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Abstract

In this paper, we consider risk-sensitive sequential decision-making in model-based rein-
forcement learning (RL). We introduce a novel quantification of risk, namely composite
risk, which takes into account both aleatory and epistemic risk during the learning process.
Previous works have considered aleatory or epistemic risk individually, or, an additive com-
bination of the two. We demonstrate that the additive formulation is a particular case of
the composite risk, which underestimates the actual CVaR risk even while learning a mix-
ture of Gaussians. In contrast, the composite risk provides a more accurate estimate. We
propose to use a bootstrapping method, SENTINEL-K, for distributional RL. SENTINEL-
K uses an ensemble of K learners to estimate the return distribution and additionally uses
follow the regularized leader (FTRL) from bandit literature for providing a better estimate
of the risk on the return distribution. Finally, we experimentally verify that SENTINEL-
K estimates the return distribution better, and while used with composite risk estimate,
demonstrates better risk-sensitive performance than competing RL algorithms.

1. Introduction

Reinforcement Learning (RL) algorithms with their recent success in games and simulated
environments (Mnih et al., 2015) have drawn interest for real-world and industrial appli-
cations (Pan et al., 2017; Mahmood et al., 2018). Two aspects of RL algorithms constrain
their applicability. Firstly, the large amount of data generally required by model-free RL
algorithms. Secondly, since in reinforcement learning the environment is by definition is
unknown to the agent, exploring it so as to improve performance and eventually obtain the
optimal policy entails risks. Though risk is not an issue in simulation, it is important to
consider risks when interacting in the real world (Pinto et al., 2017; Garcıa and Fernández,

1



ERIKSSON, BASU, ALIBEIGI AND DIMITRAKAKIS

Data D

DK

Environment

CDQN1 (θ1)

CDQNK (θK)

st+1, rt

st

Composite Risk
QC(st, a) =

UE(UA(Zθ(st, a)))

Action Selection
argmaxa Q

C(st, a)
a∗t

K distribution estimators

Estimated Return Distributions
{Zθi(st, a)}Ki=1

st Aleatory

UA(Zθi(st, a))

FTRL-driven
Composite Risk Estimatorτ1 ∼ D1 τK ∼ DK

Figure 1: SENTINEL-K with FTRL-driven composite risk estimator and K CDQNs as
distribution estimators.

2015; Prashanth and Fu, 2018). In this paper, we employ a model-based approach that
enables us both to efficient in terms of the amount of data needed, and to be flexible with
respect to the risk metric the agent should consider when making decisions.

Risk sensitivity in reinforcement learning and Markov decision processes has sometimes
been considered under a minimax formulation over plausible MDPs (Satia, 1973; Heger,
1994; Tamar et al., 2014). Alternative approaches include maximising a risk-sensitive statis-
tic instead of the expected return (Chow and Ghavamzadeh, 2014; Tamar et al., 2015;
Clements et al., 2019). In this paper, we focus on the second approach due to its flexibility.
Either approach requires estimating the uncertainty associated with the decision-making
procedure. This uncertainty includes both the inherent randomness in the model and the
uncertainty due to imperfect information about the true model. These two type of un-
certainties are called aleatory and epistemic uncertainty respectively (Der Kiureghian and
Ditlevsen, 2009).

In this work, we propose a composite risk formulation in order to capture the combined
effect of aleatory and epistemic uncertainty for decision-making in RL (Section 4). In recent
literature, researchers have either quantified epistemic and aleatory risks separately (Mi-
hatsch and Neuneier, 2002; Eriksson and Dimitrakakis, 2019) or considered an additive risk
formulation where their weighted sum is minimized by an RL algorithm (Clements et al.,
2019). In a reductive experiment (Figure 2), we show that using an additive risk, which
is the sum of separately computed epistemic and aleatory CVaR1, strictly underestimates
the total CVaR (Rockafellar et al., 2000), and the deviation is significant as CVaR focuses
more on less probable events. In contrast, the composite risk takes into consideration the
combined effect of two types of uncertainty, and better reflects the underlying risk. Finally,
we show that additive risk is essentially a special case of composite risk.

1. CV aRα captures the expected value of α% of events in the left tail.
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We then incorporate this composite risk measure within the Distributional RL (DRL)
framework (Dabney et al., 2018b; Tang and Agrawal, 2018; Rowland et al., 2019). The DRL
framework aims to model the distribution of returns of a policy for a given environment
(Section 3.3). This highly expressive distributional representation allows us to both estimate
appropriate risk measures and to incorporate them in final decision making. However,
DRL approaches are typically limited to modelling aleatory uncertainty, with epistemic
uncertainty due to partial information not being explicitly modelled in terms of the return
distribution. In this paper, we propose a bootstrapping (Efron and Tibshirani, 1985) based
framework to estimate the return distribution.

As we explain in Section 5, we use an ensemble of K distribution estimators, such
as CDQNs (Dabney et al., 2018b), obtained through bootstrapping, to learn the return
distribution. We use these return distributions to estimate the aleatory and composite
risks for the corresponding RL method (Section 5.1). In order to perform the estimation
accurately and efficiently, we adapt the Follow The Regularised Leader (FTRL) (Cesa-
Bianchi and Lugosi, 2006) algorithm in order to weigh the estimators in our ensemble, as
we describe in Section 5.2.

Our framework, which we call SENTINEL-K, is illsutrated in Figure 1. We instanti-
ate SENTINEL-K to perform risk-sensitive model-based distributional RL by incorporating
the composite CVaR estimate with FTRL-driven bootstrapped CDQN algorithm (Dabney
et al., 2018b). We experimentally show in Section 6 that the FTRL-driven bootstrapping
method of SENTINEL-K generates accurate estimates of true return distributions for even
suboptimal actions and multimodal return distributions, where the vanilla distributional
RL algorithm fails to do so. Estimation of SENTINEL-K even without risk-sensitive objec-
tive converges faster. We also show that our FTRL-based approach is more accurate than
uniform or greedy aggregation of K approximations of the return distribution. Finally, we
verify the risk-sensitive performance of SENTINEL-K with composite CVaR metric on the
highway environment with 10 cars. Experimental results show that our approach leads to a
higher estimate of underlying risk and thus, less number of crashes than competing distribu-
tional algorithms, which are VDQN (Tang and Agrawal, 2018), CDQN, and SENTINEL-K
with additive CVaR estimate.

Before proceeding to the details of our contributions, we posit our work in the existing
literature in Section 2. Following that, we provide a primer on risk measure, Markov decision
processes, and DRL in Section 3 to elucidate our contributions.

2. Related Works

For RL applications in the real world, such as for autonomous driving and robotics, risk-
sensitive RL approaches can avoid the negative consequences of excessive exploration. This
has initiated a spate of research efforts (Howard and Matheson, 1972; Satia, 1973; Coraluppi
and Marcus, 1999; Marcus et al., 1997; Mihatsch and Neuneier, 2002; Prashanth and Fu,
2018) spanning five decades. But the majority of these works focus only on discrete state-
space MDPs. We are interested in designing a general framework applicable to both discrete
and continuous state-spaces. Thus, we adopt the framework of distributional RL, specifi-
cally CDQN, that incorporates highly expressive approximators to model continuous and
multimodal return distributions.
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Both aleatory and epistemic are important for risk-sensitive RL (Der Kiureghian and
Ditlevsen, 2009). The former expresses the randomness inherent to the problem and the lat-
ter uncertainty about the problem respectively. A common approach to make an algorithm
risk-sensitive (Garcıa and Fernández, 2015) is to use a utility function that is nonlinear with
respect to the return, or the expected return.2 For example (Mihatsch and Neuneier, 2002)
consider aleatory risk-sensitive RL by transforming the return. Follow-up works (Chow and
Ghavamzadeh, 2014; C. et al., 2015) focus on scaling up these approaches. There have been
recent works considering epistemic risk (Eriksson and Dimitrakakis, 2019), wherein problem
uncertainty is expressed in a Bayesian framework as a distribution over MDPs. Depeweg
et al. (2018); Clements et al. (2019) intuitively incorporates both of these risks in decision
making. Depeweg et al. (2018) consider the risk in the individual costs in RL. (Clements
et al., 2019) consider the additive formulation of epistemic and aleatory risks. They use
variance as the risk measure which is not a coherent measure (Artzner et al., 1999). In order
to rectify such varied choices, we define a composite risk that considers and quantifies the
entangled effect of epistemic and aleatory uncertainties. We also show that for any coherent
risk measure, such as CVaR, the composite risk retains coherence.

Ensemble-based RL has been done previously with great success (Wiering and Van Has-
selt, 2008; Faußer and Schwenker, 2015; Osband et al., 2016; Pacchiano et al., 2020). This
process typically involves creating an ensemble of well-known RL agents, such as Deep Q-
Networks (DQN) (Mnih et al., 2015), where each estimator has its own dataset, and the
final decision maker considers the joint prediction of the ensemble into account. Typically,
the final estimate averages the individual estimators. In particular, adding additional esti-
mators to form an ensemble of estimators not only improves performance for risk-neutral
decision-making but also allows the consideration of the distribution of estimators. This
enables epistemic risk-sensitive decision-making. We incorporate bootstrapping approach
to ensemble K different estimations of the return distribution, and introduce the FTRL
algorithm to estimate the return distribution accurately and efficiently.

3. Background

In this section, we introduce the notion of risk measures, the risk-sensitive Markov decision
process formulation, and the distributional RL framework.

3.1 Risk measure

The idea of quantifying risk in decision making is long-studied in decision theory and has
found multiple applications in finance and actuarial science. Researchers proposed mul-
tiple measures of risk, such as variance, Value at Risk (VaR), Conditional Value at Risk
(CVaR), etc. to quantify the probability of occurrence of an event away from the expec-
tation of corresponding distribution (Szegö, 2002). Artzner et al. (1999) have established
a basic set of axioms to be satisfied for a coherent risk measure: normalization, mono-
tonicity, sub-additivity, homogeneity, and translation invariance. For example, CVaR is a
coherent risk measure whereas variance and VaR are not. Thus, in this work, we choose
CVaR (Rockafellar et al., 2000) as the risk measure of interest.

2. Here, we use return to mean the total discounted reward
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CV aRα quantifies expectation of the worst α% of a probability distribution. For a
random variable Z and α ∈ [0, 1],

CV aRα(Z) ≜ E[Z |Z ≥ να ∧ Pr(Z > να) = α] (1)

CVaR is widely used in risk-sensitive RL (Chow and Ghavamzadeh, 2014; Tamar et al.,
2015; Chow et al., 2015) as it is coherent, applies to general Lp spaces, and captures the
heaviness of the tail of a distribution. For α = 0, CVaR reduces to the expected value, and
thus, the corresponding risk-sensitive RL algorithm behaves analogously to a risk-neutral
one. Kolla et al. (2019) shows that CVaR of a distribution can be accurately estimated
using i.i.d. samples.

3.2 Markov Decision Process

In this work, we are considering decision-making problems that can be modelled by a Markov
Decision Process (MDP) (Sutton and Barto, 2018). An MDP is a tuple µ ≜ (S,A,R, T , γ).
S ∈ Rd is a state representation of dimension d. A is the set of admissible actions. T is
a transition kernel that determines the probability of successor states s′ given the present
state s and action a. The reward function R quantifies the goodness of taking action a in
state s. The goal of the agent is to find a policy π : S → A to maximise expected value of a
utility function U (Friedman and Savage, 1948) computed over a reward sequence given a

time horizon T : Uπ(s, a) = E
[
U(
∑T

t=0 γ
tR(st, at))

]
. Here, st ∼ T (.|st−1, at−1), at = π(st),

s0 = s, and a0 = a.

When the utility function U is an identity function, Uπ(s, a) reduces to the Q-function
which is the expected long-term discounted reward. If the utility function U is a coherent
risk measure, such as CVaR, it leads to a risk-sensitive formulation of MDP (Mihatsch and
Neuneier, 2002; Prashanth and Fu, 2018).

3.3 Distributional RL

Typically, the variable at the core of both risk-neutral and risk-sensitive RL is usually the
accumulated discounted reward Zπ(s, a) ≜

∑T
t=0 γ

tR(st, at). Zπ(s, a) is called the return
of a policy π. In distributional RL, the goal is to learn the return distribution Zπ(s, a)
obtained by following policy π from state x and action a under the given MDP.

Different methods are proposed to parametrize the return distribution. Bellemare et al.
(2017) propose CDQN, a categorical distribution with N atoms and, with support in

[VMIN , VMAX ]. The mass of the atom zi is then given by eθi(s,a)∑
j e

θj(s,a)
. Tang and Agrawal

(2018), Dabney et al. (2018a), and Rowland et al. (2019) use unimodal Gaussians, quan-
tiles, and expectiles to model the return distribution respectively. In this work, we choose
to extend CDQN, as it permits richer representations of distributions, and flexibility to
compute different statistics.

The intuition of using this distributional framework for risk-sensitive RL is its flexibility
to model multi-modal and asymmetrical distributions, which is important for an accurate
estimate of risk.
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4. Quantifying Composite Risk

In risk-sensitive RL, we encounter two types of uncertainties: aleatory and epistemic.
Aleatory uncertainty is engendered by the stochasticity of the MDP model µ and the policy
π. Epistemic uncertainty exists due to the fact that the MDP model µ is unknown, In the
Bayesian setting, this is seen as having a belief distribution β over a set of plausible MDPs
Θ. Hence, risk measures can also be defined with respect to the MDP distribution. Con-
sequently, as an agent learns more about the underlying MDP, the epistemic risk vanishes.
The aleatory risk is inherent to the MDP model µ and policy π, and thus persists even
after correctly estimating the model µ. Let us first define risk measures for aleatory and
epistemic uncertainty separately. We then combine them into a composite risk measure.

Aleatory Risk. Given a coherent risk measure UA, the aleatory risk is quantified as the
deviation of total risk of individual models from the risk of the average model.

A(UA, β) ≜ Eβ[EPr(.|θ)[UA(Z)]− UA(EPr(.|θ)[Z])]

=

∫
Θ

∫
Z
(UA(z)− UA(µz)) dPr(z | θ) dβ(θ),

U(µz) ≜ U
( ∫

Θ P(z | θ) dβ(θ)
)
, the utility of the average model given a belief distribution β

over the plausible set of models Θ. The centered definition of aleatory risk is necessary for
the additive formulation to be a special case of the composite formulation.

Epistemic Risk. Given a coherent risk measure UE , the epistemic risk quantifies the
uncertainty invoked by not knowing the plausible models. Thus, the risk can be computed
over any statistics of the models, such as expectation.

E(UE , β) ≜ Eβ[UE(EPr(.|θ)[Z])]

=

∫
Θ
UE

(∫
Z
z dPr(z | θ)

)
dβ(θ)

Composite Risk under Model and Inherent Uncertainty. In typical risk-sensitive
RL settings, the true MDP model is unknown, as well as the MDPs are inherently stochastic.
Thus, the total uncertainty to be considered is a composition of aleatory and epistemic
uncertainties. In order to quantify the total uncertainty under consideration, we propose
the composite risk.

Definition 1 (Composite Risk) For two coherent risk measures UA and UE, belief dis-
tribution β on model parameters θ, and a random variable Z, the composite risk of epistemic
and aleatory uncertainties is defined as

FC(UA, UE , β) ≜
∫
Θ
UE

(∫
Z
UA(z) dPr(z | θ)

)
dβ(θ).

The composite risk is flexible to use two different risk measures for quantifying epistemic
and aleatory uncertainties.

Lemma 2 (Coherence) If UA and UE are two coherent risk measures, the composite risk
measure F (UA, UE , β) is also coherent.
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Figure 2: Estimation of total CV aRα from a mixture of 100 Gaussians sampled from a
posterior distribution. Total CV aRα[Data] is based on the marginal distribution of the
r as given in Example 1. We compare this with composite and additive estimates and
illustrate results over 100 runs.

Additive Risk Measure. If UE is the identity function, the composite risk is reduced
to an additive risk measure.

FA(UA, β) ≜
∫
Θ

∫
Z
UA(z) dPr(z | θ) dβ(θ)

= A(UA, β) + E(UA, β)

Often the additive risk measure or weighted sum of the epistemic and aleatory uncertainty
is used in risk-sensitive RL literature (Clements et al., 2019). However, the additive risk
formulation strictly underestimates the composite effect of epistemic risk. Thus, we ob-
serve that additive risk leads to worse risk-sensitive performance than composite risk in RL
problems (Table 1). In order to compare the risk estimation using additive and composite
formulations, we consider an example of estimating CVaR over a Gaussian mixture.

Example 1 We consider a mixture of 100 Gaussians: p(r) =
∑100

i=1 ϕiN (µi, σ
2
i ), where

Φ ∼ Dir([0.5]100), µ ∼ N (0, 1), and σ2 ∼ Γ−1(2, 0, 1). We compute CV aRα[r] from the
data generated from such mixture for 100 runs. We further estimate composite risk with
UE , UA = CV aRα and additive risk with UA = CV aRα. The results illustrated in Figure 2
show that the additive CVaR risk strictly underestimates the total CVaR risk computed from
the data, whereas the composite risk is closer to the one computed from data. Specifically,
for lower values of α, i.e. towards the extreme end of the left tail where events occur
with low probability, the additive CVaR risk deviates significantly from data whereas the
composite measure yields closer estimation. Such values of α’s are typically interesting for
risk-sensitive applications.

5. Algorithm: SENTINEL-K

In this section, we outline the algorithmic details of SENTINEL-K as an ensemble of K
distributional RL estimators, such as CDQN (Bellemare et al., 2017), along with an adap-
tation of FTRL for estimator selection. We further evaluate the composite risk using return
distribution estimated by SENTINEL-K for decision making.
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Algorithm 1 SENTINEL-K with Composite Risk

1: Input: Initial state s0, action set A, risk measures UA, UE , hyperparameter λ, target
networks [θ−1 , ..., θ

−
K ], value networks [θ1, ..., θK ], update schedule Γ1,Γ2.

2: for t = 1, 2, . . . do
3: //* Update K-value and target networks for estimating return distributions*//
4: for t′ ∈ Γ1 ∪ Γ2 do
5: Generate {D1, ..., DK} ← DataMask(Dt′)
6: for i = 1, . . . ,K do
7: Sample mini batch τ ∼ Di

8: Estimate FC(Z(st, a)|UA, UB, β) using τ and K-target networks {θ−i }Ki=1.
9: Get a∗ = argmaxa F

C(Z(st, a)|UA, UB, β)
10: Update value network θi using τ, a∗

11: Update target network θ−i using τ, a∗ if t′ ∈ Γ1

12: end for
13: end for
14: //* Estimate the composite risk of each action using the estimated return distribu-

tions*//
15: for a ∈ A do
16: Compute weights w = w1, ..., wK from Eq. 2.
17: for i in K do
18: Compute aleatory risks QA

i (st, a) from
∫
Z UA(z) dP(z | θi).

19: end for
20: Compute composite risk over weighted aleatory estimates QC(st, a) = UE

(
w ·

QA(st, a)
)

21: end for
22: //*Action selection*//
23: Take action at = argmaxaQ

C(st, a)
24: Observe st and update the dataset Dt ← Dt−1 ∪ {st, at−1, st−1, rt−1}
25: end for

Sketch of the Algorithm. Pseudocode of SENTINEL-K with composite risk is de-
scribed in Algorithm 1. Algorithm 1 has mainly two functional blocks: yielding K esti-
mations of return distribution with distributional RL framework (Lines 4- 13), and using
such K estimates to compute composite risk of each of the actions (Lines 15- 21). Finally,
following the mechanism of Q-learning, it chooses the action with maximal composite risk
in the decision making step (Line 23).

In the first functional block, we specifically use an ensemble of K CDQNs. Each CDQN
uses target and value networks for estimating the return distribution. We set a schedule of
updating the target networks Γ1 and a more frequent schedule Γ1 ∪ Γ2 to update the value
networks. The details of this procedure is elaborated in Section 5.1.

The second functional block is used for decision-making and iterated at every time
step. It adapts the FTRL algorithm (Section 5.2) for aggregating the K estimated return
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distributions and to compose aleatory risk QA
i (st, a) of each of the estimators to provide a

final estimate of the composite risk QC(st, a) for each action.

5.1 Ensembling & bootstrapping Estimators

The ensemble of SENTINEL-K consists of K distribution estimators. Each estimator gets
its own dataset {Di}Ki=1 ⊆ D, value network {θi}Ki=1 and target network {θ−i }Ki=1. The
K datasets are created from the original data set D by data masking (Line 5). For each
transition st, at, rt, st+1, a fixed weight vector ut ∈ [0, 1]K is generated such that ujt ∼
Ber(13). Thus, each estimator i has access to on an average 1

3 of the whole dataset.

After preparing the datasets for the estimators, the target and value networks of the
CDQN have to be updated and optimized. For i-th estimator, it begins with sampling mini
batches of data τ from the respective dataset Di (Line 7). Then, this dataset is used to
compute the composite risk for all actions a ∈ A and to obtain a∗ (Lines 8- 9). Obtaining the
composite risk first involves estimating the aleatory risk with QA

i (st, a) =
∫
Z UA(z) dP(z | θi)

for a particular estimator i. This quantity can be attained by considering each of the
estimators separately, however, as we turn to compute the epistemic risk the estimators
jointly contribute to this risk. Then, we compose the aleatory risk of all the estimators to
compute QC(st, a) =

∑
i UE(Q

A
i (st, a)). Finally, the optimal action a∗ = argmax

a
QC(st, a),

and the risk estimates QC(st, a) are used to update the value and network parameters
{θi}Ki=1 and {θ−i }Ki=1 (Lines 10- 11) by minimising the cross-entropy loss of the current
parameters and the projected Bellman update as described in (Bellemare et al., 2017).

Ensembling estimators have been shown to outperform individual estimators as seen
in (Wiering and Van Hasselt, 2008; Faußer and Schwenker, 2015; Osband et al., 2016; Pac-
chiano et al., 2020). Further, incorporating multiple estimators introduces uncertainty over
the estimators. Because of having separate data sets, each of the estimators learn different
parts of the MDP. Thus, uncertainty over estimators acts as a quantifier of the model un-
certainty. In Section 6, we show that this ensemble-based approach leads SENTINEL-K to
achieving superior performance.

5.2 Follow the regularised leader

Now, the question is to aggregate the K estimated return distributions in one such that the
final estimation is as accurate as possible, where each of the estimators may vary in terms
of learning and accuracy. Pacchiano et al. (2020) shows that model selection can boost
performance than model averaging. The rationale for this can be given by seeing that some
estimators might be overly optimistic or pessimistic. By considering these outliers less, you
can effectively have a more robust ensemble.

We adapt the Follow The Regularised Leader (FTRL) algorithm (Cesa-Bianchi and
Lugosi, 2006) studied in bandits and online learning for selecting the estimators. FTRL
puts exponentially more weight on an estimator depending on its accuracy of estimating
the return distribution. Since we don’t know the ‘true’ return distribution, we use the KL-
divergence from the posterior of a single estimator i, P(z | θi), to the posterior marginalized

over β(θ), i.e. l(θi, β) ≜ DKL

( ∫
Θ

∫
Z z dP(z | θ) dβ(θ) ||

∫
Z z dP(z | θi)

)
, as the proxy of

9
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Figure 3: Return distributions of a0 and a1 for 0, 1000, 5000 and 10000 data points (n)
respectively. The blue dashed line is the categorical approximation of Z(s0, a0) and
Z(s0, a1) respectively. The thick orange line is the marginal posterior

∫
Θ P(z | θ) dβ(θ) with

SENTINEL-4. The thin lines are the posteriors of the individual estimators.

estimation loss of estimator i. FTRL selects estimator i with weight

wi =
exp

(
λl(θi, β)

)
∑K

j=1wj

, (2)

λ ∈ [0,∞) is a regularising parameter that determines to what extent estimators far away
from the marginal estimator should be penalised. If λ → 0, we obtain standard model
averaging. If λ→∞, it reduces to greedy selection.

Having computed the weightsw (Line 16), we compute the weighted composite risk mea-
sure by first computing the aleatory risk of each of the estimators, QA

i (st, a) =
∫
Z UA(z) dP(z | θi)

(Line 18), and then the composite risk is computed by QC(st, a) = UE(w · QA(st, a))
(Line 20). Here, · : RK ×RK → RK is the pointwise product. We experimentally show that
performing FTRL with a reasonable λ value, namely 1, leads to better performance.

SENTINEL-K reduces to a risk-neutral algorithm if we choose both UA, UE as identity
functions, and to additive risk-sensitive algorithm if we choose UE as identity. Designing it to
accommodate composite risk provides us this flexibility. We use risk-neutral SENTINEL-K
to validate its efficiency to estimate return distributions, and the one with composite CVaR
risk to perform risk-sensitive RL tasks.

6. Experimental Evaluation

In this section, we experimentally validate the performance of risk-neutral SENTINEL-K in
terms of estimating the return distribution of different actions and improvement of FTRL
over model averaging or greedy model selection. We also test the risk-sensitive performance
of SENTINEL-K with composite CVaR risk in a large enough environment with continuous
state space. Settings for each of these three experiments and results are elaborated in
corresponding subsections. In all the experiments, we use 4 CDQNs in the ensemble and
call it SENTINEL-4.

Return Distribution Estimation. In order to demonstrate uncertainty estimation and
convergence in distribution of SENTINEL-K framework, we test SENTINEL-4 on an MDP
environment with known multimodal return distribution. The MDP contains three states
and two actions such that the return distribution of a0 from state s0 is a mixture of Gaus-
sians Z(s0, a0) ∼

∑N
i=0ΦiN (µi, σi) and the return distribution of action a1 is Z(s0, a1) ∼
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Figure 4: Shows convergence in distribution of SENTINEL-4 (risk-neutral) and VDQN
by measuring the Wasserstein distance between the categorical approximation of
Z(s0, a0), Z(s0, a1) and the estimated distributions by the two agents, for each action.

0 20000 40000 60000 80000 100000
Time steps

103

2 × 103

3 × 103

4 × 103

#
 F

al
ls

 (i
n 

lo
g 

sc
al

e)

= 4.6
= 1.0
= 0.1
= 0.01

Figure 5: Performance and convergence of SENTINEL-4 (risk-neutral) for different param-
eter values of λ. Shown is the number of falls in the CartPole environment. Experimental
results are computed over 20 runs with different initialisation and the shaded region repre-
sents µt ± σt.

N (µ1, σ1). Here, Φ = [0.5, 0.5], µ = [1.0, 0.95], σ = [0.1, 0.1]. Figure 3 shows convergence in
distribution of SENTINEL-4. We observe that SENTINEL-4 estimates the return distribu-
tions of both the actions considerably well after using 5000 data points.

In Figure 4, we further illustrate the Wasserstein distance of the distributions estimated
by risk-neutral SENTINEL-4 and VDQN algorithms from the true return distribution. We
show that the VDQN fails to converge to the true return distribution whereas SENTINEL-4
converges to the true return distribution in significantly less number of steps.

FTRL vs. Average vs. Greedy. In order to demonstrate the performance of the model
selection algorithm, we evaluate SENTINEL-4 in the CartPole-v0 environment (Brockman
et al., 2016). This environment is a common testbed for continuous state-space RL tasks.
In the environment, a reward of 1 is attained for every time step the pole is kept upright. If
the pole falls to either of the sides or if the number of time steps reaches 200, the episode is
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Table 1: Performance of risk-neutral (VDQN, CDQN, SENTINEL-4), and risk-sensitive
(SENTINEL-4 with additive and composite CVaRs) for highway-v1 with 10 vehicles. Re-
sults are reported over 20 runs. SENTINEL-4 with composite CVaR performs better.

Agent Value ±σ Aleatory metric ±σ # crashes ±σ
VDQN risk-neutral 23.30± 1.59 14.29± 3.60 1252.33± 761.85
CDQN risk-neutral 25.96± 2.27 19.50± 6.43 839.53± 671.70

SENTINEL-4 risk-neutral 26.56± 1.45 20.88± 5.58 617.11± 447.89
SENTINEL-4 additive 26.82± 1.87 21.54± 6.24 645.55± 570.58
SENTINEL-4 composite 27.43± 0.60 24.16± 2.40 341.18± 196.13

terminated. This means that the undiscounted return attained per episode is within [0, 200]

and so we chose Vmin = 0, Vmax = 1−γ200

1−γ as the histogram support of CDQN.

We choose [0.01, 0.1, 1.0, 4.6] as the different values of the regularising hyperparameter
λ. As λ → 0, we are essentially doing standard model averaging. We expect this to have
average performance since all estimators are weighted equally. This means that it might
be overly sensitive to estimator outliers. As λ → ∞, model selection gets greedily biased
towards the best average estimator. In fact, we expect performance to be poor when λ is
too high since it is putting almost all weight on one single estimator while not providing
other estimators a chance to improve. A sound value of λ would be one that excludes
outlier estimators while still involving most of the other estimators. We run each of the
experiments for 105 steps and average the results over 20 runs. Figure 5 shows performance
in terms of cumulative # Falls (lower is better) for the λ values with α = 0.25. We observe
that FTRL with reasonable λ = 1.0 shows better performance, i.e. less number of falls,
than the ones with large λ = 4.6 and small λ’s 0.01 and 0.1. We also observe that for λ = 1
the variance of the total number of falls is significantly less than that of other values. This
indicates stability of performance.

Risk-sensitive Performance. In order to demonstrate performance in a larger domain,
we opt to evaluate SENTINEL-4 in the highway (Leurent, 2018). Highway is an environment
developed to test RL for autonomous driving. We use a version of the highway-v1 domain
with five lanes, and ten vehicles in addition to the ego vehicle. In this environment, the
episode is terminated if any of the vehicles crash or if the time elapsed is greater than 40
time steps. The reward function is a combination of multiple factors, including staying in
the right lane, the ego vehicle speed, and the speed of the other vehicles.

We test the risk-neutral CDQN and VDQN algorithms along with SENTINEL-4 with
both additive and composite CVaRs. The typical performance metric for this scenario is
the expected discounted return Eπ

µ[R]. In order to test the risk-sensitive performance, we
use two metrics. In order to measure aleatory risk UA[R |π, µ], we use CVaR as UA with
threshold α = 0.25. The CVaR metric is a statistic of the left-tail of the return distribution
and higher values would mean better performance in the 25% worst-cases of performance.
Finally, as a proxy for the epistemic risk, we use the number of crashes (lower is better).

Experimental results are illustrated in Table 1 and Figure 6. From Table 1, we observe
that our algorithm with composite risk achieves a higher value, higher estimate of aleatory
risk, and less number of crashes. Thus, SENTINEL-4 with composite CVaR aces the com-
peting algorithms in all the three metrics of risk-sensitive and risk-neutral performances.
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Figure 6: The total number of crashes in highway environment with 10 vehicles over 20 runs
and horizon 106. Less #crashes indicate better risk-sensitive performance and the shaded
region represents µt ± σt.

Additionally, we observe that the variance of performance metrics over 20 runs is the least
for our algorithm with composite CVaR measure. This shows the stability of our algorithm
which is another demonstration of good risk-sensitive performance. Figure 6 resonates with
these observations in terms of the total number of crashes.

Summary of Results. Figure 4 shows that SENTINEL-K framework estimates even
multimodal return distributions more efficiently than the classical distributional RL algo-
rithms, such as VDQN. Figure 5 demonstrates that selecting λ is important in bootstrapped
RL. We observe that it yields better performance over model averaging (λ→ 0) and greedy
selection (λ → ∞). Figure 6 shows the risk-sensitive performance of VDQN, CDQN, and
SENTINEL-4 with risk-neutral, additive and composite CVaR risks on a large continuous
state environment. SENTINEL-4 with composite risk outperforms competing algorithms in
terms of the achieved value function and estimated aleatory risk. It causes the least number
of crashes than competing algorithms.

7. Discussions

In this paper, we study the problem of risk-sensitive RL. We propose two main contributions.
The first is the composite risk formulation that quantifies the holistic effect of aleatory and
epistemic risk involved in the learning process. With a reductive experiment, we show
that composite risk estimates the total risk involved in a problem more accurately than the
additive formulation. The other one is SENTINEL-K which ensembles K distributional RL
estimators, namely CDQNs, to provide an accurate estimate of the return distribution. We
also reintroduce FTRL from bandit literature as a means of model selection. FTRL weighs
each estimator differently depending on how far away they are from the average estimator.
This leads to a better estimate of the composite risk over return. FTRL leads to better
experimental performance than greedy selection and model averaging. Experiments also
show that SENTINEL-K even in a risk-neutral setting estimates the return distribution of
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all the actions better, and also achieves superior risk-sensitive performance while used with
composite CVaR estimate.

Motivated by the experimental performances of SENTINEL-K, we aim to investigate
the theoretical properties of FTRL-driven bootstrapped distributional RL with and without
composite risk estimates.
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ment learning with quantile regression. In Thirty-Second AAAI Conference on Artificial
Intelligence, 2018b.

Stefan Depeweg, Jose-Miguel Hernandez-Lobato, Finale Doshi-Velez, and Steffen Udluft.
Decomposition of uncertainty in bayesian deep learning for efficient and risk-sensitive
learning. In International Conference on Machine Learning, pages 1192–1201, 2018.

Armen Der Kiureghian and Ove Ditlevsen. Aleatory or epistemic? does it matter? Struc-
tural safety, 31(2):105–112, 2009.

Bradley Efron and Robert Tibshirani. The bootstrap method for assessing statistical accu-
racy. Behaviormetrika, 12(17):1–35, 1985.

Hannes Eriksson and Christos Dimitrakakis. Epistemic risk-sensitive reinforcement learning.
arXiv preprint arXiv:1906.06273, 2019.

Stefan Faußer and Friedhelm Schwenker. Neural network ensembles in reinforcement learn-
ing. Neural Processing Letters, 41(1):55–69, 2015.

M. Friedman and L. J. Savage. The Utility Analysis of Choices Involving Risk. The Journal
of Political Economy, 56(4):279, 1948.

Javier Garcıa and Fernando Fernández. A comprehensive survey on safe reinforcement
learning. Journal of Machine Learning Research, 16(1):1437–1480, 2015.

Matthias Heger. Consideration of risk in reinforcement learning. In William W. Cohen
and Haym Hirsh, editors, Machine Learning Proceedings 1994, pages 105–111. Morgan
Kaufmann, San Francisco (CA), 1994.

Ronald A Howard and James E Matheson. Risk-sensitive markov decision processes. Man-
agement science, 18(7):356–369, 1972.

Ravi Kumar Kolla, Prashanth L. A., Sanjay P. Bhat, and Krishna P. Jagannathan. Concen-
tration bounds for empirical conditional value-at-risk: The unbounded case. Operations
Research Letters, 47(1):16–20, 2019.

Edouard Leurent. An environment for autonomous driving decision-making. https://

github.com/eleurent/highway-env, 2018.

A Rupam Mahmood, Dmytro Korenkevych, Gautham Vasan, William Ma, and James
Bergstra. Benchmarking reinforcement learning algorithms on real-world robots. In Con-
ference on robot learning, pages 561–591. PMLR, 2018.

Steven I Marcus, Emmanual Fernández-Gaucherand, Daniel Hernández-Hernandez, Stefano
Coraluppi, and Pedram Fard. Risk sensitive markov decision processes. In Systems and
control in the twenty-first century, pages 263–279. Springer, 1997.

15

https://github.com/eleurent/highway-env
https://github.com/eleurent/highway-env


ERIKSSON, BASU, ALIBEIGI AND DIMITRAKAKIS

O. Mihatsch and R. Neuneier. Risk-sensitive reinforcement learning. Machine learning, 49
(2-3):267–290, 2002.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.
Human-level control through deep reinforcement learning. nature, 518(7540):529–533,
2015.

Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. Deep exploration
via bootstrapped dqn. In Advances in neural information processing systems, pages 4026–
4034, 2016.

Aldo Pacchiano, Philip Ball, Jack Parker-Holder, Krzysztof Choromanski, and Stephen
Roberts. On optimism in model-based reinforcement learning. arXiv preprint
arXiv:2006.11911, 2020.

Xinlei Pan, Yurong You, Ziyan Wang, and Cewu Lu. Virtual to real reinforcement learning
for autonomous driving. arXiv preprint arXiv:1704.03952, 2017.

Lerrel Pinto, James Davidson, Rahul Sukthankar, and Abhinav Gupta. Robust adversarial
reinforcement learning. In Doina Precup and Yee Whye Teh, editors, Proceedings of the
34th International Conference on Machine Learning, volume 70 of Proceedings of Machine
Learning Research, pages 2817–2826, International Convention Centre, Sydney, Australia,
06–11 Aug 2017. PMLR.

L. A. Prashanth and Michael C. Fu. Risk-sensitive reinforcement learning: A constrained
optimization viewpoint. arXiv, 2018.

R Tyrrell Rockafellar, Stanislav Uryasev, et al. Optimization of conditional value-at-risk.
Journal of risk, 2:21–42, 2000.

Mark Rowland, Robert Dadashi, Saurabh Kumar, Rémi Munos, Marc G Bellemare, and
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