conditional quantile estimator q̂α (Y |Xi = xi) is defined
by plugging F ok,n (y|Xi = xi) instead of F (y|Xi = xi) as follows

q̂α (Y |Xi = xi) = inf
p=1,...,n

{
Y p : F ok,n (Y p|Xi = xi) > α

}
.

As a result, the estimator of E [ψα (Y, qα (Y |Xi))] based on this method is denoted R̂1,o
i .

4.1.2 Quantile estimation within a leaf

Let us consider a set of k trees indexed by ` = 1, . . . , k constructed with the sample Din.
Once the forest is built with the bootstrap samples of Din, the estimator q̂o,α` (Y |Xi = xi) of
qα (Y |Xi = xi) for the `-th tree is obtained with the original observations from Din falling into
An(xi; Θ`,Din) as follows

q̂o,α` (Y |Xi = xi) = inf
p=1,...,n

{Y p, (Xp
i , Y

p) ∈ Din and Xp
i ∈ An(xi; Θ`,Din) :

n∑
j=1

1{Xj
i ∈An(xi;Θ`,Din)} · 1{Y j6Y p}

No
n(xi; Θ`,Din) > α

 .

The values from the k randomized trees are then aggregated to obtain the following random
forest estimate

q̂o,α (Y |Xi = xi) = 1
k

k∑
`=1

q̂o,α` (Y |Xi = xi) .

Thus, this method allows us to propose the following estimator R̂2,o
i of E [ψα (Y, qα (Y |Xi))]

using the original sample.

4.2 Minimum-based O term estimators
The estimators developped in Subsection 4.1, based on E [ψα (Y, qα (Y |Xi))], require to first
approximate the conditional quantile and then plug it to estimate the O term. As mentioned
before, a run of the model f could be time-consuming. Therefore, they may be inappropriate as
two training samples are necessary. Hence, we propose in this part to develop estimators of the
O term taking advantage from the expression E

[
min
θ∈R

E [ψα (Y, θ)|Xi]
]
for which we only need

to find the minimum instead of plugging the quantile.

4.2.1 Minimum estimation with a weighted approach

First of all, a random forest is built with the observations Din. Then, by considering an additional
sample

(
X�j

)
j=1,...,n independent of Dn, the O term may be estimated as follows

Q̂1,o
i = 1

n

n∑
m=1

min
p=1,...,n

n∑
j=1

won,j (X�mi )ψα
(
Y j , Y p

)
.

Let us notice that the conditional expectation E [ψα (Y, θ)|Xi = xi] is estimated with
n∑
j=1

won,j (xi)ψα
(
Y j , θ

)
whose minimum is reached for θ equals one of the elements of

(
Y j
)
j=1,...,n.
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4.2.2 Minimum estimation within a leaf

In this subsection, we are going to take advantage of the tree structure in order to propose a
new estimator. To begin with, let us consider that a random forest is built with the observations
Din.

Then, the key point is that an additional sample is no longer required in order to process
the outer expectation of the O term. Indeed, for the `-th tree, the observations falling into its
m-th leaf node denoted by An

(
m; Θ`,Din

)
approximate the conditional distribution of Y given

a certain point Xi = xi, which allows to estimate the minimum of the conditional expectation
min
θ∈R

E [ψα (Y, θ)|Xi = xi]. Then, we make the average over all the leaves of the `-th tree to deal
with the outer expectation. Hence, let No

n(m; Θ`,Din) be the number of observations of the
original sample Din falling into the m-th leaf node and N `

leaves be the number of leaves in the
`-th tree. We define the following tree estimator for the O term

1
N `
leaves

N`
leaves∑
m=1

(
min

{
p = 1, . . . , n, (Xp

i , Y
p) ∈ Din and Xp

i ∈ An
(
m; Θ`,Din

)}
n∑
j=1

ψα
(
Y j , Y p

)
· 1{(Xj

i ,Y
j)∈Din, Xj

i ∈An(m;Θ`,Din)}
No
n(m; Θ`,Din)

 .

The approximations of the k randomized trees are then averaged to obtain the following random
forest estimate

Q̂2,o
i = 1

k

k∑
`=1

 1
N `
leaves

N`
leaves∑
m=1

(
min

{
p = 1, . . . , n, (Xp

i , Y
p) ∈ Din and Xp

i ∈ An
(
m; Θ`,Din

)}
n∑
j=1

ψα
(
Y j , Y p

)
· 1{(Xj

i ,Y
j)∈Din, Xj

i ∈An(m;Θ`,Din)}
No
n(m; Θ`,Din)

 .

It should be noted that looking for the minimum in the leaves directly implies that they are
sufficiently sampled for the method to be valid.

4.2.3 Minimum estimation with a weighted approach and complete trees

In Subsections 4.2.1 and 4.2.2, the conditional distribution of Y given Xi is obtained from trees
grown with Din. Instead of using this approach, it is proposed in this part to build a forest with
complete trees, i.e. grown with all the model’s inputs and then adjust the weights to recover
the conditional expectation E [ψα (Y, θ)|Xi].

Thus, as noticed, a full random forest is constructed with the whole dataset Dn. Then,
by using an additional sample

(
X�j

)
j=1,...,n independent of Dn, the conditional expectation

E [ψα (Y, θ)|Xi = xi] is estimated as follows

E [ψα (Y, θ)|Xi = xi] = E [E [ψα (Y, θ)|X1, . . . , xi, . . . , Xd]|Xi = xi]

≈ 1
n

n∑
`=1

 n∑
j=1

won,j

(
X�`1 , . . . , X

�`
i−1, xi, X

�`
i+1, . . . , X

�`
d

)
ψα
(
Y j , θ

)
≈

n∑
j=1

wo,in,j (xi)ψα
(
Y j , θ

)
,
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where the suitable weights wb,in,j (xi) are defined by

wo,in,j (xi) = 1
n

n∑
`=1

won,j

(
X�`−i, xi

)
. (4.1)

The notation X−i indicates the set of all variables except Xi and we note that the conditional
expectation given Xi = xi is recovered by averaging over the components X−i. Thus, having
independent inputs is required for this estimator compared to the previous ones and very conve-
nient. Otherwise, it would be necessary to know the dependency structure in order to generate
the observations

(
X�l−i

)
l=1,...,n

for each new point Xi = xi, which would make this estimator
very cumbersome.

In addition to being used to recover the conditional expectation given Xi = xi, the sample(
X�j

)
j=1,...,n is also used to estimate the outer expectation and we finally obtain the following

estimator for the O term

Q̂3,o
i = 1

n

n∑
m=1

min
p=1,...,n

n∑
j=1

wo,in,j (X�mi )ψα
(
Y j , Y p

)
.

For the sake of clarity, only the version of the estimators making use of the original dataset
has been presented within this section. Their analogous version based on the bootstrap samples
is postponed in Appendix A.1, which leads to ten estimators of the O term. Nonetheless,
numerical performances of both versions will be assessed in the following. Estimators based on
bootstrap samples will be denoted in the same way as those using original dataset except the
superscript o will be replaced by b, for instance, Q̂3,b

i instead of Q̂3,o
i .

5 Overall estimation procedure
After defining the respective estimators for each term of the first-order QOSA index in Sections
2 and 4, the overall estimators are set in the following. In order to improve their accuracy,
different strategies are also presented to tune hyperparameters of the random forest.

5.1 Issues with the leaf size
When using a random forest method for a regression task, a prediction is generally obtained by
using the default values, proposed in the packages, for themax features andmin samples leaf
hyperparameters. There are some empirical studies on the impact of these hyperparameters
such as Díaz-Uriarte and De Andres (2006); Scornet (2017); Duroux and Scornet (2018) but no
theoretical guarantee to support the default values.

Concerning the estimation methods of the O term of the QOSA index proposed in Section
4, except for Q̂3,b

i and Q̂3,o
i , it turns out that the values of the hyperparameters must be chosen

carefully.
First of all, as a forest explaining Y by Xi is built for each model’s input, the max features hy-
perparameter has no impact in our procedures because it equals 1. Regarding themin samples leaf
hyperparameter, its impact on the quality of the estimators is investigated through the following
toy example

Y = X1 −X2 , (5.1)

with X1, X2 ∼ E(1), where E(λ), λ > 0 stands for the exponential distribution with parameter λ.
This standard example is commonly used in Sensitivity Analysis literature to assess the quality
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of QOSA index estimators such as in Fort et al. (2016); Browne et al. (2017); Maume-Deschamps
and Niang (2018). It should be noted that the estimation procedures presented in this article are
valid for a model with error (i.e. such that Y = f(X) + ε). However, the theoretical values are
not explicitly calculable for such a model. Therefore, the performance of the various estimators
is assessed on a model of the form Y = f(X). Nevertheless, one simulation is performed for the
noisy model Y = X1 −X2 + ε. In this case, the theoretical QOSA indices are computed with a
Monte-Carlo method on a large sample (size 107), see Table 2 in Section 6.

In order to illustrate the influence of the hyperparameter min samples leaf , the boxplot
of R̂1,o

1 made with 100 values for different leaf sizes is presented in Figure 1. For each value
of min samples leaf , an estimation R̂1,o

1 is computed using two samples of size n = 104 and
a forest grown with ntrees = 500. Then, the boxplots are compared with the analytical value
given below and represented with the dotted orange line on each graph in Figure 1:

E [ψα (Y, qα (Y |X1))] = −α log (α) .

0.23

0.24

0.25

0.26

0.27

0.36

0.37

0.38

0.39

5 8 15 27 47 83 147 258 455 800
Value of the min_samples_leaf parameter

0.25

0.26

0.27

0.28

0.29

5 8 15 27 47 83 147 258 455 800
Value of the min_samples_leaf parameter

0.10

0.11

0.12

0.13

= 0.10 = 0.30

= 0.70 = 0.90

Figure 1: For several levels α: distribution of R̂1,o
1 , the estimation of the O term associated to

the variable X1 for different leaf sizes. The dotted orange line represents the true value on each
plot.

Based on the results obtained in Figure 1, we see that for each level α, the performance
of R̂1,o

1 depends highly on the choice of the min samples leaf hyperparameter. Indeed, with
the grid proposed for the values of min samples leaf , the optimum value seems to be 258 for
α = 0.1, 83 for α = 0.3, 47 for α = 0.7 and 27 for α = 0.9.
This issue about the leaf size is only highlighted for R̂1,o

i but is also encountered for both
methods, stated in Subsection 4.1, computing the conditional quantile with either the bootstrap
samples or the original sample.

By using the same setting as in Figure 1, the distribution of Q̂1,o
1 is presented in Figure 2

in order to assess the impact of the min samples leaf hyperparameter for a method where the
minimum is estimated instead of plugging the quantile. The quality of Q̂1,o

1 also seems to depend
on the leaf size and the optimum value, allowing to well estimate E

[
min
θ∈R

E [ψα (Y, θ)|X1]
]
for

each level α, is the same as in Figure 1.
As before, this concern about the leaf size was only emphasized for Q̂1,o

i but is also encountered
for both methods, detailed in Subsections 4.2.1 and 4.2.2, approximating the minimum with
either the bootstrap samples or the original sample.
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0.16

0.18

0.20

0.22

0.24

0.30

0.32

0.34

0.36

0.38

5 8 15 27 47 83 147 258 455 800
Value of the min_samples_leaf parameter

0.22

0.24

0.26

0.28

5 8 15 27 47 83 147 258 455 800
Value of the min_samples_leaf parameter

0.09

0.10

0.11

0.12

0.13

= 0.10 = 0.30

= 0.70 = 0.90

Figure 2: For several levels α: distribution of Q̂1,o
1 , the estimation of the O term associated to

the variable X1 for different leaf sizes. The dotted orange line represents the true value on each
plot.

For the methods Q̂3,b
i and Q̂3,o

i , based on complete trees, it seems that the tuning of the leaf
size is less important as observed in Figure 3. Indeed, whatever the α level, the best results are
observed for almost fully developed trees.

0.225

0.230

0.235

0.240

0.245

0.250

0.255

0.36

0.37

0.38

0.39

2 3 6 10 18 32 56 98 171 300
Value of the min_samples_leaf parameter

0.25

0.26

0.27

0.28

0.29

2 3 6 10 18 32 56 98 171 300
Value of the min_samples_leaf parameter

0.095

0.100

0.105

0.110

0.115

0.120

0.125

= 0.10 = 0.30

= 0.70 = 0.90

Figure 3: For several levels α: distribution of Q̂3,o
1 , the estimation of the O term associated to

the variable X1 for different leaf sizes. The dotted orange line represents the true value on each
plot.

Thus, for all other estimators of the O term proposed in Section 4, a method giving us the
optimal value of the leaf size for each level α is required to properly estimate the first-order
QOSA index.

5.2 Tuning the leaf size
In order to tune the leaf size of our estimators, two methods are presented in this part. They
lead to significatively improve the efficiency of the estimation. The first one rests on a classical
cross-validation procedure and the second one uses the Out-Of-Bag samples.
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5.2.1 Cross-validation procedure

The estimators of the O term developed in Subsection 4.1 are part of the conditional quantile
estimation problem. Indeed, in a regression scheme, the conditional mean minimizes the ex-
pected squared error loss, while the conditional quantile qα (Y |Xi = xi) minimizes the following
expected loss

qα (Y |Xi) = arg min
h:R→R

E [ψα (Y, h (Xi))] .

Thus, estimators of E [ψα (Y, qα (Y |Xi))] established in Subsection 4.1 allow to assess the quality
of the approximation of the true conditional quantile function. The smaller they are, the better
the estimate of the conditional quantile function is. That is verified in Figure 1 and explains
why we have this convex shape depending on the leaf size. As a matter of fact, when the value
of the min samples leaf hyperparameter is incorrectly chosen, the approximation of the true
conditional quantile function is wrong and so, this of E [ψα (Y, qα (Y |Xi))] too.

Hence, in order to estimate well the conditional quantile function qα (Y |Xi) and therefore,
E [ψα (Y, qα (Y |Xi))] (which is our goal), the optimum value of the leaf size will be chosen
within a predefined grid containing potential values as being the one minimizing the empirical
generalization error computed with a K-fold cross-validation procedure. A detailed description
of this process is given in Algorithm 1 with R̂1,o

i for instance. The principle is the same for all
estimators defined in Subsection 4.1.

It has to be noted that the number of folds K should be chosen carefully. Indeed, a lower
value of K results in a more biased estimation of the generalization error, and hence undesirable.
In contrast, a larger value of K is less biased, but can suffer from large variability. The choice
of K is usually 5 or 10, but there is no formal rule.

Regarding the minimum-based estimators, using a similar approach with a K-fold cross-
validation procedure is unsuitable due to the behavior of these ones depending on the leaf size
(cf. Figure 2). Consequently, we propose to get the optimal value with one of the estimators
plugging the quantile, in conjunction with the cross-validation process detailed in Algorithm 1.
Once done, the estimator based on the minimum is computed with the optimal value obtained.

5.2.2 Out-Of-Bag quantile error

The estimators detailed in Subsection 4.1 deserve special attention. Indeed, another less cum-
bersome approach than cross-validation can be used to tune the leaf size. It is based on an
adaptation to our context of the widespread “Out-Of-Bag” (OOB) error (Breiman, 1996) in
regression and classification to estimate the generalization error.

• We first adapt the calculation of the OOB error for the conditional quantiles estimated
with local averaging estimate of the C_CDF proposed in Subsection 4.1.1. For this purpose, we
start by defining the OOB quantile error for R̂1,o

i .
Let us fix an observation (Xm

i , Y
m) from Din and consider Im as the set of trees built with

the bootstrap samples not containing this observation, i.e. for which this one is “Out-Of-
Bag”. The conditional quantile given that Xi = Xm

i is estimated through F ok,n (y|Xi = xi) =
n∑
j=1
j 6=m

won,j (xi)1{Y j6y} where the weights are tailored to our context as follows

won,j

(
xi; Θ1, . . . ,Θ|Im|,Din

)
= 1
|Im|

∑
`∈Im

1{Xj
i ∈An(xi;Θ`,Din)}

No
n (xi; Θ`,Din)− 1 , j = 1, . . . , n, j 6= m .
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Algorithm 1: K-fold cross-validation procedure explained with R̂1,o
i

Input:
• Datasets: D�in =

(
X�ji , Y

�j
)
j=1,...,n

from D�n and Din =
(
Xj
i , Y

j
)
j=1,...,n

from Dn
• Number of trees: k ∈ N \ {0}
• The order where estimating E [ψα (Y, qα (Y |Xi))] : α ∈ ]0, 1[
• Grid where looking for the best parameter: grid min samples leaf
• Number of folds: K ∈ {2, . . . , n}

Output: Estimated value of E [ψα (Y, qα (Y |Xi))] at the α-level with R̂1,o
i

1 begin Cross-validation procedure
2 Randomly split the dataset Din into K folds.
3 foreach ` ∈ grid min samples leaf do
4 foreach fold do
5 Take the current fold as a test set.
6 Take the remaining groups as a training set.
7 Fit a random forest model on the training set with the current ` as

min samples leaf hyperparameter.
8 Evaluate the conditional quantiles at the observations Xi in the test dataset

and then compute R̂1,o
i on the test set.

9 Retain the estimation obtained.
10 end
11 Summarize the quality related to the current ` by averaging the K estimated

values and save the mean.
12 end
13 end
14 Select as optimal value `opt for the min samples leaf hyperparameter, this one with

the smallest mean.
15 Fit a random forest model on the complete dataset Din by fixing the min samples leaf

hyperparameter to `opt.
16 Compute R̂1,o

i with D�in .

Then, qα (Y |Xi = Xm
i ) is estimated by plugging F ok,n (y|Xi = Xm

i ) instead of F (y|Xi = Xm
i )

q̂o,αoob (Y |Xi = Xm
i ) = inf

p=1,...,n
p6=m

{
Y p : F ok,n (Y p|Xi = Xm

i ) > α
}
.

After this operation is carried out for all data in Din, we calculate the error related to the
approximation of the true conditional quantile function, i.e. the empirical generalization error

ÔOB
o

i = 1
n

n∑
m=1

ψα
(
Y m, q̂o,αoob (Y |Xi = Xm

i )
)
.

We may use the bootstrap samples (rather than the original one) in the definition of the weights:

wbn,j

(
xi; Θ1, . . . ,Θ|Im|,Din

)
= 1
|Im|

∑
`∈Im

Bj
(
Θ1
` ,Din

)
1{Xj

i ∈An(xi;Θ`,Din)}
N b
n (xi; Θ`,Din) , j = 1, . . . , n .
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This leads to define F bk,n as follows

F bk,n (y|Xi = xi) =
n∑
j=1

wbn,j (xi)1{Y j6y} .

The estimations of the conditional quantile q̂b,αoob and of the OOB quantile error ÔOB
b

i follow.

• Secondly, we adapt the calculation of the OOB error for conditional quantiles estimated
directly in tree leaves as introduced in Subsection 4.1.2. In that sense, define OOB quantile
error for R̂2,o

i .
Let us fix an observation (Xm

i , Y
m) from Din and consider the set of trees built with the bootstrap

samples not containing this observation. We then aggregate only the predictions of these trees
to make our prediction q̂o,αoob (Y |Xi = Xm

i ) of qα (Y |Xi = Xm
i ). After this operation carried out

for all the data in Din, we calculate the error related to the approximation of the true conditional
quantile function, i.e. the empirical generalization error

ÔOB
o

i = 1
n

n∑
m=1

ψα
(
Y m, q̂o,αoob (Y |Xi = Xm

i )
)
.

Again, using the bootstrap samples instead of the original one lead to define ÔOB
b

i .

The advantage of these methods, compared to cross-validation techniques, is that they do
not require cutting out the training sample Din and take place during the forest construction
process.

Thus, given the dataset Din and a grid containing potential values of the min samples leaf
hyperparameter, a random forest is built for each one and the OOB quantile error associated
is computed. Then, the optimal hyperparameter is chosen as the one with the smallest OOB
error.

5.3 Full estimation procedure
Now, we have all the components in order to set the estimators of the first-order QOSA index
Sαi . These are separated in two classes according to the estimation method adopted for the O
term. First of all, with the methods plugging the quantile, we define

Ŝαi = 1− R̂i

P̂1
with R̂i ∈

{
R̂1,b
i , R̂1,o

i , R̂2,b
i , R̂2,o

i

}
.

The whole procedure integrating the cross-validation process for these methods is detailed in
Algorithm 2 (see Appendix A.2).

On the other hand, regarding the methods based on the minimum to compute the O term,
we set

Ŝαi = 1− Q̂i

P̂1
with Q̂i ∈

{
Q̂1,b
i , Q̂1,o

i , Q̂2,b
i , Q̂2,o

i , Q̂3,b
i , Q̂3,o

i

}
.

The estimation process based on the minimum is formalized in Algorithms 3, 4 and 5. For the
sake of clarity, they are all gathered in Appendix A.2 . Algorithm 3 (resp. 5) estimating the
QOSA index with Q̂1,b

i or Q̂1,o
i (resp. Q̂3,b

i or Q̂3,o
i ), needs a full training sample Dn as well as a

partial one
(
X�j

)
j=1,...,n. While estimating the QOSA index with Q̂2,b

i or Q̂2,o
i only requires one

training sample Dn. This is a major advantage over methods plugging the quantile that need
two full training samples.
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So far, no consistency result has been proved for Ŝαi . These various estimators are reviewed in
the next section in order to establish their efficiency in practice. Moreover, all these algorithms
are implemented within a python package named qosa-indices available at Elie-Dit-Cosaque
(2020), it can be also freely downloaded on the PyPI website.

6 Numerical illustrations
Let us now carry out some simulations in order to investigate the influence of the hyperparameter
optimization algorithm, the impact of the number of trees on our estimators and compare the
decrease of the estimation error of each one in function of the train sample-size. From these
results, the performance of the two best estimators as well as those based on kernel methods
defined in Browne et al. (2017); Maume-Deschamps and Niang (2018) is assessed. Then, their
scalability is tested on a toy example.

6.1 Comparison of hyperparameter optimization algorithms
We start by studying the influence of the hyperparameter optimization algorithm on the per-
formance of our estimators plugging the conditional quantile (i.e. using R̂1,b

i , R̂1,o
i , R̂2,b

i or R̂2,o
i ).

This survey is carried out with the model introduced in Equation (5.1) and the following setting.

The estimators of the QOSA index are computed with samples of size n = 104 (i.e. 2n runs
of the model for estimators using two training samples). The leaf size is tuned for each estimator
over a grid with 20 numbers evenly spaced ranging from 5 to 300 by using either the strategy
based on the OOB quantile error developed in Subsection 5.2.2 or a 3-fold cross-validation
procedure. Then, to assess the efficiency of each method (CV vs OOB), the experiment is
repeated s = 100 times and the following metrics are computed

RMSEαi =

√√√√1
s

s∑
j=1

(
Ŝα,ji − Sαi

)2
,

Biasαi =

∣∣∣∣∣∣1s
s∑
j=1

Ŝα,ji − Sαi

∣∣∣∣∣∣ , (6.1)

V arianceαi = 1
s

s∑
j=1

Ŝα,ji − 1
s

s∑
j=1

Ŝα,ji

2

,

with Sαi , the analytical values that were provided in Fort et al. (2016).

In Figure 4, for three levels α, we present the evolution of the different metrics related to
the variable X1 of our toy example in function of the number of trees ranging from 1 to 200 (in
log scale). More precisely, sub-figures at the top of Figure 4 show the Root Mean Square Error
(RMSE), in the middle, the bias and the variance at the bottom.

We observe that regardless of the level α and the number of trees, our estimators plugging
the quantile have globally the same performance when calculated with either the OOB strategy
or the cross-validation procedure. But, the run time is faster when using the OOB strategy
rather than the cross-validation procedure.

6.2 Convergence with the number of trees and the train sample-size
We analyze in this part the impact of the number of trees on the performance of all our estimators
except for those using Q̂3,b

i and Q̂3,o
i because of the computational cost. This survey is also carried
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Figure 4: Evolution of RMSE, bias and variance of the estimators associated with X1, calculated
with either the OOB strategy or the Cross-Validation procedure, in function of the number of
trees for three levels α.

out with the model introduced in Equation (5.1) and the following setting.

The estimators of the QOSA index are computed with samples of size n = 104. The leaf size
is tuned over a grid with 20 numbers evenly spaced ranging from 5 to 300 by using a 3-fold cross-
validation procedure for R̂1,b

i and R̂1,o
i while the strategy based on the OOB samples, developed

in Subsection 5.2.2, is used for R̂2,b
i and R̂2,o

i . Regarding the minimum based estimators, the
optimal leaf size is obtained via R̂1,o

i during the 3-fold cross-validation process. Then, the
efficiency of our estimators is assessed with the metrics introduced in Equation (6.1) by repeating
the experiment s = 200.

In Figure 5, for three levels α, we present the evolution of the different metrics related to
the variable X1 of our toy example in function of the number of trees ranging from 1 to 200 (in
log scale). More precisely, sub-figures at the top of Figure 5 show the Root Mean Square Error
(RMSE), in the middle, the bias and the variance at the bottom.

We observe that regardless of the level α, RMSE of our estimators is small. The number of
trees seems to have no impact for those using Q̂1,o

i and Q̂2,o
i as the RMSE value is almost always

the same. RMSE of the others decreases in function of the number of trees until it reaches
a threshold starting at about 50 trees. Indeed, it is well known that from a certain number,
increasing the number of trees becomes useless but results in higher calculation costs. However,
we did not expect to have a stable estimation error with so few trees.
Besides, still from the RMSE curves, it first appears that the estimators using the original sample
(plain lines) have a lower error compared to those using the bootstrap samples (dotted lines).
On the other hand, the performance of the minimum based estimators (green and red lines)
seems better than those based on the quantile (blue and orange lines). That might be explained
by the additional error due to the estimation of the conditional quantile.
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Figure 5: Evolution of RMSE, bias and variance of the estimators associated with X1 in function
of the number of trees for three levels α.

Variance of all estimators is close to 0 and the bias curves have the same behavior as RMSE
curves. This means that bias is the main/only source of error in the RMSE. This bias could be
reduced by taking a larger grid where looking for the optimal leaf size during the cross-validation
or using another more efficient method to find the optimum. Also, on Figure 5, it seems that
the Q-estimators have more bias when the bootstrap sample is reused in the estimation (instead
of the original sample). This could be an over-fitting effect which is also observed with less
amplitude for the bootstrap R-estimator.

Let us now compare the decrease of the estimation error in function of the train sample-size.
As observed in Figure 5, take a very large number of trees is not required in order to have a
stable estimation error. Thus, we take ntrees = 100 and the same setting as before for other
parameters in the next study and observe the evolution of the metrics introduced in Equation
(6.1) in function of the sample size.

Figure 6 presents RMSE, bias and variance of our estimators for different sample sizes. We
observe that all the metrics associated with the various estimators converge to 0 at different
rates. Indeed, the convergence rates of the metrics of the quantile-based estimators are slower
than those based on the minimum.

Hence, from our experiments, it turns out that the minimum-based estimators give the best
results. This is an interesting feature because they need less data than those plugging the
quantile. Furthermore, few trees are necessary in order to reduce the estimation error. It
therefore allows to get a good estimation of the indices with a reasonable computational cost.

6.3 Comparison with kernel methods
In this subsection, we compare on the toy example introduced in Equation (5.1):
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Figure 6: Evolution of RMSE, bias and variance of the estimators associated with X1 in function
of the train sample-size for three levels α.

• the kernel-based estimators proposed in Browne et al. (2017); Maume-Deschamps and
Niang (2018) denoted by Šαi and S̃αi ,

• the minimum-based QOSA index estimators building one forest for each input and using
the original sample,

• and the minimum-based QOSA index estimators using a forest grown with trees fully
developed.

The estimators of the QOSA indices are computed with samples of size n = 104.
Forest methods are grown with ntrees = 100. The optimal leaf size for the minimum-based
estimators building one forest for each input is obtained with R̂1,o

i during the 3-fold cross-
validation process over a grid containing 20 numbers evenly spaced ranging from 5 to 300.
Regarding the minimum-based estimators using a forest grown with trees fully developed, the
min samples leaf hyperparemeter equals 2.
In order to have comparable methods, a cross-validation procedure is also implemented for the
kernel-based estimators to choose the optimal bandwidth parameter. It is selected within over
a grid containing 20 potential values ranging from 0.001 to 1. Then, we assess the performance
of the different estimators by computing their empirical root mean squared error with 100
experiments.

Table 1 contains the empirical root mean squared error of the different estimators associated
to each input as well as the overall run time requested to obtain them. About their performance,
it seems that the random forest-based estimators are better than the kernel methods. Neverthe-
less, as regards the methods using Q̂3,b

i and Q̂3,o
i , while they have a low error and do not need

to tune the leaf size, their run time with the current implementation is too long to be used in
practice. Accordingly, we recommend to compute the indices with Q̂1,o

i and Q̂2,o
i in order to get
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Ŝαi with Q̂1,o
i Ŝαi with Q̂2,o

i Ŝαi with Q̂3,b
i Ŝαi with Q̂3,o

i Šαi S̃αi
X1 X2 X1 X2 X1 X2 X1 X2 X1 X2 X1 X2

α = 0.1 0.007 0.006 0.009 0.006 0.017 0.006 0.017 0.006 0.020 0.044 0.061 0.006
α = 0.25 0.008 0.006 0.009 0.006 0.013 0.007 0.013 0.007 0.013 0.036 0.042 0.012
α = 0.5 0.008 0.006 0.008 0.007 0.010 0.009 0.010 0.009 0.019 0.021 0.027 0.025
α = 0.75 0.008 0.007 0.008 0.008 0.008 0.014 0.008 0.014 0.035 0.012 0.014 0.042
α = 0.99 0.006 0.016 0.006 0.018 0.006 0.032 0.006 0.032 0.084 0.071 0.013 0.11

run time 1 hr 18 min 24 sec 10 hr 41 min 8 hr 18 min 1 hr 55 min 1 min 51 sec

Table 1: RMSE and run time, for the toy example, of the random forest based estimators: Ŝαi
computed with Q̂1,o

i , Q̂2,o
i , Q̂3,b

i and Q̂3,o
i as well as those based on kernel: S̃αi and Šαi .

good estimations of the first-order QOSA indices in a reasonable time.

For completeness, one simulation is also performed on a noisy model: Y = X1−X2 + ε with
Xi following an exponential distribution as above and ε a centered normal distribution with
standard deviation 0.5, independent of X. In order to compute the RMSE, the QOSA indices
are estimated with a Monte Carlo approach on a sample of size 107. The other parameters and
hyperparameters are as above. Table 2 below contains the empirical root mean squared error of
the estimators Ŝα computed with Q̂1,o, Q̂2,o and S̃α. We remark that the RMSE have the same
order of magnitude for the noisy and the un-noisy models.

Ŝαi with Q̂1,o
i Ŝαi with Q̂2,o

i S̃αi
X1 X2 X1 X2 X1 X2

α = 0.1 0.008 0.008 0.008 0.009 0.021 0.041
α = 0.25 0.007 0.008 0.008 0.008 0.013 0.029
α = 0.5 0.007 0.007 0.008 0.008 0.015 0.017
α = 0.75 0.008 0.008 0.008 0.009 0.021 0.012
α = 0.99 0.015 0.017 0.02 0.024 0.096 0.067

Table 2: RMSE, for the toy example with noise, of the random forest based estimators: Ŝαi
computed with Q̂1,o

i , Q̂2,o
i and the kernel based estimator S̃αi .

6.4 Scalability of the methods
The influence of the model’s dimension d over the performance of the estimators using Q̂1,o

i and
Q̂2,o
i is investigated in this subsection with the following additive exponential framework

Y =
d∑
i=1

Xi . (6.2)

Independent inputs Xi, i = 1, . . . , d, follow an Exponential distribution E(λi), with distinct
λi. The resulting output Y is a generalized Erlang distribution also called Hypoexponential
distribution. By taking advantage of the other expression of the first-order QOSA index given
in Maume-Deschamps and Niang (2018), we obtain the following semi closed-form analytical
formula

Sαi = 1−
αE
[
Xs(−i)

]
− E

[
Xs(−i)1{Xs(−i)6qα(Xs(−i))}

]
αE [Y ]− E

[
Y 1{Y 6qα(Y )}

] , (6.3)
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with Xs(−i) = ∑
j 6=i

Xj that also follows a Hypoexponential distribution. Knowing the cumulative

distribution function of the Hypoexponential distribution, quantiles qα(Y ) and qα
(
Xs(−i)

)
are

computed by numeric inversion and the analytical expression of the truncated expectations is
derived from Marceau (2013).

For a specific dimension d, d values evenly spaced are selected from the interval [0.3, 1.25] and
then each one represents the λi parameter of an input Xi, i = 1, . . . , d. QOSA index estimations
are then computed with samples of size n = 104, a forest grown with ntrees = 100 and the setting
defined hereafter. The leaf size is tuned with R̂1,o

i over a grid with 20 numbers evenly spaced
ranging from 5 to 300 by using a 3-fold cross-validation. Each experiment is done 100 times
in order to compute the RMSE defined in Equation (6.1) for each input, and then we take the
weighted mean by the analytical values of the QOSA indices over all dimensions in order to get
a global measure.
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Figure 7: Evolution of the averaged RMSE over all dimensions of the estimators calculated with
Q̂1,o
i and Q̂2,o

i in function of the model dimension for four levels α.

Figure 7 presents the weighted RMSE as a function of the increasing dimension of our model
for several levels α. For each one, we observe that the error increases slowly at the beginning
until the dimension 6 for both methods then decreases. This phenomenon is due to the chosen
parametrization. Indeed, when increasing the dimension of the model, the respective impact
of each input is reduced. Thus, from a certain dimension, all the analytical values of the first-
order QOSA indices become small and even close to 0 for some inputs. Our estimators properly
capture this trend as they decrease by increasing the dimension. However, the estimator using
Q̂1,o
i seems better than this one employing Q̂1,o

2 as its error is lower.

20

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



7 Practical case study
We propose to apply our methodology to a real dataset used in Besse et al. (2007) to improve
the ozone concentration predicted by the fluid mechanics model named MOCAGE (Modèle de
Chimie Atmosphérique à Grande Echelle)1. Indeed, predictions carried out by this model were
biased. Besse et al. (2007) therefore proposed to correct this bias by building a statistical model
between some input variables including the predicted ozone concentration by MOCAGE and
the corresponding observed one. In our context, our goal will be to quantify the impact of each
input on the α-quantile of the observed ozone concentration.

The “depSeuil.dat” dataset used for our study is available at http://www.math.univ-toulouse.
fr/~besse/Wikistat/data and contains 10 variables with 1041 observations. We will consider
that O3obs, observed ozone concentration, is explained by the 9 other variables described below.

JOUR: type of day (0 for holiday vs 1 for non
holiday)

STATION: site of observations (5 different
sites)

RMH2O: humidity ratio NO2: nitrogen dioxide concentration
VentMOD: wind force VentANG: wind direction
NO: nitric oxide concentration TEMPE: officially predicted temperatures
MOCAGE: ozone concentration predicted by
a fluid mechanics model

The left-hand graph on Figure 8 below gives the QOSA estimations for several levels α, using
the Q̂2,o

i estimator, since from our numerical study, it is the quicker, requires only one sample
and is efficient. The inputs are ranked, for different values of alpha. On the right picture, the
QOSA indices are in percentage (normalized by the sum of QOSA indices for all variables).
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0.8
0.9

0.0 0.2 0.4 0.6 0.8 1.0
Si

JOUR
MOCAGE
NO
NO2
RMH2O
STATION
TEMPE
VentANG
VentMOD

QOSA indices

Figure 8: QOSA (resp. normalised QOSA) indices at different levels α on the left-hand (resp.
on the right-hand) plot.

In Besse et al. (2007); Broto et al. (2020), the impact of the input variables on the expectation
of the observed ozone concentration has been studied, through Shapley effects, and leads to
consider MOCAGE and TEMPE as the most influencial variables followed by STATION and
NO2. Our study gives consistent results with the previous one because MOCAGE and TEMPE

1Large Scale Atmospherical Chemestrial Model
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are also the most important variables. But, we can note with QOSA indices that for quantile
levels greater than 0.6, inputs related to wind and RMH2O are also important, more than
STATION. This gives a relevant information to the practitioner and highlights the influence of
these variables when there is a pollution peak.

8 Conclusion
In this paper, we introduced several estimators for the first-order QOSA index by using the
random forest method. Some of them use the original sample while the others use the bootstrap
samples generated during the forest construction. Both classes of estimator seem to be efficient
even if we observe in our experiments that the methods using the original sample have a lower
estimation error than those based on the bootstrap ones. Thus, supplementary studies should
be conducted to inquire into this difference. Furthermore, the performance of these methods
is highly dependent on the leaf size. This parameter could be compared to the bandwidth
parameter of kernel estimators as it controls the bias of the method. But, it turns out to be
easier to calibrate and we propose two methods to do this: K-fold cross-validation or Out-of-Bag
samples based selection method.

It is also well known for random forest methods that the number of trees k should be chosen
large enough to reach the desired statistical precision and small enough to make the calculations
feasible as the computational cost increases linearly with k as mentioned in Scornet (2017).
But, we have seen on our “toy example” that estimators proposed herein require few trees in
order to have a low estimation error. This makes possible to estimate the indices correctly while
maintaining a reasonable computation time.

Besides, we obtain in our application better results for our estimators when comparing with
the kernel methods. A major advantage is that we have developed an estimator that requires
only one training sample, whereas kernel methods require two training samples or a full one plus
a partial. This feature is interesting when dealing with costly models. Another significant asset
of our estimators is that their efficiency seems maintained when increasing the model dimension.

Despite these benefits, the proof for the estimators’ consistency as well as the asymptotic
analysis to establish the convergence rates and confidence intervals remains a major wish for
the future. At last, it would be interesting to leverage these estimation methods in order to
propose estimators of Quantile-Oriented Shapley Effects (QOSE) defined in Elie-Dit-Cosaque
and Maume-Deschamps (2022a).
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A Appendix
A.1 Bootstrap version of the estimators of the O term
A.1.1 Quantile estimation with a weighted approach

Another estimator of the C_CDF can be achieved by replacing the weights won,j (xi) based
on the original dataset of the forest by those using the bootstrap samples wbn,j (xi) provided in
Equation (3.3). That gives the following estimator which has been proposed in Elie-Dit-Cosaque
and Maume-Deschamps (2022b),

F bk,n (y|Xi = xi) =
n∑
j=1

wbn,j (xi)1{Y j6y} .

The conditional quantiles are then estimated by plugging F bk,n (y|Xi = xi) instead of F (y|Xi = xi).
Accordingly, the associated estimator of E [ψα (Y, qα (Y |Xi))] based on these weights is denoted
R̂1,b
i .

A.1.2 Quantile estimation within a leaf

For the `-th tree, the estimator q̂b,α` (Y |Xi = xi) of qα (Y |Xi = xi) is obtained with the boot-
strap observations falling into An(xi; Θ`,Din) as follows

q̂b,α` (Y |Xi = xi) = inf
p=1,...,n

{Y p, (Xp
i , Y

p) ∈ Di?n (Θ`) and Xp
i ∈ An(xi; Θ`,Din) :

n∑
j=1

Bj
(
Θ1
` ,Din

)
· 1{Xj

i ∈An(xi;Θ`,Din)} · 1{Y j6Y p}
N b
n(xi; Θ`,Din) > α

 .

That gives us the following random forest estimate of the conditional quantile

q̂b,α (Y |Xi = xi) = 1
k

k∑
`=1

q̂o,α` (Y |Xi = xi) .

Hence, we propose the estimator R̂2,b
i of E [ψα (Y, qα (Y |Xi))] using the bootstrap samples.

A.1.3 Minimum estimation with a weighted approach

Another estimator is obtained by replacing weigths won,j (xi) with the wbn,j (xi) version presented
in Equation (3.3) using the bootstrap samples. The obtained estimator of the O term is denoted
by Q̂1,b

i .

A.1.4 Minimum estimation within a leaf

For the `-th tree, let N b
n(m; Θ`,Din) be the number of observations of the bootstrap sample

Di?n (Θ`) falling into the m-th leaf node and N `
leaves be the number of leaves in the `-th tree. We

define the following tree estimator for the O term

1
N `
leaves

N`
leaves∑
m=1

(
min

{
p = 1, . . . , n, (Xp

i , Y
p) ∈ Di?n (Θ`) and Xp

i ∈ An
(
m; Θ`,Din

)}
n∑
j=1

Bj
(
Θ1
` ,Din

)
· ψα

(
Y j , Y p

)
· 1{(Xj

i ,Y
j)∈Di?n (Θ`), Xj

i ∈An(m;Θ`,Din)}
N b
n(m; Θ`,Din)

 .
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The approximations of the k randomized trees are then averaged to obtain the following random
forest estimate

Q̂2,b
i = 1

k

k∑
`=1

 1
N `
leaves

N`
leaves∑
m=1

(
min

{
p = 1, . . . , n, (Xp

i , Y
p) ∈ Di?n (Θ`) and Xp

i ∈ An
(
m; Θ`,Din

)}
n∑
j=1

Bj
(
Θ1
` ,Din

)
· ψα

(
Y j , Y p

)
· 1{(Xj

i ,Y
j)∈Di?n (Θ`), Xj

i ∈An(m;Θ`,Din)}
N b
n(m; Θ`,Din)

 .

A.1.5 Minimum estimation with a weighted approach and complete trees

By using the weights wbn,j (x) instead of won,j (x), we may define the estimator Q̂3,b
i .

A.2 Algorithms for estimating the first-order QOSA index

Algorithm 2: QOSA index estimators plugging the quantile
Input:

• Datasets: D�n =
(
X�j , Y �j

)
j=1,...,n and Dn =

(
Xj , Y j

)
j=1,...,n

• Number of trees: k ∈ N?

• Order where estimating the QOSA index : α ∈ ]0, 1[
• Grid where looking for the best parameter: grid min samples leaf
• Number of folds: K ∈ {2, . . . , n}

Output: Estimated value of the QOSA index at the α-order Ŝαi for all inputs.

1 Compute P̂ thanks to Equation (2.1).
2 foreach i = 1, . . . , d do
3 D�in =

(
X�ji , Y

�j
)
j=1,...,n

from D�n and Din =
(
Xj
i , Y

j
)
j=1,...,n

from Dn
4 Cross-validation as in Algorithm 1 with Din to get the optimal leaf size `opt.
5 Fit a random forest model with Din by fixing the min samples leaf hyperparameter

to `opt.
6 Compute the estimator R̂i with D�in .
7 Compute Ŝαi = 1− R̂i/P̂ .
8 end
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Algorithm 3: QOSA index estimators with the weighted minimum approach
Input:

• Datasets: Dn =
(
Xj , Y j

)
j=1,...,n and

(
X�j

)
j=1,...,n

• Number of trees: k ∈ N?

• Order where estimating the QOSA index : α ∈ ]0, 1[
• Grid where looking for the best parameter: grid min samples leaf
• Number of folds: K ∈ {2, . . . , n}

Output: Estimated value of the QOSA index at the α-order Ŝαi for all inputs.

1 Compute P̂ thanks to Equation (2.1).
2 foreach i = 1, . . . , d do
3 Din =

(
Xj
i , Y

j
)
j=1,...,n

from Dn and
(
X�ji

)
j=1,...,n

4 Cross-validation as in Algorithm 1 with Din to get the optimal leaf size `opt.
5 Fit a random forest model with Din by fixing the min samples leaf hyperparameter

to `opt.
6 Compute the estimator Q̂i ∈

{
Q̂1,b
i , Q̂1,o

i

}
with D�in and

(
X�ji

)
j=1,...,n

.

7 Compute Ŝαi = 1− Q̂i/P̂
8 end

Algorithm 4: QOSA index estimators computing the minimum in leaves
Input:

• Datasets: Dn =
(
Xj , Y j

)
j=1,...,n

• Number of trees: k ∈ N?

• Order where estimating the QOSA index : α ∈ ]0, 1[
• Grid where looking for the best parameter: grid min samples leaf
• Number of folds: K ∈ {2, . . . , n}

Output: Estimated value of the QOSA index at the α-order Ŝαi for all inputs.

1 Compute P̂ thanks to Equation (2.1).
2 foreach i = 1, . . . , d do
3 Din =

(
Xj
i , Y

j
)
j=1,...,n

from Dn
4 Cross-validation as in Algorithm 1 with Din to get the optimal leaf size `opt.
5 Fit a random forest model with Din by fixing the min samples leaf hyperparameter

to `opt.
6 Compute the estimator Q̂i ∈

{
Q̂2,b
i , Q̂2,o

i

}
.

7 Compute Ŝαi = 1− Q̂i/P̂
8 end
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Algorithm 5: QOSA index estimators with the weighted minimum and fully grown trees
Input:

• Datasets: Dn =
(
Xj , Y j

)
j=1,...,n and

(
X�j

)
j=1,...,n

• Number of trees: k ∈ N?

• Order where estimating the QOSA index : α ∈ ]0, 1[
• Minimum number of samples required in a leaf node: min samples leaf ∈ {1, ..., n}

Output: Estimated value of the QOSA index at the α-order Ŝαi for all inputs.

1 Compute P̂ thanks to Equation (2.1).
2 Fit a random forest model with Dn and the min samples leaf hyperparameter.
3 foreach i = 1, . . . , d do
4 Compute the estimator Q̂i ∈

{
Q̂3,b
i , Q̂3,o

i

}
with

(
X�j

)
j=1,...,n.

5 Compute Ŝαi = 1− Q̂i/P̂
6 end
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