
Hardening a Java Card Virtual Machine

Implementation with the MPU

Guillaume Bouffard and Léo Gaspard
guillaume.bouffard@ssi.gouv.fr

leo@gaspard.io

Agence Nationale de la Sécurité des Systèmes d’Information (ANSSI),
51, boulevard de La Tour-Maubourg, 75700 Paris 07 SP, France.

Abstract. In the world of Java Cards, the Firewall guarantees the segre-
gation of applet data and ensures the integrity and confidentiality of each
application. In order to be independent from the microcontroller, most
Java Card Virtual Machine (JCVM) implementations are not designed
to use hardware-based mechanisms.
In this article, we describe how the Memory Protection Unit (MPU)
can be used to segregate each Java Card applet from the Operating
System (OS) and device drivers. Even if our contribution is designed to
fit a specific hardware-based mechanism, our JCVM architecture can be
reused for a microcontroller without MPU.

1 Introduction

Developing smart card applications is a long and complex process. Despite
several standardization efforts, e.g., concerning power supply, input and
output signals, smart card development used to rely on proprietary Ap-
plication Programming Interfaces (APIs) provided by each manufacturer.
The main drawback of this development approach is that the code of the
application can then only be executed on a specific platform, thus lowering
interoperability.

In order to improve the interoperability and security of smart card
software, the Java Card technology has been designed in 1996. It enables
Java-based applications to securely run on smart cards and similar low-
footprint devices. The trade-offs made on the Java architecture in order
to embed the Java Card Virtual Machine (JCVM) on low resource devices
concern both functional and security aspects.

1.1 The Java Card Security Model

In the Java Card realm, some aspects of software security rely on the Byte
Code Verifier (BCV). As Java Card byte code can also be hand-written,



4 Hardening a JCVM Implementation with the MPU

it might violate Java Card safety rules. As a consequence, the Java Card
Runtime Environment (JCRE) must not trust the Java Card conversion
process. In order to ensure the correctness of the Converted APplet (CAP)
file that is to be loaded, the BCV checks:

1. that the application structure is valid,
2. that the application byte code neither forges pointers nor violates

access restrictions,
3. that the application uses data with the correct type and
4. that the application only accesses objects it owns.

Since the Java Card platform does not support dynamic class loading,
byte code verification is performed at loading time, i.e. before installing the
CAP file onto the card. Moreover, most Java Card platforms do not embed
an on-card BCV as it is expensive in terms of memory consumption. As a
consequence, byte code verification is performed off-card, either directly
by the card issuer if he controls the loading chain, or by a trusted third
party that signs the application as a proof of verification.

In addition to static off-card verification enforced by the BCV, the
Java Card Firewall performs runtime checks to guarantee applet isolation.
It partitions the Java Card platform into separate and protected object
spaces called contexts. Each applet is associated with a context, thus
preventing instances of an applet from reading or writing another applet’s
data, unless the accessed applet explicitly exposes functionality through a
Shareable Interface Object. The goal is to ensure data confidentiality and
integrity. The Java Card security model is summarized in Fig. 1.

Java class files Java Card files

Byte code
converter

Byte Code
Verifier (BCV)

Byte code
signature

(a) Java Card off-card security model

Java
Card files

Installation
module

Installed
applet

Firewall

(b) Java Card on-card security model

Fig. 1. Java Card security model



G. Bouffard, L. Gaspard 5

Despite all the security features enforced by the Java Card environ-
ment, several attack paths have been found by the Java Card security
community [2, 3, 5–7,11–13,16,17,19].

In this work, we focus on how to harden our JCVM implementation
so as to prevent applet isolation violation by a malicious applet that
is either an ill-formed applet not properly detected by the BCV — for
instance when the Java Card security model is not followed — or a mutant
application created by fault injection attacks [24].

To the best of our knowledge, most existing Java Card Firewall imple-
mentations do not use any hardware features. The JCVM developers have
chosen this architecture in order to be generic over (ie. independent from)
the microcontroller where the JCVM will be executed. Thus, without extra
effort, smart card developers can move their JCVM implementation to an-
other microcontroller. Our solution aims at proposing an alternative to this
approach in order to improve the security of the JCVM implementation
with generic hardware-based mechanisms for memory segregation.

Of course, the independence between Java Card applications and
hardware-based mechanisms is still ensured by the JCVM. However, our
solution does depend on the way to configure hardware-based security
mechanisms, which will depend on the microcontroller manufacturer.
Changing the target of the JCVM thus requires adapting the software.

We will see that this approach is also compatible with a generic
architecture where the Operating System (OS) is able to segregate Java
Card security contexts on a microcontroller lacking hardware-based
security mechanism and without modifying the JCVM source code.

In the literature, hardware security mechanisms have mainly been
studied for the protection they can offer from side-channel and fault
injection attacks. The smart card OS is designed to prevent fault injection
attacks thanks to defenses like sensors, filters, double executions and so
on. Several papers of Lackner et al. focused on hardening the Java Card
execution environment with hardware security mechanisms. For instance,
they prevent type confusion with a hardware mechanism [14] and introduce
hardware checks [15] in the Java Card stack. However, their approach is
based on proprietary extensions of a secure component.

In his Master’s thesis, Zelle [26] described how to protect the JCRE
through hardware mechanisms. His approach is based on a hardware
mechanism he implemented on an FPGA. However JCVM are mainly
designed in order to not depend on proprietary extensions, for portability



6 Hardening a JCVM Implementation with the MPU

reasons.

This paper is organized as follows. First, Section 2 presents a few
hardware security mechanisms embedded in standard components. Next,
Section 3 explains how some of those hardware-based mechanisms have
been used to improve the security of our JCVM implementation. Section
4 presents our experimental results and then details our secure Java Card
OS. Finally, Section 5 concludes and identifies possible future works.

2 Hardware Security Mechanisms to Protect Software

Integrity and Data Confidentiality

Central Processing Units (CPUs) include two kinds of hardware security
mechanisms. The first one enables the CPU to segregate execution contexts
by having code running in different execution contexts (usually kernel vs.
user). The other one aims at protecting memory access (reading, writing
or executing) from an unauthorized application.

2.1 Context Segregation

Context segregation aims at associating each executed application
to a different execution context. The hardware handler checks each
access to memory resources to prevent access from a context to another one.

ARM TrustZone is the security extension for ARM-based devices where
two virtual processors are separated by a hardware-based access control.
The application core can switch between each virtual world. The first state
is the secure world where secure and sensitive applications are run in a
special OS. For instance, this world aims at starting the boot securely
with firmware signature verification. The second state is the normal world
where the rich OS (Linux/Android, Windows and so on) is executed. The
normal world can communicate with the secure world through a secure
buffer. From a security point of view, the normal world may be malicious
and may try to leak information from the secure world [4].

The ARM TrustZone technology is currently not embedded in secure
components. In addition, it can be corrupted through fault injection
attacks as demonstrated in [25].



G. Bouffard, L. Gaspard 7

2.2 Memory Access Protection

When multiple applications are multitasked, checking memory accesses
might be required in order to enforce privilege segregation through access
rules.

Memory Management Unit Consumer CPUs have an Memory Man-
agement Unit (MMU) available for the OS developer to use. The MMU is
a hardware component that intercepts all memory accesses performed by
the processor and applies translation and authorization.

Translation is the process of taking the requested virtual address, and
checking in the page tables to which physical address it maps. The tables
involved in the process of address remapping also contain additional data
that are used for authorization, by checking that the requesting process
(as defined per the processor ring, on Intel x86 processors) is allowed to
access in read, write or execute mode the requested address.

It is one of the most important components for providing segrega-
tion between the OS and processes, along with the separation between
privileged and unprivileged code.

Input-Output Memory Management Unit The Input-Output Mem-
ory Management Unit (IOMMU) is also present on some high-end chipsets.
Whereas the MMU is placed so as to intercept memory accesses from
the CPU, the IOMMU is placed so as to intercept memory accesses from
devices attached to the motherboard. As such, it helps protecting the CPU
from malicious devices that may be plugged in, thus mitigating attacks
like [10].

Memory Protection Unit On components with limited resources, the
main hardware module that improves software security is the Memory Pro-
tection Unit (MPU). Designed for the ARM architecture, it is a lightweight
version of the MMU that does not perform address remapping but only
permission checking. As such, it allows generating an exception (more
precisely, a fault) when the access type or address does not match what is
allowed by the current ruleset.

Along with the separation between privileged and unprivileged code,
this hardware component allows confining the code segment into a sandbox.

When the MPU is enabled, all memory accesses from the microcon-
troller will be checked according to the following algorithm (simplified
from the ARM specification [1]):



8 Hardening a JCVM Implementation with the MPU

Algorithm 1 MPU access checking
Ensure: An operation is allowed to access addr with perm (read, write or execute)

Res← Reject

if DefaultMapEnabled then

Res← AllowsAccess(perm, IsPrivileged, DefaultMap)

i← 0
for i→ (number of segment− 1) do

if addr in Segment(i) then

Res← AllowsAccess(perm, IsPrivileged, Segment(i))
return Res

In other words, there is a default memory map (which only allows
privileged mode to access all the memory in reading, writing and execution)
that can be enabled or not (this being defined at the time of enabling
the MPU). Then, all the segments are tested one after the other to check
whether they include the accessed address or not. The highest-numbered
matching segment then defines the final permissions. As a consequence,
the default memory map acts like a “segment −1”: it is used only if all
other segments do not match the requested address.

There are restrictions on how the segments can be set. Their size must
be a power of two at least equal to 32, naturally aligned. Each segment of
at least 256 bytes can be split in eight equal-length segments that can be
individually enabled or disabled, thanks to the Sub-Region Disable bits.

As for the AllowsAccess operation, the MPU allows (from a security
standpoint) to set for each segment whether it is executable (through
the eXecute Never (XN) bit), as well as whether (un)privileged code can
access it in read mode, read-write mode, or none (through the Access
Permissions (AP) bits).

2.3 JCVM and MPU

To the best of our knowledge, most JCVM implementations do not use
hardware-based software security mechanisms even though modern secure
components do embed a MPU. Currently, the MPU is used only to prevent
the smart card OS, drivers and the Java Card interpreter from corrupting
each other.

In order to ensure applet isolation properties, most JCVM imple-
mentations use a software mechanism with program counter position
verification, bounds checks or application Control Flow Graph (CFG)
enforcement [8].



G. Bouffard, L. Gaspard 9

During the development of our JCVM implementation, we focused on
how hardware security mechanism can be used to improve security without
adding costly additional checks. To be close to a smartcard component,
where all JCVMs are executed, the mainstream ARM Cortex-M4 and
more specifically the STM32F401RE was chosen as target. This component
includes an MPU.

3 When MPU Meets the Java Card Security Model

3.1 Proposed Usage

We propose a way to use the MPU that is closer to what is done by regular
computer-based OSs: separate the security context attached to each applet
as an actual MPU context. For this purpose, one interpreter is run for
each applet. Each is responsible only of correctly interpreting the Java
Card byte code for its own applet, so that the OS can segregate between
interpreters using the MPU.

Consequently, a malicious (or compromised) applet, even if it manages
to compromise the interpreter, will not be able to access or otherwise
disrupt the normal behaviour of other applets, except as a Denial of
Service (DoS).

3.2 Overall Architecture

We propose the architecture depicted in Fig. 2: the OS handles device
drivers as well as hardware support (including the ISO-7816 peripheral,
the MPU and the flash device), and exposes their functionality to con-
texts through system calls (syscalls), while checking authorization. It
also provides a way for contexts to interact with each other, again using
syscalls.

For instance, interactions with the ISO-7816 peripheral can be provided
through an in_byte syscall and an out_byte syscall, with authorization
limited to calls from the APDU parser context. Interactions with the flash
can be performed using read_file or write_file syscalls; they check
that the requesting context is indeed allowed to access the requested file.

Given that the Java Card specification [21,22] does not require multiple
contexts to be active simultaneously, there is no need for a preemptive
scheduler, since only a single context can be active at a single time. Note
that this does not prevent DoS attacks; they are inherent to the Java Card
specification: an applet can simply start an infinite loop, and the JCRE
will not be allowed to kill it.



10 Hardening a JCVM Implementation with the MPU

Operating System

ISO-7816 peripheral

System-on-Chip
(MPU, flash. . . )

Context 1 (Appli-
cation Protocol
Data Unit (APDU)
parser)

Context 0 (JCRE)
Context 2 (applet
installer)

Context N (applet
N − 3)

Context 3 (applet 0) . . .

Fig. 2. Overall architecture

Interactions between contexts are performed through the remote_call

and remote_result syscalls. The remote_call syscall pushes the current
context on the OS stack and calls the remote call handler of another context
after context switching. The remote_result syscall pops a context from
the OS stack to jump back to where execution stopped for the remote
call.

3.3 Practical Organization Around the MPU

We chose to have the memory layout split in MPU segments as defined in
Fig. 3.

A compiled code segment that always stays readable and executable
contains all the compiled code in the interpreter as well as in the OS. At
minimum the interpreter has to be readable and executable; the OS has
been left readable and executable too in order to simplify the firmware
build process and spare some memory.



G. Bouffard, L. Gaspard 11

Compiled code (R - X)

Compiled code for
interpreter, OS. . .

Java Card code (R - -)

All packages’ byte codes
(on one flash segment).

Shared (R - -)

Data set by the OS for
consumption by the ap-
plet (esp. to figure out
which context-specific

segment it should be using)

Shared (R W -)

– Public static fields
– Library packages’ private

static fields

Context n − 1

– C-stack
– Java Card stack
– Transient objects
– Persistent objects

Context n

– C-stack
– Java Card stack
– Transient objects
– Persistent objects

Call buffer

– Function call parameters
– Return values
– Exceptions

A feature in
another security

context is required.

Switch to the new
security context.

Shared memory segments

. . .

Security contexts

Each security
context has
access to

Fig. 3. MPU segments used

An applet code segment that contains all the Java Card bytecode of all
installed applets is set read-only. It would be better, from a security
point of view, to only allow the applet’s reachable code to its security
context. However, the applet can call functions in shared packages without
changing its security context, which means code reachable from the applet
and unreachable from the applet will likely be interleaved.

Having only eight MPU segments available (due to the ARM spec-
ification [1], as described in Algorithm 1), especially with the strong
constraints on their use (natural alignment and power-of-two size) means
that getting a stronger separation of the Java Card byte code is left as
future work. The security consequence of this choice is that, in the current
implementation, a rogue interpreter can access the Java Card byte code of
all other applets, meaning that confidentiality of the code is not ensured.



12 Hardening a JCVM Implementation with the MPU

On the positive side, the MPU still helps preventing modifications to Java
Card byte code, and protects the confidentiality as well as the integrity of
the data manipulated by other applets.

A shared read-write segment used for the fields that can be modified by
all contexts, eg. library packages’ static fields.

A shared read-only segment used for all the fields that are set by the OS
for use by the applets, yet should not be under their control. For example,
this includes the security context identifier, the low and high bounds of
the heap to be used by the applet. . .

A context-specific read-write segment that stores all the data
that are actually context-specific: C stack, Java Card stack,
CLEAR_ON_{DESELECT,RESET} segments, C heap for the interpreter. . .
There is one per security context, so that each security context can
only access its own data.

A call buffer is used to pass arguments and return values (or exceptions)
across the remote call stack. As one applet can call a function in another
applet (defined by a Shareable interface by the other applet), the stack
may be split across multiple security contexts. In order to achieve this, the
OS maintains a stack of which context called which context, and pushes
or pops from it as required. However, there is a need to pass arguments
and return values to the relevant contexts, and this must be done through
some shared space.

In order to minimize the risk of leaks if context A calls context B with
128 bytes of arguments, and context B calls context C with 32 bytes of
arguments, wrapper functions are provided to retrieve or put data in this
call buffer by resetting it all to zeros. This call buffer is technically only a
part of the shared read-write segment, but its implementation is specific
enough that it is handled as though it was in another segment.

Switching process. When switching from a context to another (eg. during
a remote_call syscall), all these MPU segments are reset by the OS
to the relevant addresses of the new applet, thus allowing a number of
applets only limited by the memory of the microcontroller and the fact
all segments must be of power-of-two size.



G. Bouffard, L. Gaspard 13

4 Experimental Results

4.1 Implementing our embedded OS

In order to implement our OS, the use of a security-oriented programming
language that works on limited-resources components is required. Our
target, the STM32F401RE, embeds a 32-bit CPU running at 84 MHz,
with 512 kB of Flash memory and 96 kB of RAM.

In the embedded world, programs are widely developed in C, C++
and, more rarely, in Ada. Due to being low-level, programs written in the
C or C++ language often contain bugs undetectable by the toolchain.
Recent C compilers add sanitizing options (for instance memory leak or
overflow detector) that can be enabled in order to prevent some bugs at
runtime.

In order to prevent bugs during execution, the Ada toolchain also
adds runtime checks. SPARK is a formal programming language based
on the Ada language. It aims at ensuring properties statically during the
build process. Thus, since each property is statically proved, the SPARK
program can then be built without any runtime check in order to improve
its footprint.

Recently, Mozilla Research sponsored the Rust programming language
as a safe, concurrent and practical language. The Rust toolchain aims
at checking several security properties at build time. It is based on the
LLVM compiler, which turns out to have ARM assembly available as a
binary target.

As described by Couprie and Chifflier [9], the Rust language has:

– managed memory without any garbage collector,
– type safety,
– thread safety, even though this feature is not required for embedded

development,
– native code with zero-copy feature,
– easy integration with C and C++ code,
– isolation of unsafe fragments of code (unsafe code can be used to write

low-level code), and
– a minimal runtime.

Due to the limited resources of our target, we decided to develop our
OS with the Rust programming language with the possibility to link with
C/C++ code, especially for the board API. Moreover, the Rust runtime
being really lightweight is an interesting feature available for the embedded
world.



14 Hardening a JCVM Implementation with the MPU

4.2 Tests

In order to have the JCVM being as secure as possible, there is a need
to have as complete as possible unit tests. As the interpreter also aims
at running on x86 machines for development purposes, it makes sense to
execute the unit tests on x86 too.

From this point on, two ways forward can be chosen. The first one is
to port the OS to x86 even though x86 had no MPU: let all the functions
that change the MPU be no-ops, and do not test the MPU part.

The second one, which we picked, is to use the Linux mprotect function
to emulate an MPU, as this allows simulating more precisely how things
work in the Cortex-M4 CPU. However, mprotect only protects memory
per block of 4 KiB, whereas the MPU allows protecting blocks as small as
32 bytes. This means that in order to simulate the MPU using mprotect,
a trick has to be used.

The trick was to mprotect the whole 4 KiB, and catch the segmentation
faults that will arise even in case of valid access. Then, analyzing the fault,
we check whether it is on an allowed or disallowed address, and if it is on a
disallowed address, we report the violation. If it is on an allowed address,
we can then mprotect the segment back to allow its use, single-step, then
mprotect the segment to lock it again.

So as to do this, the Linux ptrace system call gives all the required
primitives with the cost of not being able to run the tests under another
debugger. As debugging tests that fail is important too, the SIGILL signal
is used to trigger a core dump of the child, and all analysis is performed
post-mortem.

Implementing system calls is the last thing that had to be done in
order to test the OS on an x86 desktop computer. These were implemented
using the int3 x86 instruction, and thus perform a kind of “debugger
call” that is then used in order to implement all the other primitives
that normally require some help from the hardware (or, in this case, the
debugger).

Thanks to the tests this framework allowed us to write, we discovered
a few bugs in our implementation, including some that would not have
been detected if the MPU was not emulated. We also hope it will help
prevent future regressions.

Having functionally tested our OS and JCVM implementation, we
evaluated our solution’s footprint on the targeted architecture, so as to
gather performance results that could help in balancing security gains
against performance loss.



G. Bouffard, L. Gaspard 15

4.3 Timing

With all this functionality implemented and without any interaction with
the interpreter (that is, measuring only the time of calling a no-op C
function), calling a function takes 90 ns on the STM32F401RE board.

This measurement giving the baseline of the processor speed, we
then measured the performance of system calls (in order to measure the
approximate speed of the core to push and pop the required registers),
which took 2.6 µs each.

Finally, we measured the time taken to perform a full remote call,
that is a context switch to another security context which then returned a
zero-valued result to the original security context through another context
switch. Given the duration of a system call, this time had to be at least of
5 µs, as each remote call implies two system calls (one to enter the other
security context, and one to come back to the first one). The final measure
was 20 µs. In order to understand it, we looked at how long a write in
RAM took on our test platform, and it came up at 71 ns. This means the
implementation performs about 200 RAM writes for the context switch
in addition to the two system calls that already take 5 µs, which, given
the used data structures, could probably be improved but looks like an
acceptable loss.

Even though this performance difference (90 ns vs. 20 µs) could look
like a huge performance loss (approximately two hundred times slower),
this is to be put in perspective by the time that will be spent in the
interpreter (cost of going through a Shareable interface, etc.) as well as
the tiny number of times such remote calls will occur in practice.

4.4 Analyzing our Contribution

More often than not, memory protection mechanisms are used in computer
security to prevent corruption of legitimate applications from a malicious
one. This mechanism is mainly implemented to segregate each process
from the OS point of view.

In our contribution, we reorganized the JCVM architecture, from one
based on an interpreter which executes a set of applets, to one interpreter
per applet. With this approach, each applet is managed as an application
from the OS point of view.

Segregating Java Card applets as applications improves memory pro-
tection granularity without costly software checks. Our solution prevents
malicious Java Card applets (as well as rogue interpreters) from accessing
other applets’ context data. This approach also blocks native memory



16 Hardening a JCVM Implementation with the MPU

overflows that would be hard to stop (without specifically built toolchains
or low-level pieces of code), like stack or heap overflows across security
contexts.

Finally, our JCVM architecture can be used even if the microcontroller
has no MPU mechanism. Indeed, each access to the resources is handled
by OS syscalls. For such an architecture, segregation would be ensured by
the OS and Java Card interpreter using more costly software checks.

5 Conclusion and Future Works

In this article, we introduced an approach to improve the confidentiality
and integrity of Java Card applets’ data along with reducing the amount
of checks. We based our contribution on the MPU, a hardware security
mechanism provided by ARM chips.

Merging the MPU with our JCVM requires reorganizing the architec-
ture to one where each Java Card applet is segregated in its own context.
The advantage of this new architecture is that it reduces the risk of mem-
ory corruption from both the native and the Java Card world without
adding software checks.

If our JCVM implementation must run on a microcontroller without
MPU, the designed architecture allows adding software verification in
the OS at the syscalls level, although it wouldn’t protect as effectively
against an interpreter gone completely rogue. This approach offers a way
to ensure security properties across several microcontrollers effortlessly.

Now that we merged the MPU implementation into our JCVM, we are
focusing on how to guarantee Control Flow Integrity (CFI) for each Java
Card applet installed on the card. Several studies were completed in this
direction [8], where the CFG is checked through verifications implemented
at software level. We want to improve on this approach using hardware
mechanisms. Nyman et al. proposed in [20] a CFI implementation based
on the ARM-TrustZone mechanism. We are currently studying on how
to adapt their approach for our microcontroller that does not have the
ARM-TrustZone mechanism.

References

1. ARMv7-M Architecture Reference Manual. ARM Limited, 2014.
2. Guillaume Barbu, Guillaume Duc, and Philippe Hoogvorst. Java Card Operand

Stack: Fault Attacks, Combined Attacks and Countermeasures. In Prouff [23],
pages 297–313.



G. Bouffard, L. Gaspard 17

3. Guillaume Barbu, Hugues Thiebeauld, and Vincent Guerin. Attacks on Java
Card 3.0 Combining Fault and Logical Attacks. In Smart Card Research and
Advanced Application, 9th IFIP WG 8.8/11.2 International Conference, CARDIS
2010, Passau, Germany, April 14-16, 2010. Proceedings, pages 148–163, 2010.

4. Bits, Please! Extracting Qualcomm’s KeyMaster Keys – Breaking Android
Full Disk Encryption. http://bits-please.blogspot.fr/2016/06/extracting-

qualcomms-keymaster-keys.html, 2016. [Online; accessed 17-July-2017].
5. Guillaume Bouffard. A Generic Approach for Protecting Java Card Smart Card

Against Software Attacks. PhD thesis, University of Limoges, Limoges, France,
October 2014.

6. Guillaume Bouffard, Julien Iguchi-Cartigny, and Jean-Louis Lanet. Combined
Software and Hardware Attacks on the Java Card Control Flow. In Prouff [23],
pages 283–296.

7. Guillaume Bouffard and Jean-Louis Lanet. The ultimate control flow transfer in a
Java based smart card. Computers & Security, 50:33–46, 2015.

8. Guillaume Bouffard, Bhagyalekshmy N. Thampi, and Jean-Louis Lanet. Security
automaton to mitigate laser-based fault attacks on smart cards. IJTMCC, 2(2):185–
205, 2014.

9. Geoffroy Couprie and Pierre Chifflier. Writing parsers like it is 2017. Symposium
sur la sécurité des technologies de l’information et des communications (SSTIC),
2017.

10. Maximillian Dornseif. 0wn3d by an iPod: Firewire/1394 Issues. PacSec 2004.
11. Emilie Faugeron. Manipulating the Frame Information with an Underflow Attack.

In Aurélien Francillon and Pankaj Rohatgi, editors, Smart Card Research and
Advanced Applications - 12th International Conference, CARDIS 2013, Berlin,
Germany, November 27-29, 2013. Revised Selected Papers, volume 8419 of Lecture
Notes in Computer Science, pages 140–151. Springer, 2013.

12. Samiya Hamadouche, Guillaume Bouffard, Jean-Louis Lanet, Bruno Dorsemaine,
Bastien Nouhant, Alexandre Magloire, and Arnaud Reygnaud. Subverting Byte
Code Linker service to characterize Java Card API. In Seventh Conference on
Network and Information Systems Security (SAR-SSI), pages 75–81, May 22rd to
25th 2012.

13. Samiya Hamadouche and Jean-Louis Lanet. Virus in a smart card: Myth or reality?
Journal of Information Security and Applications, 18(2-3):130–137, 2013.

14. Michael Lackner, Reinhard Berlach, Johannes Loinig, Reinhold Weiss, and Christian
Steger. Towards the Hardware Accelerated Defensive Virtual Machine - Type and
Bound Protection. In Mangard [18], pages 1–15.

15. Michael Lackner, Reinhard Berlach, Reinhold Weiss, and Christian Steger. Coun-
tering type confusion and buffer overflow attacks on Java smart cards by data
type sensitive obfuscation. In Jens Knoop, Valentina Salapura, Israel Koren, and
Gerardo Pelosi, editors, Proceedings of the First Workshop on Cryptography and
Security in Computing Systems, CS2@HiPEAC 2014, Vienna, Austria, January 20,
2014, pages 19–24. ACM, 2014.

16. Julien Lancia. Java Card Combined Attacks with Localization-Agnostic Fault
Injection. In Mangard [18], pages 31–45.

17. Julien Lancia and Guillaume Bouffard. Java Card Virtual Machine Compromising
from a Bytecode Verified Applet. In Naofumi Homma and Marcel Medwed, editors,
Smart Card Research and Advanced Applications - 14th International Conference,
CARDIS 2015, Bochum, Germany, November 4-6, 2015. Revised Selected Papers,
volume 9514 of Lecture Notes in Computer Science, pages 75–88. Springer, 2015.



18 Hardening a JCVM Implementation with the MPU

18. Stefan Mangard, editor. Smart Card Research and Advanced Applications - 11th
International Conference, CARDIS 2012, Graz, Austria, November 28-30, 2012, Re-
vised Selected Papers, volume 7771 of Lecture Notes in Computer Science. Springer,
2013.

19. Wojciech Mostowski and Erik Poll. Malicious Code on Java Card Smartcards:
Attacks and Countermeasures. In Gilles Grimaud and François-Xavier Standaert,
editors, Smart Card Research and Advanced Applications, 8th IFIP WG 8.8/11.2
International Conference, CARDIS 2008, London, UK, September 8-11, 2008. Pro-
ceedings, volume 5189 of Lecture Notes in Computer Science, pages 1–16. Springer,
2008.

20. Thomas Nyman, Jan-Erik Ekberg, Lucas Davi, and N. Asokan. CFI CaRE:
Hardware-supported Call and Return Enforcement for Commercial Microcontrollers.
CoRR, abs/1706.05715, 2017.

21. Oracle. Java Card 3 Platform, Runtime Environment Specification, Classic Edition.
Number Version 3.0.5. Oracle, September 2011.

22. Oracle. Java Card 3 Platform, Virtual Machine Specification, Classic Edition.
Number Version 3.0.5. Oracle, 2015.

23. Emmanuel Prouff, editor. Smart Card Research and Advanced Applications - 10th
IFIP WG 8.8/11.2 International Conference, CARDIS 2011, Leuven, Belgium,
September 14-16, 2011, Revised Selected Papers, volume 7079 of Lecture Notes in
Computer Science. Springer, 2011.

24. Tiana Razafindralambo, Guillaume Bouffard, and Jean-Louis Lanet. A Friendly
Framework for Hidding fault enabled virus for Java Based Smartcard. In Nora
Cuppens-Boulahia, Frédéric Cuppens, and Joaquín García-Alfaro, editors, DBSec
2012, Paris, France, July 11-13,2012. Proceedings, volume 7371 of Lecture Notes in
Computer Science, pages 122–128. Springer, 2012.

25. Aurélien Vasselle, Hugues Thiebeauld, Adèle Morisset, Quentin Maouhoub, and
Sebastien Ermeneux. Laser Induced Fault Injection on Smartphone Bypassing the
Secure Boot. Fault Diagnosis and Tolerance in Cryptography (FDTC), 2017.

26. Michael Zelle. Design and implementation of a hardware supported memory
protection for the java card firewall. Master’s thesis, Graz University of Technology,
April 2015.


