
HAL Id: hal-03150817
https://hal.science/hal-03150817v2

Submitted on 8 Mar 2021 (v2), last revised 19 Jan 2022 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A coordination-free, convergent, and safe replicated tree
Sreeja S Nair, Filipe Meirim, Mário Pereira, Carla Ferreira, Marc Shapiro

To cite this version:
Sreeja S Nair, Filipe Meirim, Mário Pereira, Carla Ferreira, Marc Shapiro. A coordination-free,
convergent, and safe replicated tree. [Research Report] RR-9395, LIP6, Sorbonne Université, Inria de
Paris; Universidade nova de Lisboa. 2021, pp.36. �hal-03150817v2�

https://hal.science/hal-03150817v2
https://hal.archives-ouvertes.fr

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
93

95
--

FR
+E

N
G

RESEARCH
REPORT
N° 9395
February 2021

Project-Team DELYS

A coordination-free,
convergent, and safe
replicated tree
Sreeja S. Nair, Filipe Meirim, Mário Pereira, Carla Ferreira, Marc
Shapiro

RESEARCH CENTRE
PARIS

2 rue Simone Iff - CS 42112
75589 Paris Cedex 12

A coordination-free, convergent, and safe
replicated tree

Sreeja S. Nair∗, Filipe Meirim†, Mário Pereira‡, Carla Ferreira§,
Marc Shapiro¶

Project-Team DELYS

Research Report n° 9395 — February 2021 — 36 pages

Abstract: The tree is an essential data structure in many applications. In a distributed
application, such as a distributed file system, the tree is replicated. To improve performance
and availability, different clients should be able to update their replicas concurrently and without
coordination. Such concurrent updates converge if the effects commute, but nonetheless, concurrent
moves can lead to incorrect states and even data loss. Such a severe issue cannot be ignored;
ultimately, only one of the conflicting moves may be allowed to take effect. However, as it is rare,
a solution should be lightweight. Previous approaches would require preventative cross-replica
coordination, or totally order move operations after-the-fact, requiring roll-back and compensation
operations.
In this paper, we present a novel replicated tree that supports coordination-free concurrent atomic
moves, and provably maintains the tree invariant. Our analysis identifies cases where concurrent
moves are inherently safe, and we devise a lightweight, coordination-free, rollback-free algorithm
for the remaining cases, such that a maximal safe subset of moves takes effect.
We present a detailed analysis of the concurrency issues with trees, justifying our replicated tree
data structure. We provide mechanized proof that the data structure is convergent and maintains
the tree invariant. Finally, we compare the response time and availability of our design against the
literature.

Key-words: Distributed data structures, Conflict-free Replicated Data Type, Formal verification

∗ Sorbonne Université—LIP6 & Inria
† NOVA LINCS, Universidade Nova de Lisboa
‡ NOVA LINCS, Universidade Nova de Lisboa
§ NOVA LINCS, Universidade Nova de Lisboa
¶ Sorbonne Université—LIP6 & Inria

Un arbre répliqué, convergent et sûr sans coordination

Résumé : L’arbre est une structure de données essentielle. Quand l’application est distribuée,
par exemple dans un système de fichiers distribué, l’arbre est répliqué. Pour améliorer les per-
formances et la disponibilité, les différents clients doivent pouvoir mettre à jour leurs répliques
simultanément et sans coordination. Celles-ci convergent si les mises à jour commutent entre
elles ; néanmoins, même dans ce cas, des opérations “move” concurrentes peuvent conduire à
des états incorrects, et même à la perte de données. Au bout du compte, entre deux opérations
“move” en conflit, seul l’une des deux peut être autorisée à prendre effet. Cependant, comme ce
cas est rare, la solution doit être légère. Les approches précédentes nécessitaient une coordination
préventive des répliques, ou des retours en arrière à posteriori.

Dans cet article, nous présentons un nouvel arbre répliqué, qui met en œuvre une opération
“move” atomique sans coordination, et dont nous prouvons qu’il maintient l’invariant d’arbre.
Notre analyse identifie les cas oú les “move” concurrents sont intrinsèquement sûrs, et proposons
un algorithme léger, sans coordination et sans retour-arrière, pour les autres cas, de sorte qu’un
sous-ensemble maximal et sûr de “move” prenne effet.

Nous présentons une analyse détaillée des problèmes de cohérence dans les arbres. Nous
fournissons une preuve mécanisée que la structure des données est convergente et maintient
l’invariant d’arbre. Enfin, nous comparons le temps de réponse et la disponibilité de notre
concept à la littérature.

Mots-clés : Structures de données distribuées, CRDT, Vérification formelle

A coordination-free, convergent, and safe replicated tree 3

1 Introduction

Concurrent data structures are an important programming abstraction; designing concurrent
data structures with non-trivial properties is complex. The tree data structure is used in many
applications. For instance, a file system is a tree of directories and files. A move (or rename)
operation transfers a subtree atomically by changing its parent. Similarly, a rich text editor
maintains a DOM tree of blocks with attributes. Text editing modifies the tree structure; in
particular a drag and drop can move a subtree from one parent to another.

A tree has a particularly strong structural invariant: nodes are unique, there is a single root,
each node has a single parent and has a path to the root, and the child-parent graph is acyclic.

Much current work in concurrent data structure design focuses on lock-free or wait-free co-
ordination using primitives such as compare-and-swap (CAS). However, in a distributed and
replicated setting, even CAS is too strong. Consider for instance a file system replicated to sev-
eral locations over the globe, or through a mobile network. Network latency between continents
can be anywhere between 0.1 and 0.5 seconds; the mobile network may disconnect completely. To
ensure availability, a user of the file system must be able to update a replica locally, and update
without coordinating at all with other replicas. Replicas converge eventually by exchanging their
updates asynchronously.

It is a major challenge to maintain safety in this context; specifically, in this case, to maintain
the tree structure. Concurrent atomic moves (also called renames in a file system) are especially
problematic [3]. Consider for instance a tree composed of the root and children a and b. One
replica moves a underneath b, while concurrently (without coordination) the other replica moves b
under a. Näıvely replaying one replica’s updates at the other produces an a−b cycle disconnected
from the root.

This is a widespread issue; indeed, many replicated file systems have serious anomalies, includ-
ing incorrect or diverged states [16, Section 6 for some examples], violating the tree invariant [3].
However, concurrent moves are relatively rare in these systems1 and it is important that we
design a solution that has minimal overhead.

Solutions in the literature include non-atomic moves [16] (resulting in duplicate copies), re-
introducing coordination [14] (the first to acquire lock will proceed; the other aborts), or requiring
roll-backs [10] (the move operation ordered first proceeds, and all concurrent operations are rolled
back). Najafzadeh et al. [14] shows that there can be no coordination-free solution to this problem
that is not somehow anomalous.

To support low latency, high availability and safety, this paper introduces a new light-weight,
coordination-free, safe, replicated CRDT [15] tree data structure, called Maram. Maram supports
the usual operations to query the state, to add or to remove a node, and also supports an
atomic move operation. The price to pay is that some move operations “lose”, i.e., have no
effect; achieving the same end result as previous correct approaches but at a lower cost.

Query and add are unremarkable. Remove marks the corresponding node as a “tombstone,”
but leaves it in the data structure, as is common in replicated data structures [1]. We show
that moves can be divided into two cases: two concurrent up-moves are always safe. We devise
a deterministic arbitration rule for conflicts of down-move: against a concurrent up-move, the
up-move wins, and the down-move loses; against a concurrent down-move, the down-move with
the highest priority (as defined in Section 4.2) wins and the other loses.

We prove Maram to be safe, even in the presence of concurrent updates (including moves),
despite being coordination-free and without any roll-backs. Using the Why3 proof assistant, we
apply the CISE proof methodology [6], with the following steps:

1For example, a file system trace we analyzed contained 1198823 operations in total, 20883 create operations,
49509 remove operations and just 547 move operations (70939 structural operations altogether).

RR n° 9395

4 Sreeja S. Nair, Filipe Meirim, Mário Pereira, Carla Ferreira, Marc Shapiro

1. Sequential safety: We show that the initial state satisfies the tree invariant, and that every
update operation has a precondition strong enough to maintain the tree invariant.

2. Convergence: We show that any two operations that may execute concurrently commute.
3. Precondition stability: We show that for any two operations u, v that may execute concur-

rently, u preserves the precondition of v, and vice-versa.
Consequently, every state reachable from the initial state, sequentially or concurrently, satisfies
the tree invariant.2

Maram satisfies an additional desirable property, monotonic reads [18]. This requires that a
replica that has delivered some update will not roll it back.

This paper presents the principles of Maram, proves its correctness, and compares the perfor-
mance of Maram to competing solutions in a simulated geo-replicated environment. The response
time of Maram is the same as a näıve, uncoordinated design, and up to 15 times faster than (safe)
lock-based designs. Furthermore, Maram stabilises (updates become definitive) three orders of
magnitude faster than a safe rollback-based design.

This paper proceeds as follows. Section 2 formalises our system model, explains our proof
methodology, and defines the tree invariant. In Section 3 we discuss the sequential correctness
of a replicated tree. Section 4 proceeds with the proof of convergence and precondition stability,
resulting in concurrent safety. In Section 5 we compare the performance of Maram with compet-
ing designs. Section 6 overviews the related literature. Finally, in Section 7 we discuss lessons
learned and their significance.

2 Preliminaries

In this section we describe our system model and give a formal definition of the desired properties.

2.1 System Model

A system is a set of processes, distributed over a (high-latency, failure-prone) communication
network. The processes have disjoint memory and processing capabilities, and they communicate
through message passing.

2.1.1 State and invariant

The shared tree is replicated at a number of processes, called its replicas. The information
managed by a replica on behalf of the data structure is called its local state.

The tree data structure is associated with an invariant, a predicate that must always be
satisfied in the local state of a replica. Although evaluated locally, an invariant describes a
global property, in the sense that it must be true at all replicas.

2.1.2 Operations

An unspecified client application submits an operation at some replica of its choice, which we call
the origin replica of that operation. For availability, the origin replica carries out the operation
without waiting to coordinate with other replicas.

The specification of an update operation comprises a precondition that indicates the domain
of the operation and a postcondition that specifies the state after the operation executes. As

2 We furthermore claim (without proof) that Maram is live, in the sense that, if every message sent is eventually
delivered to some replica r1, then, given some update originating at a replica r2, its postcondition eventually takes
effect at replica r1.

Inria

A coordination-free, convergent, and safe replicated tree 5

discussed in more detail later, when the operation executes with no concurrency, its precondition
guarantees that the operation terminates with the postcondition satisfied.

2.1.3 Updates

When a client submits an operation, the origin replica generates an effector (a side-effecting
lambda), atomically applies the effector to the origin state, and sends the effector to all the other
replicas. Every replica eventually receives and delivers the effector, atomically applying it to its
own local state.3

We assume that effectors are delivered in causal order. This means that, if some replica
that observed an effector u later generates an effector v, then any replica that observes v has
previously observed u.4

In what follows, we ignore queries, and identify an update operation with executing its effector
at all replicas.

2.2 Properties and associated proof rules

Consider some data structure (in this case, Maram) characterised by a safety invariant. We say
that a state is local-safe if it satisfies the data structure’s invariant. An update is op-safe if,
starting from a local-safe state, it leaves it a local-safe state. The data structure is safe if every
update is op-safe. According to the CISE logic [6], a distributed data structure is safe if 1. it
is safe in sequential execution, 2. converges 3. and the precondition of each operation is stable
under the effect of any other concurrent operation. We now detail these conditions.

2.2.1 Sequential safety

Consider an environment restricted to sequential execution (there is no concurrency). If the
initial state is local-safe at every replica, and each update is op-safe, it follows that the data
structure is safe under sequential execution. Classically, sequential op-safety implies that each
operation’s precondition satisfies the weakest-precondition of the invariant with respect to the
operation [4]. Let us refine the proof obligations of this sequential safety step, i.e., local-safety
under sequential execution.

The set of reachable states comprises the initial state, and all states transitively reachable
as a result of executing updates sequentially. Formally, we note the set of reachable states Σ, a
state σ, the initial state σinit, an update u, the precondition of update u, Preu, and the set of
updates U . When execution is sequential:

σinit ∈ Σ (1)

∀u ∈ U, σ ∈ Σ � σ |= Preu =⇒ u(σ) ∈ Σ (2)

where |= is read satisfies. Σ is the smallest set satisfying (1) and (2) through a sequence of legal
updates from the initial state. If Inv denotes the invariant, then we want

∀σ ∈ Σ � σ |= Inv (3)

Classically, if the initial state is safe and all sequential updates preserve the invariant, by
induction, the data structure is sequentially safe. Formally,

σinit |= Inv (4)

∀u ∈ U, σ, σ′ ∈ Σ � σ |= Preu ∧ u(σ) = σ′ =⇒ σ′ |= Inv (5)

3 Since at this point the system is committed to this operation, the operation’s precondition must be satisfied
at the remote replica.

4 In Section 7 we consider relaxing this requirement to eventual consistency, which states only that all updates
are eventually delivered at all replicas.

RR n° 9395

6 Sreeja S. Nair, Filipe Meirim, Mário Pereira, Carla Ferreira, Marc Shapiro

2.2.2 Convergence

Let us now turn to concurrent execution, and consider the proof obligations for convergence.
If a replica initiates update u, while concurrently another replica initiates v, the first replica

executes them in the order u; v and the second one in the order v;u. To prevent divergence, the
Strong Eventual Consistency (SEC) property [15] requires that any two replicas that delivered
the same updates are in equivalent states. To satisfy SEC, effector functions are designed to
commute, i.e., both orders above leave the data in the same state. We define commutativity as
follows:

∀u1, u2 ∈ U, σ, σ1, σ2 ∈ Σ � u1(σ) = σ1 ∧ u2(σ) = σ2 =⇒
u2(σ1) = u1(σ2)

(6)

2.2.3 Precondition stability

The final proof obligation for concurrent execution, is that the precondition of any effector is
stable against (i.e., not negated by) an effector that may execute concurrently [6]: consider two
updates u and v; if the execution of u does not make the precondition of v false, nor vice-versa
(precondition stability), then executing u and v concurrently is op-safe. This must be true for
all concurrent pairs of operations. Formally,

∀u1, u2 ∈ U, σ, σ′ ∈ Σ � σ |=
(Inv ∧ Preu1 ∧ Preu2) ∧ u1(σ) = σ′ =⇒ σ′ |= Preu2

(7)

This so-called CISE rule is a variant of rely-guarantee reasoning, adapted to a replicated system
where effectors execute atomically.

2.2.4 Mechanized verification

In order to mechanically discharge the proof obligations listed above, we use Why3 system [5],
augmented with the CISE3 plug-in [12]. Why3 is a framework used for the deductive verification
of programs. The CISE3 plug-in automates the three proof rules described above, and generates
the required sequential-safety, commutativity and stability checks. Why3 then computes a set
of proof obligations, that are discharged via external theorem provers.

3 Sequential specification of a tree

The specification of a data structure consists of its state, a set of operations, and an invariant.
In this section, we will develop a sequentially-safe specification of a tree.

3.1 State

The state of a tree data structure consists of a set of nodes, Nodes, and a relation from a child
node to its parent, indicated by →. The ancestor relation, →∗ is defined as

∀a, n ∈ Nodes � n→∗ a =⇒ n→ a ∨
∃p ∈ Nodes � n→ p ∧ p→∗ a (8)

At initialization, the set of nodes consists of a single root node. The parent of the root is root
itself. The initial state of the tree is thus Nodes = {root} where root → root .

Inria

A coordination-free, convergent, and safe replicated tree 7

A crucial aspect of the abstract representation of the tree is how to express the relation
between nodes. Three choices are possible, either maintain a child-to-parent relation, a parent-
to-child relation, or both. In particular, when implementing a tree, traversal efficiency depends
on keeping both up and down pointers [17]. Considering that child-to-parent and parent-to-
child relations describe a dual view of a tree (i.e., node p is the parent of node n iff node
n is a descendent of node p) we selected the one that leads to a simpler specification. An
advantage of using a child-to-parent relation is that it can be maintained as a function, as
the tree properties ensure that each node has a unique parent. The alternative parent-to-child
relation would require a more complex representation, e.g. a function that maps each node to
its set of direct descendants, which would impact both the simplicity of the specification and the
proof effort.

3.2 Invariant

The invariant of the tree data structure is as follows:

root ∈ Nodes ∧ root → root ∧ (Root)
∀ ∈ Nodes � n 6= root =⇒ root 6→ n

∧ ∀n ∈ Nodes � ∃p ∈ Nodes � n→ p (Parent)

∧ ∀n, p, p′ ∈ Nodes � n→ p ∧ n→ p′ =⇒ p = p′ (Unique)

∧ ∀n ∈ Nodes � n→∗ root (Reachable)

Inv , Root ∧ Parent ∧Unique ∧ Reachable (9)

Clause Root states that the root node is present in Nodes, and is the only node to be its own
parent. Clause Parent asserts that every node in the tree has a parent in the tree. Clause Unique
requires the parent of a node to be unique. Clause Reachable imposes that the root is an ancestor
of all nodes. We call this conjunction, Equation (9), the tree invariant.

A further invariant which forbids cycles (no node is an ancestor of itself, except root), can be
derived:

∀n ∈ Nodes � n 6= root =⇒ n 6→∗ n (Acyclic)

Since the parent relation inductively defines the ancestor relation, by Unique there is a unique
path to a given ancestor of a node. By Reachable, the root node is an ancestor of every node
in the tree. In this scenario, a cycle would require a node to have multiple parents, which is
prevented by Unique.

3.3 Operations

We consider the following three structural operations on a tree: add, remove and move.

Add An add operation has two arguments: the node to be added, n, and its prospective parent,
p. The add effector adds node n to Nodes and the mapping n → p to the parent relation. The
postcondition of the add effector indicates this:5

Postadd(n,p) , n ∈ Nodes ∧ n→ p (10)

To ensure the tree invariant, we derive the precondition that n is a new node and p is already
in the tree, i.e.,

Preadd(n,p) , n /∈ Nodes ∧ p ∈ Nodes (11)

5 For readability, we simplify the postcondition to express only the changes caused by the operation. The part
of the state not mentioned remains unaffected.

RR n° 9395

8 Sreeja S. Nair, Filipe Meirim, Mário Pereira, Carla Ferreira, Marc Shapiro

Precondition
Invariant clause

Root Parent Unique Reachable

add(n, p) n /∈ Nodes p ∈ Nodes n /∈ Nodes p ∈ Nodes

rem(n) n 6= root ∀n′ ∈ Nodes � n′ 6→ n true ∀n′ ∈ Nodes � n′ 6→ n

move(n, p′) n 6= root p′ ∈ Nodes true p′ ∈ Nodes ∧ p′ 6= n ∧ p′ 6→∗ n

Table 1: Precondition required by each operation to uphold specific clauses of the invariant

Let us see how this precondition is derived. If the add operation is updating a safe state,
i.e., the starting state respects the invariant, and if the precondition is satisfied, then the update
should maintain the invariant. Hereafter, we highlight the precondition clauses needed to ensure
each part of the invariant.6

Inv∧
n /∈ Nodes

Jadd(n, p)K

Postadd(n,p) ∧ Root

Inv∧
p ∈ Nodes Jadd(n, p)K

Postadd(n,p) ∧ Parent

Inv∧
n /∈ Nodes

Jadd(n, p)K

Postadd(n,p) ∧Unique

Inv∧
p ∈ Nodes Jadd(n, p)K

Postadd(n,p) ∧ Reachable

Table 1 lists the preconditions required by operations to preserve each invariant clause. With
the derived preconditions, the add operation can be specified as follows:

(Add-Operation)

Inv ∧ n /∈ Nodes ∧ p ∈ Nodes Jadd(n, p)K
Inv ∧ n ∈ Nodes ∧ n→ p

If the add operation is issued on a state that is safe and contains p and not n, then n is added
to the tree with parent p.

Remove operation Remove receives as argument a node n to be deleted. Its effector removes
node n from the set of nodes. The postcondition of the remove operation indicates this effect:

Postrem(n) , n /∈ Nodes (12)

Similarly to add, we list the predicates needed to preserve each clause of the invariant in Table 1.
The remove operation can be specified as follows:

(Remove-Operation)

Inv ∧ n 6= root ∧ ∀ n′ ∈ Nodes � n′ 6→ n Jrem(n)K
Inv ∧ n /∈ Nodes

If a remove operation is issued on a safe state where n is not root and has no children, then n
is removed from the tree.

Move operation The move operation takes two arguments: the node to be moved n, and the
new parent p′. Its effector changes the parent of node n to p′ as follows:

Postmove(n,p′) , n→ p′ (13)

6 Denoted in inference style, as in [8]. The condition above the line represents the pre-state, an update event
is noted J.K, and the condition below the line indicates the post-state.

Inria

A coordination-free, convergent, and safe replicated tree 9

To preserve the expected behaviour we require that the node to be moved is already present in
the tree. We derive the safety clauses as shown in Table 1. Formally, the move operation can be
specified as follows:

(Move-Operation)
Inv ∧ n ∈ Nodes ∧ n 6= root
∧ p′ ∈ Nodes ∧ p′ 6= n ∧ p′ 6→∗ n Jmove(n, p′)K

Inv ∧ n→ p′

For the move operation to be safe, n is not the root, p′ must be in the tree, n and p′ are
different, and p′ is not a descendant of n. These last two conditions are needed to prevent move
from creating a cycle of unreachable nodes, as we show with the following counterexample.

Consider a tree composed of nodes a and b. Root node R is the parent of node a, i.e., a→ R
and node a is the parent of node b, b→ a, and hence R is the ancestor of b, b→∗ R. Moving node
a under node b will make both a and b unreachable from the root, and also form a cycle. This
violates the invariant by invalidating the tree structure. To avoid this scenario, a precondition
is needed that prevents moving a node underneath itself. When moving node n from its current
parent to the new parent p′, p′ should not be a descendant of n, p′ 6→∗ n.

3.4 Mechanized verification of the sequential specification

The mechanical proof, using Why3, of the above sequential specification requires some extra
definitions and axioms.

To define reachability, we first define a path; a path is a sequence of nodes related by the
parent relation. We denote the set of possible sequences of nodes7 by S. The predicate determines
the validity conditions for a path s between nodes x and y in state σ. If x = y, the path has
length zero. Otherwise, the length of the path is greater than zero, where the first path element
must be x, all contiguous path elements are related by the parent relation, and node y is the
parent of the last path element. We say y is reachable from x if there exists a path from x to y.
Formally,

path(σ, x, y, s) , length(s) = 0 ∧ x = y (14)

∨ (length(s) > 0 ∧ s[0] = x∧
s[length(s)− 1]→ y ∧
∀ 0 ≤ i < length(s)− 1 � s[i]→ s[i+ 1])

reachability(σ, x, y) ,∃s ∈ S � path(σ, x, y, s) (15)

To formalize the path predicate, we define a set of axioms as shown in Table 2. Ax-
iom path to parent defines the singleton path of a node to its parent. The recursive com-
position of paths is axiomatized in path composition. The transitivity property is defined in
path transitivity. Axiom path uniqueness asserts there is a single path between two nodes. The
path exclusion expresses the conditions for excluding nodes from a path. Lastly, path separation
defines a convergence criterion essential for Why3’s SMT solvers, asserting that the direction of
the path is converging towards the root. Note that path and rank axioms are defined for non-root
nodes because the operations’ preconditions preclude applying them to the root.

We also require extra axioms to express the properties of the unaffected nodes in the case of
add and move operations as shown in Table 3. The state σadd is obtained by applying add(n, p)
operation on σ. The axiom remaining nodes add asserts that the paths already present in the
tree remain in the tree after executing the add operation. Given that move operation updates σ to

7We use s[n] to indicate the nth element in the sequence s.

RR n° 9395

10 Sreeja S. Nair, Filipe Meirim, Mário Pereira, Carla Ferreira, Marc Shapiro

Property name Definition

path to parent ∀σ ∈ Σ � ∀x, y ∈ Nodes � x→ y =⇒ ∃s ∈ S � path(σ, x, y, s) ∧ s = [x]

path composition ∀σ ∈ Σ � ∀x, y, z ∈ Nodes � ∃s1 ∈ S � path(σ, x, y, s1) ∧ y → z
=⇒ ∃s2 ∈ S � path(σ, x, z, s2) ∧ s2 = s1 + [y]

path transitivity ∀σ ∈ Σ � ∀x, y, z ∈ Nodes, s1, s2 ∈ S � path(σ, x, y, s1) ∧ path(σ, y, z, s2)
=⇒ ∃s3 ∈ S � path(σ, x, z, s3) ∧ s3 = s1 + s2

path uniqueness ∀σ ∈ Σ � ∀x, y ∈ Nodes, s1, s2 ∈ S � path(σ, x, y, s1) ∧ path(σ, x, y, s2) =⇒
s1 = s2

path exclusion ∀σ ∈ Σ � ∀x, y, z ∈ Nodes, s ∈ S � x 6→∗ y ∧ path(σ, z, y, s) =⇒ x /∈ s
path separation ∀σ ∈ Σ � ∀x, y, z ∈ Nodes, s1, s2 ∈ S � path(σ, x, y, s1) ∧ path(σ, y, z, s2) ∧ x 6=

y ∧ x 6= z ∧ y 6= z =⇒ s1 ∩ s2 = ∅

Table 2: Properties of path predicate

Property name Definition

remaining nodes add ∀σ ∈ Σ � ∀n′ ∈ Nodes, s1, s2 ∈ seq(Nodes) � n′ 6=
n ∧ path(σ, n′, root , s1) ∧ path(σadd, n

′, root , s2) =⇒ s1 = s2

descendants move ∀σ ∈ Σ � ∀n′ ∈ Nodes, s1, s2 � path(σ, n′, c, s1) ∧ path(σmove, n
′, c, s2) =⇒

s1 = s2

remaining nodes move σ ∈ Σ � ∀n′ ∈ Nodes, s1, s2 ∈ seq(Nodes) � n′ 6→∗
n ∧ path(σ, n′, root , s1) ∧ path(σmove, n

′, root , s2) =⇒ s1 = s2

Table 3: Properties of unaffected nodes for add and move operations, σadd = add(n, p)(σ) and
σmove = move(n, p)(σ)

Inria

A coordination-free, convergent, and safe replicated tree 11

σmove, axiom descendants move asserts that the descendants of the node being moved continue
to be its descendants, and remaining nodes move asserts that other paths are not affected.
These axioms are defined to ensure that the paths to the root, from nodes unaffected by move
or add operations, remain unchanged. The specification proven using Why3 is available at [13].

4 Concurrent tree specification

In this section, we discuss the concurrent safety and convergence of the tree. In a sequential
execution environment, as seen in Section 3, if the initial state and each individual update are
safe, then all reachable states are safe. This is not true when executing concurrently on multiple
replicas. In this case, as explained in Section 2.2, there are two extra proof obligations: ensuring
that different replicas converge, despite effectors being executed concurrently in different orders,
and ensuring that safety of an update is not violated by a concurrent update. First we discuss
concurrent safety; convergence is deferred to Section 4.3, since the conflicts occurring in the latter
can be addressed using the policies discussed in the former.

4.1 Precondition stability

We use the precondition stability rule of CISE logic (Section 2.2) to analyze the concurrent safety
of our tree data structure. For each operation, we analyze whether it negates the precondition
of any other concurrent operation. Formally, operation op1 is stable under operation op2 if,

Inv ∧ Preop1 ∧ Preop2 Jop2K
Inv ∧ Postop2 ∧ Preop1

(16)

We first check for stability in the sequential specification. If this fails, then it is necessary to
correct the specification, so that it does satisfy stability.

4.1.1 Stability of add operation

Concurrent adds Let us check the stability of the precondition of add against itself. Consider
two operations add(n1, p1) and add(n2, p2). Using Equation (16),

Preadd(n1,p1) , n1 /∈ Nodes ∧ p1 ∈ Nodes

Preadd(n2,p2) , n2 /∈ Nodes ∧ p2 ∈ Nodes

Postadd(n2,p2) , n2 ∈ Nodes ∧ n2 → p2

Inv ∧ Preadd(n1,p1) ∧
Preadd(n2,p2) ∧ n1 6= n2 Jadd(n2, p2)K

Inv ∧ Postadd(n2,p2) ∧ Preadd(n1,p1)

(17)

The highlighted clause n1 6= n2 is required for the stability condition. Indeed, the sequential
specification does not disallow adding the same node at different replicas, and the clause n /∈
Nodes is unstable. Thus the analysis highlights a subtle error.

Concurrent remove Let us check the stability of the precondition of add(n1, p1) against a
concurrent rem(n2). Using (16), we get:

Preadd(n1,p1) , n1 /∈ Nodes ∧ p1 ∈ Nodes

Prerem(n2) , n2 6= root ∧ ∀ n′ ∈ Nodes � n′ 6→ n2

Postrem(n2) , n2 /∈ Nodes

RR n° 9395

12 Sreeja S. Nair, Filipe Meirim, Mário Pereira, Carla Ferreira, Marc Shapiro

Property name Definition

skipping abstraction ∀n ∈ Nodescon � n /∈ TS ∧ 6 ∃n′ ∈ Nodescon�
n′ ∈ TS ∧ n→∗ n′ ⇐⇒ n ∈ Nodesabs

keeping abstraction ∀n ∈ Nodescon � n /∈ TS ∨ ∃n′ ∈ Nodescon�
n′ /∈ TS ∧ n′ →∗ n⇐⇒ n ∈ Nodesabs

Table 4: Abstraction functions, Nodescon and Nodesabs denote the set of nodes in the concrete
and abstract state respectively

R

p

R

p

R

p
A

R

R

p

n

R

p

n

R

p
A

n

R

p

n

rem
ove p

add n to p

add
n

to
p

rem
ov

e p

Tombstone marked

Tombstone skipped

Figure 1: Resolving conflict of concurrent remove and add

Inv ∧ Preadd(n1,p1) ∧
Prerem(n2) ∧ n2 6= p1 Jrem(n2)K

Inv ∧ Postrem(n2) ∧ Preadd(n1,p1)

(18)

In the sequential specification, clause p1 ∈ Nodes in the precondition of add is unstable against
a remove of its parent; performing those operations concurrently would be unsafe.

To fix this, we see two possible approaches. The classical way is to strengthen the precondition
with coordination, for instance locking or using CAS to avoid concurrency. We reject this, as
it conflicts with our objective of availability under partition. Our alternative is to weaken the
specification thanks to coordination-free conflict resolution. We apply a common approach, which
is to mark a node as deleted, as a so-called tombstone, without actually removing it from the
data structure.8

We now distinguish a concrete state and its abstract view. We modify the specification to
include a set of tombstones, TS (initially empty), in the concrete state. The abstract state is
the resolved state as seen by some application using Maram. Depending on the requirements,
the abstraction function, can either skip the tombstoned node including its descendants (the set
of nodes that has the tombstoned node as an ancestor) or keep the tombstoned node in the pres-
ence of non-tombstoned descendants; we call them skipping abstraction and keeping abstraction
respectively, with definitions as shown in Table 4.

To illustrate tombstones, consider the tree consisting of the root and a single child, as shown
in Figure 1. Let us assume that the application chooses keeping abstraction. One replica performs
a remove of node p, while concurrently another replica adds n under p. In the first replica, node

8 Ideally, one will remove the tombstone at some safe time in the future; this is non-trivial [2] and out of the
scope of this paper.

Inria

A coordination-free, convergent, and safe replicated tree 13

p is marked as a tombstone in the concrete state (the shaded box). Thus, the abstract state
shows node p removed. When the replicas exchange their updates, they converge to the state
shown in the right-hand side of Figure 1. In the concrete state, node p is marked as a tombstone;
however, since its descendant n is not a tombstone, now p is “revived” in the abstract view.

If the application chooses skipping abstraction, the final abstract state will contain only the
root node, skipping the tombstoned node and it’s non-tombstoned children.

Accordingly, let us update the postcondition for remove:

Postrem(n) , n ∈ TS (19)

Let us now derive the predicates needed to preserve each clause of the invariant in this refined
case.

Inv ∧ n 6= root Jrem(n)K

Postrem(n) ∧ Root

Inv ∧ true Jrem(n)K
Postrem(n) ∧ Parent

Inv ∧ true Jrem(n)K
Postrem(n) ∧Unique

Inv ∧ true Jrem(n)K
Postrem(n) ∧ Reachable

To maintain sequential safety in the modified remove specification, the precondition forbids
removing the root node. As the remove operation doesn’t alter the tree structure, reachability
is not impacted. The refined specification of the remove operation is as follows:

(Remove-Operation)

Inv ∧ n 6= root Jrem(n)K
Inv ∧ n ∈ TS

Concurrent move Next we check the stability of the precondition of add under a concurrent
move operation. Let us consider two operations add(n1, p1) and move(n2, p

′
2). Using (16), we

get

Preadd(n1,p1) , n1 /∈ Nodes ∧ p1 ∈ Nodes

Premove(n2,p
′
2)
, n2 ∈ Nodes ∧ n2 6= root ∧ p′2 ∈ Nodes

∧ p′2 6= n2 ∧ p′2 6→∗ n2

Postmove(n2,p
′
2)
, n2 → p′2

Inv ∧ Preadd(n1,p1) ∧
Premove(n2,p

′
2)
∧ true Jmove(n2, p

′
2)K

Inv ∧ Postmove(n2,p
′
2)
∧ Preadd(n1,p1)

(20)

We see that the precondition of add is stable with a concurrent move.

4.1.2 Stability of remove operation

Concurrent add Consider the sequential specification of two operations rem(n1) and add(n2, p2).
Using (16), we get

Prerem(n1) , n1 6= root ∧ ∀ n′ ∈ Nodes � n′ 6→ n1

Preadd(n2,p2) , n2 /∈ Nodes ∧ p2 ∈ Nodes

Postadd(n2,p2) , n2 ∈ Nodes ∧ n2 → p2

RR n° 9395

14 Sreeja S. Nair, Filipe Meirim, Mário Pereira, Carla Ferreira, Marc Shapiro

Inv ∧ Prerem(n1) ∧ Preadd(n2,p2) ∧ n1 6= p2 Jadd(n2, p2)K

Inv ∧ Postadd(n2,p2) ∧ Prerem(n1)

(21)

We see that the clause that node n1 has to be a leaf node is not satisfied if n1 = p2 since add
operation introduces a child node under p2. However, the refined specification with tombstones
as described above doesn’t require the node n1 to be a leaf node. So that solution fixes this
conflict as well.

Concurrent remove Consider the sequential specification of two remove operations rem(n1)
and rem(n2). Using (16), we get

Prerem(n1) , n1 6= root ∧ ∀ n′ ∈ Nodes � n′ 6→ n1

Prerem(n2) , n2 6= root ∧ ∀ n′ ∈ Nodes � n′ 6→ n2

Postrem(n2) , n2 /∈ Nodes

Inv ∧ Prerem(n1) ∧ Prerem(n2) ∧ true Jrem(n2)K
Inv ∧ Postrem(n2) ∧ Prerem(n1)

(22)

We see that the remove operation is stable under a concurrent remove. Furthermore, the refined
specification is also stable since it adds n1 and n2 to TS .

Concurrent move Consider the sequential specification of two operations rem(n1) andmove(n2, p
′
2).

Using (16), we get

Prerem(n1) , n1 6= root ∧ ∀ n′ ∈ Nodes � n′ 6→ n1

Premove(n2,p
′
2)
, n2 ∈ Nodes ∧ n2 6= root ∧ p′2 ∈ Nodes

∧ p′2 6= n2 ∧ p′2 6→∗ n2

Postmove(n2,p
′
2)
, n2 → p′2

Inv ∧ Prerem(n1) ∧
Premove(n2,p

′
2)
∧ n1 6= p′2 Jmove(n2, p

′
2)K

Inv ∧ Postmove(n2,p
′
2)
∧ Prerem(n1)

(23)

We see that the clause for the remove operation that n1 should be a leaf node is violated if a
node is moved under it. Again, observe that the refined specification of remove mitigates this
issue due to the absence of the violation-causing clause.

4.1.3 Stability of move operation

Concurrent add Consider the sequential specification of two operations move(n1, p
′
1) and

add(n2, p2). Using (16), we get

Premove(n1,p
′
1)
, n1 ∈ Nodes ∧ n1 6= root ∧ p′1 ∈ Nodes

∧ p′1 6= n1 ∧ p′1 6→∗ n1

Preadd(n2,p2) , n2 /∈ Nodes ∧ p2 ∈ Nodes

Postadd(n2,p2) , n2 ∈ Nodes ∧ n2 → p2

Inria

A coordination-free, convergent, and safe replicated tree 15

Inv ∧ Premove(n1,p
′
1)
∧

Preadd(n2,p2) ∧ true Jadd(n2, p2)K
Inv ∧ Postadd(n2,p2) ∧ Premove(n1,p

′
1)

(24)

We see that the precondition of move is stable with a concurrent add operation.

Concurrent remove Consider the sequential specification of two remove operationsmove(n1, p
′
1)

and rem(n2). Using (16), we get

Premove(n1,p
′
1)
, n1 ∈ Nodes ∧ n1 6= root ∧ p′1 ∈ Nodes

∧ p′1 6= n1 ∧ p′1 6→∗ n1

Prerem(n2) , n2 6= root ∧ ∀ n′ ∈ Nodes � n′ 6→ n2

Postrem(n2) , n2 /∈ Nodes

Inv ∧ Premove(n1,p
′
1)
∧

Prerem(n2) ∧ n2 6= p′1 Jrem(n2)K

Inv ∧ Postrem(n2) ∧Premove(n1,p
′
1)

(25)

We observe here that removing n2 violates the clause p′1 ∈ Nodes if n2 and p′1 are the same.
However, in our refined specification, the postcondition of remove is n2 ∈ TS , keeping the clause
p′1 ∈ Nodes stable.

Concurrent move Consider the sequential specification of two operations move(n1, p
′
1) and

move(n2, p
′
2). Using (16), we get

Premove(n1,p
′
1)
, n1 ∈ Nodes ∧ n1 6= root ∧ p′1 ∈ Nodes

∧ p′1 6= n1 ∧ p′1 6→∗ n1

Premove(n2,p
′
2)
, n2 ∈ Nodes ∧ n2 6= root ∧ p′2 ∈ Nodes

∧ p′2 6= n2 ∧ p′2 6→∗ n2

Postmove(n2,p
′
2)
, n2 → p′2

Inv ∧ Premove(n1,p
′
1)
∧

Premove(n2,p
′
2)
∧ p′1 6→∗ n2 Jmove(n2, p

′
2)K

Inv ∧ Postmove(n2,p
′
2)
∧ Premove(n1,p

′
1)

(26)

We see here that a concurrent move of p1 or it’s ancestor invalidates the precondition clause
p′1 6→∗ n1 that prevents a cycle. We discuss this in more detail in Section 4.2 and explain how
we refine the specification for stability.

Table 5 shows the summary of the stability analysis on the sequential specification discussed
in Section 3. Symbol 4 indicates that the precondition of the operation in that row is stable
under the operation in the column. In case of instability, a condition replaces it, indicating the
condition under which it is stable.

RR n° 9395

16 Sreeja S. Nair, Filipe Meirim, Mário Pereira, Carla Ferreira, Marc Shapiro

Stability
Operations

add(n2, p2) rem(n2) move(n2, p
′
2)

add(n1, p1) n1 6= n2 p1 6= n2 4

rem(n1) n1 6= p2 4 n1 6= p′2
move(n1, p

′
1) 4 p′1 6= n2 p′1 6→∗ n2

Table 5: Stability analysis of sequential specification discussed in Section 3

Property name Definition

critical ancestors {a ∈ Nodes � p′ →∗ a ∧ n 6→∗ a}
critical descendants {d ∈ Nodes � d→∗ n}

Table 6: Critical ancestors and critical descendants of move(n, p′)

4.2 Safety of concurrent moves

We closely examine how a move operation on a remote replica might affect the precondition
of a concurrent move in the local replica. Consider an operation move(n, p′). In a sequential
execution, precondition clause p′ 6→∗ n forbids moving a node under itself (which would cause
a cycle). However a concurrent move of p′ under n will not preserve the precondition of the
operation, p′ 6→∗ n, resulting in a cycle.

This issue generalizes to p′ or its ancestor concurrently moving under n or a descendant of
n. For easy reference, we call this move as a cycle-causing-concurrent-move. Observe that the
precondition prevents an ancestor of n moving under itself in sequential execution. Therefore,
only the ancestors of p′ that are not ancestors of n would lead to a cycle. We call this set of
ancestors critical ancestors, and the set of n and its descendants critical descendants as defined
in Table 6.

Consider two concurrent move operations move(n, p′) and move(p′, n). Figure 2 shows the
critical ancestors and critical descendants of both move operations. The node l is common
ancestor of both n and p′ farthest from the root. The critical ancestors and critical descendants of
move(n, p′) are grouped together in the dark gray region with and without a border respectively,
and that of move(p′, n) are grouped together in the light gray region.

Note that the set of critical descendants of a move overlaps with the critical ancestors set of
its corresponding cycle-causing-concurrent-move. Hence, we consider only the critical ancestors
of move operations.

Let us take a step back and analyze the types of move operations. Some move operations
result in a node moving farther away from the root, called down-moves, and another set of move
operations result in the node moving nearer to the root, or to remain at the same distance from
the root, called up-moves. We define rank as the distance of a node from the root node, as
follows:

rank(root) = 0 (27)

rank(n) = rank(p) + 1 | ∀n, p ∈ Nodes � n→ p (28)

up-move(n, p′) =⇒ rank(n) > rank(p′) (29)

down-move(n, p′) =⇒ rank(n) ≤ rank(p′) (30)

Consider a move operation, move(n, p′), moving node n at the same level or towards the root,
i.e., an up-move. This gives us that rank(n) > rank(p′). In this case, the rank of a critical

Inria

A coordination-free, convergent, and safe replicated tree 17

R

l

p a

p’n

Set of nodes Ancestor relation

Critical ancestors
for move(n, p′)

Critical descendants
for move(n, p′)

Critical ancestors
for move(p′, n)

Critical descendants
for move(p′, n)

Figure 2: Critical ancestors and critical descendants

descendant will be always greater than the rank of a critical ancestor. Formally,

∀n, p, p′, d, a ∈ Nodes � n→ p ∧ rank(n) > rank(p′)

∧d→∗ n ∧ p′ →∗ a =⇒ rank(d) > rank(a) (31)

This implies that a cycle-causing-concurrent-move can only be a down-move. Hence, we have
that concurrent up-moves are safe; stability issues can occur only between two concurrent down-
moves, or between an up-move and a down-move.

Our next step is to design a coordination-free conflict resolution policy for the moves that
conflict. The conflict resolution policy is required if both the concurrent move operations move a
node in the set of critical ancestors of the other. If we have up-moves, we apply the effect of the
operation. In case of a concurrent down-move and up-move, up-move wins and the down-move is
skipped. In case of concurrent down-moves, we apply a deterministic conflict resolution policy;
the operation with highest priority number wins. The priority number of a move operation is
specific to each application, with a condition that it must be unique for each move.

Contrast our approach with the alternative that uses shared-exclusive locks for concur-
rent moves [14]. Consider concurrent operations move(n, p′), moving node n under p′, and
move(p′, n), moving node p′ under n. These operations compete for a lock. The one that suc-
ceeds first will apply its move, blocking the other. When it releases the lock, this releases the
second one, but its precondition is no longer valid and it cannot execute. Thereby, safety is
preserved, at the cost of aborting the second move. This work essentially achieves the same end
result, but without the overhead of locking. Our experiments in Section 5 show the performance
difference.

4.3 Convergence

As discussed in Section 2.2, to ensure convergence, we design the data structure such that
concurrent updates commute [15]. Add and remove operations result in adding the added and
removed node to Nodes and TS respectively. Since set union is commutative, each of these two
operations commutes with itself and with the other.

The move operation changes the parent pointer of a node. It commutes with add and remove,
since it doesn’t have an effect on set membership.

RR n° 9395

18 Sreeja S. Nair, Filipe Meirim, Mário Pereira, Carla Ferreira, Marc Shapiro

Commutativity
Operations

add(n2, p2) rem(n2) move(n2, p
′
2)

add(n1, p1) 4 4 4

rem(n1) 4 4 4

move(n1, p
′
1) 4 4 ¬(n1 = n2 ∧ p′1 6= p′2)

Table 7: Result of commutativity analysis of the sequential specification discussed in Section 3

However, observe that in the sequential specification two moves do not commute, if the same
node is moved to two different places. This issue is fixed by the conflict resolution policy discussed
earlier. The results of the commutativity analysis is show in Table 7.

4.4 Safe specification of a replicated tree

Incorporating the stability and commutativity analysis results and the design refinements, we
have a coordination-free, safe and convergent replicated tree data structure as shown in Figure 3.
The state now consists of a set of nodes, Nodes, and tombstones, TS . Since the tombstones also
form part of the tree, they also have to maintain the tree structure. So the invariants talk about
the set of nodes, that includes tombstones.

We also introduce some definitions to help define the coordination-free and conflict-free up-
move and down-move operations. We define an operation as a tuple of the type (add, remove,
up-move or down-move), the parameters, and a priority number. The priority number can be
specific to the application using the data structure; the only condition being that each up-move
operation or down-move operation should get a unique priority number. We define C as the list of
operations executed concurrently with the operation in consideration. We also define operations
on critical ancestors as crit anc overlap, where the node being moved is a member of the set of
critical ancestors of the other operation.

With the help of these definitions, we define the effects of up-move and down-move operations
in three parts: the actual precondition needed to ensure sequential safety, the conflict resolution
condition (highlighted) and the update on the state.

4.5 Mechanized verification of the concurrent specification

We use the CISE3 plug-in, presented in Section 2.2.4, to identify conflicts as shown in Tables 5
and 7. Given the sequential specification from Section 3, CISE3 automatically generates a set of
meta-operations to check stability and commutativity of executing pairs of operations.

4.5.1 Provable concurrent execution

We update the Why3 specification according to the conflict resolution policies from Section 4.4.
For example, for the add operation we place the new precondition that nodes must be uniquely
identified:

assume { ... ∧ n1 6= n2 }

Next, we refine the definition of type state to include tombstones, as follows:

type state = { mutable nodes: fset elt; ...;

mutable tombstones: fset elt; }

Inria

A coordination-free, convergent, and safe replicated tree 19

State: Nodes × TS
Invariant:

root ∈ Nodes ∧ root → root ∧ root /∈ TS

∧ ∀n ∈ Nodes � n 6= root =⇒ root 6→ n
(Root)

∧ ∀n ∈ Nodes � n 6= root ∧ ∃p ∈ Nodes � n→ p
(Parent)

∧ ∀n, p, p′ ∈ Nodes � n→ p ∧ n→ p′ =⇒ p = p′

(Unique)

∧ ∀n ∈ Nodes � n 6= root =⇒ n→∗ root
(Reachable)

(Add-Operation)

Inv ∧ p ∈ Nodes ∧ n /∈ Nodes
Jadd(n, p)K

Inv ∧ n ∈ Nodes ∧ n→ p

(Remove-Operation)

Inv ∧ n 6= root Jrem(n)K
Inv ∧ n ∈ TS

operation , (type, params, priority)

C , set of concurrent operations

crit anc overlap(op1, op2) , op1.params.n ∈ critical ancestor(op2) ∧ op2.params.n ∈ critical ancestor(op1)

(Down-move-Operation)
Inv ∧ n ∈ Nodes ∧ n 6= root
∧ p′ ∈ Nodes ∧ n 6= p′ ∧ p′ 6→∗ n

@op ∈ C � op.type = up-move

∧ op.params.n = n ∧ op.priority > priority Jup-move(n, p′)K

Inv ∧ n→ p′

(Up-move-Operation)
Inv ∧ n ∈ Nodes
∧n 6= root∧p′ ∈ Nodes
∧ n 6= p′ ∧ p′ 6→∗ n

@op ∈ C � op.type = up-move

∧ (crit anc overlap(down-move(n, p′), op) ∨ op.params.n = n)

∧ @op ∈ C � op.type = down-move

∧ (crit anc overlap(down-move(n, p′), op) ∨ op.params.n = n)

∧ op.priority > priority Jdown-move(n, p′)K

Inv ∧ n→ p′

Figure 3: Concurrent specification of Maram

RR n° 9395

20 Sreeja S. Nair, Filipe Meirim, Mário Pereira, Carla Ferreira, Marc Shapiro

0 2 10 20
0

20

40

60

80
Re

sp
on

se
 ti
m
e
in
 m

s

Maram UDR Tree Global_l Subtree_l

(a) Response time for different conflict rates

Zero Realworld 10x realworld
0

1

2

3

4

5

6

Re
sp
on

se
 ti
m
e
in
 m

s

Maram Unsafe Tree

(b) Overhead of conflict reso-
lution for different latencies

Zero Realworld 10x realworld

102

103

St
ab

iliz
at
io
n
tim

e
in
 m

s

Maram UDR Tree

(c) Stabilization time for dif-
ferent latencies in logarithmic
scale

Figure 4: Experimental results. Each bar is the average of 15 runs, the error bars show standard
deviation

We update the specification of the rem accordingly:

val rem (n : elt) (s : state) : unit

ensures { s.tombstones = add n (old s).tombstones }

where add stands for the logical adding operation on sets.

Finally, the implementation of the conflict resolution policy for a pair of move operations
requires us to be a bit more creative. We update the state type definition to include ranking
and critical ancestors information. We implement a custom analysis move refined operation
since concurrent operations are not available off-the-shelf in Why3, a framework for verification
of sequential specifications. We encode the arguments of two move operations as arguments of
the move refined operation: n1 (n2), np1 (np2), and pr1 (pr2) stand for the node to be moved,
the new parent, and the unique priority levels respectively, of the first (second) move.

All analysis functions, except move refined, are automatically generated by the CISE3 plug-
in of Why3. Finally, 55 verification conditions are generated for the implementation and given
specification of move refined. All of these are automatically verified, using a combination of
SMT solvers. The specification and the proof results are available at [13].

Inria

A coordination-free, convergent, and safe replicated tree 21

Latency
Replicas

Paris Bangalore New
York

Paris 0 144 75
Bangalore 144 0 215
New York 75 215 0

Table 8: Real world latency configurations in ms

5 Evaluation

This paper presents the design of a coordination-free, safe, convergent, and highly available
replicated tree. The specification of Maram doesn’t require any synchronization to execute an
operation; this implies that the design is coordination-free. Sections 3 and 4 provide a mechanized
proof that our design is safe and convergent. In this section, we conduct an evaluation to showcase
the high availability of our design.

We measure availability in two parts - response time and stabilization time. The first metric,
response time, is the time taken to log and acknowledge a client request. Recall that the effect of
a move operation in our specification consists of either updating the state, or a skip. The effect
of the update will be definitive only after being aware of all its concurrent operations. In order
to measure this, we introduce a metric called stabilization time. Stabilization time measures the
duration for which an update is in a transient state.

We run the experiments9 with three replicas connected in a mesh with a FIFO connection
and simulate different network latencies, zero latency, real world latency as shown in Table 8 and
10 times real world latency. Our warm-up workload, a mix of add, remove and move operations,
creates a tree with 997 nodes including the root. We then have concurrent workloads10 on the
three replicas, varying conflict rates at 0%, 2%, 10%, and 20%.

We compare Maram with three solutions from the literature: (i) UDR tree (short for Undo–
Do-Redo tree) [10]; (ii) all move operations acquiring a global lock (Global l); and, (iii) move
operations acquiring read locks on critical ancestors and write lock on the moving node (Sub-
tree l) [14].

The average response time for each design for different conflict rates with latency configuration
2 (Table 8) are shown in Figure 4a. Observe that Maram and UDR tree show the same average
response time; owing to the synchronization-free design. The response time for Subtree l [14]
increases with an increase in the conflict rate due to lock contention, whereas that of Global l is
the same across all conflict rates since the proportion of lock-acquiring-moves remains the same.

Figure 4c shows the average stabilization time for our design and the UDR tree design [10]
on a logarithmic scale, for different latency configurations. Our solution gives lower stabilization
time, since only down-moves have transient state in the case of Maram whereas for a UDR
tree [10] all operations are in transient state until a local replica asserts that there are no more
concurrent operations.11

Next, we run an experiment to measure the overhead introduced by the conflict resolution
policy. As a lower bound, we compare the response time of Maram with a näıve unsafe implemen-
tation, that uses a simple eventual consistency approach, and thus is not safe. Figure 4b shows

9On DELL PowerEdge R410 machine with 64 GB RAM, and 24 cores @2.40GHz Intel Xeon E5645 processor.
10250 operations per replica - 60% add, 12% remove, 14% upmove and 14% downmove.
11 Note here that Maram’s stabilisation time does not depend on conflict rate, but only on the proportion of

down-moves in the workload. As this proportion grows towards 100%, the stabilisation time of Maram tends to
be the same as that of UDR.

RR n° 9395

22 Sreeja S. Nair, Filipe Meirim, Mário Pereira, Carla Ferreira, Marc Shapiro

Independent
Operations

add(n2, p2) rem(n2) move(n2, p
′
2)

add(n1, p1) p1 6= n2 4 4

rem(n1) n1 6= n2 4 4

move(n1, p
′
1) n1 6=n2∨p′1 6=n2 4 n2 /∈descendants(n1)

Table 9: Result of dependency analysis

the response time of both the designs. For both the implementations, the tree is constructed in
the critical path of the call from the logs. For Maram metadata is also computed at the same
time. Since the cost of metadata computation is negligible compared to the cost of tree creation,
Maram has negligible overhead.

6 Related work

Several works have addressed the problem of designing a replicated tree. Martin et al. [11]
introduce some designs for conflict-free replicated tree data types. They use set CRDTs to
construct replicated trees with different semantics. Add and remove operations are supported in
their design. However they do not consider move operations.

Kleppmann et al. [10] propose the UDR tree, which supports atomic move operations, using
the notion of opsets. Opsets totally order all operations eventually. This is more expensive than
our solution based on partial order. When a new operation is performed, all the later operations
are redone. Thus all operations pay a heavy price, and not just the conflicting moves. But UDR
requires eventually consistent delivery layer, whereas Maram requires a more expensive causal
delivery layer.

Najafzadeh et al. [14] designs the replicated tree called Subtree l in Section 5. Their solution
introduces coordination; acquires read locks on the critical ancestors, and a write lock on the
node being moved. This approach is not available under partition, but only move operations pay
an overhead.

Tao et al. [16] propose a replicated tree with a move operation that does not require any
coordination between replicas, replacing each move with non-atomic copy and delete operations.
This might lead to having multiple copies of the same node.

Compared to all the above solutions, our design supports atomic move operation that depends
on partial ordering without acquiring any locks. An atomic update provides all or no guarantee,
i.e., either the update is applied or it is not. Ensuring atomicity avoids partial execution of
updates.

Kaki et al. [9] introduce the concept of Mergeable Replicated Data Types (MRDTs) inspired
by three-way-merge. The safety of an MRDT binary tree depends on the labeling of the child-
parent relations (whether it belongs to the right or left of the ancestor). It also requires to keep
track of all the ancestor relations apart from the parent-child relations. A generic MRDT tree
can be considered as an extension to the MRDT binary tree, but requires tracking all ancestor
relations and a complex lexicographical ordering when concretizing the merged result.

7 Discussion

In this section we discuss the details that might effect the implementation of Maram data struc-
ture.

Inria

A coordination-free, convergent, and safe replicated tree 23

7.0.1 Moving from causal consistency to eventual consistency

Houshmand and Lesani [7] provide an analysis for relaxing the requirement of causal delivery
to eventual consistency, called dependency analysis. In a nutshell, dependency analysis checks
whether an operation is independent from the result of a previous operation. Table 9 shows the
results of dependency analysis of Maram. Observe that no operations are dependent on remove,
and add and remove are not dependent on move. All operations have conditional dependency
with some other operation that warrants causal delivery. This analysis supports our choice of
causal consistency, since there is no fully independent operation.

7.0.2 Message overhead for conflict resolution

Maram transmits the set of critical ancestors, priority number, and vector clocks12. The size of
the set of critical ancestors depends on the depth of the subtree comprising the common ancestor
(farthest from the root) of the node being moved and the destination parent. The size of the
vector clock is dependent on the number of replicas (for n replicas, an integer array of size n)
and priority number is a single number which is application-specific.

8 Conclusion

This paper presents the design of a light-weight, coordination-free, safe, convergent and highly
available replicated tree data structure, Maram. We provide mechanized proof of safety and
convergence of Maram, and experimentally demonstrate the efficiency of the design by comparing
it with existing solutions.

References

[1] Hagit Attiya, Sebastian Burckhardt, Alexey Gotsman, Adam Morrison, Hongseok Yang,
and Marek Zawirski. Specification and complexity of collaborative text editing. In Symp.
on Principles of Dist. Comp. (PODC), pages 259–268, Chicago, IL, USA, July 2016. Assoc.
for Computing Machinery, Assoc. for Computing Machinery. doi: 10.1145/2933057.2933090.
URL http://dx.doi.org/10.1145/2933057.2933090.

[2] Carlos Baquero, Paulo Sérgio Almeida, and Ali Shoker. Making operation-based CRDTs
operation-based. In Kostas Magoutis and Peter Pietzuch, editors, Int. Conf. on Distr.
Apps. and Interop. Sys. (DAIS), volume 8460 of Lecture Notes in Comp. Sc., pages 126–
140, Berlin, Germany, June 2014. Int. Fed. for Info. Processing (IFIP), Springer-Verlag. doi:
10.1007/978-3-662-43352-2 11. URL http://dx.doi.org/10.1007/978-3-662-43352-2 11.

[3] Nikolaj Bjørner. Models and software model checking of a distributed file replication system.
In Formal Methods and Hybrid Real-Time Systems, pages 1–23, 2007. URL http://dx.doi.
org/10.1007/978-3-540-75221-9 1.

[4] Edsger W. Dijkstra. Guarded commands, nondeterminacy and formal derivation of pro-
grams. Communications of the ACM, 18(8):453–457, August 1975. doi: 10.1145/360933.
360975. URL https://doi.org/10.1145/360933.360975.

12We assume that each replica works as a single-threaded process.

RR n° 9395

http://dx.doi.org/10.1145/2933057.2933090
http://dx.doi.org/10.1007/978-3-662-43352-2_11
http://dx.doi.org/10.1007/978-3-540-75221-9_1
http://dx.doi.org/10.1007/978-3-540-75221-9_1
https://doi.org/10.1145/360933.360975

24 Sreeja S. Nair, Filipe Meirim, Mário Pereira, Carla Ferreira, Marc Shapiro

[5] Jean-Christophe Filliâtre and Andrei Paskevich. Why3 – Where Programs Meet Provers. In
ESOP’13 22nd European Symposium on Programming, volume 7792 of LNCS, Rome, Italy,
March 2013. Springer. URL https://hal.inria.fr/hal-00789533.

[6] Alexey Gotsman, Hongseok Yang, Carla Ferreira, Mahsa Najafzadeh, and Marc Shapiro.
’Cause I’m Strong Enough: Reasoning about consistency choices in distributed systems. In
Symp. on Principles of Prog. Lang. (POPL), pages 371–384, St. Petersburg, FL, USA, 2016.
Assoc. for Computing Machinery. doi: 10.1145/2837614.2837625. URL http://dx.doi.org/
10.1145/2837614.2837625.

[7] Farzin Houshmand and Mohsen Lesani. Hamsaz: Replication coordination analysis and
synthesis. Proc. ACM Program. Lang., 3(POPL):74:1–74:32, January 2019. ISSN 2475-
1421. URL http://doi.acm.org/10.1145/3290387.

[8] Gowtham Kaki, Kapil Earanky, K. C. Sivaramakrishnan, and Suresh Jagannathan. Safe
replication through bounded concurrency verification. In Conf. on Object-Oriented Prog.
Sys., Lang. and Applications (OOPSLA), Proc. ACM Program. Lang., pages 164:1–164:27,
Boston, MA, USA, November 2018. doi: 10.1145/3276534. URL https://doi.org/10.1145/
3276534.

[9] Gowtham Kaki, Swarn Priya, KC Sivaramakrishnan, and Suresh Jagannathan. Mergeable
replicated data types. Proc. ACM Program. Lang., 3(OOPSLA), October 2019. URL https:
//doi.org/10.1145/3360580.

[10] Martin Kleppmann, Victor B. F. Gomes, Dominic P. Mulligan, and Alastair R. Beres-
ford. Opsets: Sequential specifications for replicated datatypes (extended version). CoRR,
abs/1805.04263, 2018. URL http://arxiv.org/abs/1805.04263.

[11] Stéphane Martin, Mehdi Ahmed-Nacer, and Pascal Urso. Abstract unordered and ordered
trees CRDT. Research Report RR-7825, INRIA, December 2011. URL https://hal.inria.fr/
hal-00648106.

[12] Filipe Meirim, Mário Pereira, and Carla Ferreira. CISE3: Verifying weakly consistent ap-
plications with why3, 2020.

[13] Filipe Meirim, Mário Pereira, Carla Ferreira, Sreeja S. Nair, and Marc Shapiro. Maram
proof files. https://fmeirim.github.io/Maram proofs/, 2021.

[14] Mahsa Najafzadeh, Marc Shapiro, and Patrick Eugster. Co-design and verification of an
available file system. In Işıl Dillig and Jens Palsberg, editors, Int. Conf. on Verification,
Model Checking, and Abstract Interpretation (VMCAI), volume 10747 of Lecture Notes in
Comp. Sc., pages 358–381, Los Angeles, CA, USA, January 2018. Assoc. for Computing
Machinery Special Interest Group on Pg. Lang. (SIGPLAN), Springer-Verlag. doi: 10.
1007/978-3-319-73721-8 17. URL https://doi.org/10.1007/978-3-319-73721-8 17.

[15] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. Conflict-free repli-
cated data types. In Xavier Défago, Franck Petit, and V. Villain, editors, Int. Symp.
on Stabilization, Safety, and Security of Dist. Sys. (SSS), volume 6976 of Lecture Notes
in Comp. Sc., pages 386–400, Grenoble, France, October 2011. Springer-Verlag. doi:
10.1007/978-3-642-24550-3 29. URL https://doi.org/10.1007/978-3-642-24550-3 29.

Inria

https://hal.inria.fr/hal-00789533
http://dx.doi.org/10.1145/2837614.2837625
http://dx.doi.org/10.1145/2837614.2837625
http://doi.acm.org/10.1145/3290387
https://doi.org/10.1145/3276534
https://doi.org/10.1145/3276534
https://doi.org/10.1145/3360580
https://doi.org/10.1145/3360580
http://arxiv.org/abs/1805.04263
https://hal.inria.fr/hal-00648106
https://hal.inria.fr/hal-00648106
https://fmeirim.github.io/Maram_proofs/
https://doi.org/10.1007/978-3-319-73721-8_17
https://doi.org/10.1007/978-3-642-24550-3_29

A coordination-free, convergent, and safe replicated tree 25

[16] Vinh Tao, Marc Shapiro, and Vianney Rancurel. Merging semantics for conflict updates in
geo-distributed file systems. In ACM Int. Systems and Storage Conf. (Systor), pages 10.1–
10.12, Haifa, Israel, May 2015. Assoc. for Computing Machinery. doi: 10.1145/2757667.
2757683. URL http://dx.doi.org/10.1145/2757667.2757683.

[17] Vinh Thanh Tao. Ensuring Availability and Managing Consistency in Geo-Replicated File
Systems. PhD thesis, Sorbonne-Université–Université Pierre et Marie Curie, Paris, France,
December 2017. URL https://hal.inria.fr/tel-01673030.

[18] Douglas B. Terry, Alan J. Demers, Karin Petersen, Mike J. Spreitzer, Marvin M. Theimer,
and Brent B. Welch. Session guarantees for weakly consistent replicated data. In Int. Conf.
on Para. and Dist. Info. Sys. (PDIS), pages 140–149, Austin, Texas, USA, September 1994.

RR n° 9395

http://dx.doi.org/10.1145/2757667.2757683
https://hal.inria.fr/tel-01673030

26 Sreeja S. Nair, Filipe Meirim, Mário Pereira, Carla Ferreira, Marc Shapiro

A Specification of sequential tree in Why3

This section presents the Why3 specification of a sequentially safe tree.

use export int.Int

use import map.Map as M

use import set.Fset as F

use seq.Seq, seq.Mem, seq.Distinct

(* auxiliary lemmas on sequences *)

lemma append_empty: forall s: seq ’a.

s ++ empty == s

lemma empty_length: forall s: seq ’a.

length s = 0 ↔ s == empty

predicate disjoint_seq (s1 s2: seq ’a) =

forall i j. 0 ≤ i < length s1 →
0 ≤ j < length s2 → s1[i] 6= s2[j]

(* Arbitrary type for a tree node *)

type elt

(* Verifies if two nodes are equal *)

val equal (e1 e2 : elt) : bool

ensures { result ↔ e1 = e2 }

(* Indicates if two nodes are connected by an edge in the tree *)

predicate edge (x y : elt) (f : elt → elt) =

x 6= y ∧ f x = y

(* recursive predicate for expressing a path between two nodes *)

(* in the main text a few cosmetic changes were done, namely *)

(* rename of -f- to -parent- and expand the edge definition *)

predicate path (f: elt → elt) (x y: elt) (p: seq elt) =

let n = length p in

n = 0 ∧ x = y

∨
n > 0 ∧
p[0] = x ∧
edge p[n - 1] y f ∧
distinct p ∧
(forall i. 0 ≤ i < n - 1 → edge p[i] p[i + 1] f) ∧
(forall i. 0 ≤ i < n → p[i] 6= y)

predicate reachability (f: elt → elt) (x y: elt) =

exists p. path f x y p

(* If there is an edge between nodes x and y

(* the path is defined as the singleton seq with node x *)

axiom path_to_parent: forall x y : elt, f : elt → elt.

edge x y f → path f x y (cons x empty)

(* If there is a path from [from] to [middle] and a path from [middle] to

Inria

A coordination-free, convergent, and safe replicated tree 27

[until] then there is a path from [from] to [until] *)

axiom path_transitivity: forall from middle until f pth1 pth2.

path f from middle pth1 → path f middle until pth2 →
disjoint_seq pth1 pth2 → from 6= until →
(forall j. 0 ≤ j < length pth1 → pth1[j] 6= until) →

path f from until (pth1 ++ pth2)

(* Recursive path composition *)

axiom path_composition: forall n x y: elt, f : elt → elt, pth : seq elt.

n 6= y → not (mem y pth) →
distinct (snoc pth x) → path f n x pth → edge x y f →
path f n y (snoc pth x)

(* If there is a path between two nodes, that path is unique *)

axiom path_uniqueness: forall x y: elt, f: elt → elt,

pth1 pth2: seq elt.

path f x y pth1 → path f x y pth2 → pth1 == pth2

(* If node np is not reachable to node c, then np will

not belong to any path that contains node c *)

axiom path_exclusion: forall f x c np p.

not (reachability f np c) → path f x c p → not (mem np p)

(* Given a path between two nodes, there is no overlap between any two consecutive

subpaths *)

axiom path_separation: forall final initial middle : elt, f : elt → elt,

p1 p2 : seq elt.

path f middle final p2 → path f initial middle p1 →
final 6= initial → middle 6= initial → middle 6= final →
disjoint_seq p1 p2

constant n: elt (* constant used for defining a state witness *)

type state [@state] = {

(* parent relation: up-pointers to direct ancestor *)

mutable parent : elt → elt;

(* parent root *)

mutable root : elt;

(* nodes in the parent *)

mutable nodes : fset elt;

} invariant { F.mem root nodes }

invariant { parent root = root }

invariant { forall x. F.mem x nodes → F.mem (parent x) nodes }

invariant { forall x. F.mem x nodes → reachability parent x root }

invariant { forall x. F.mem x nodes →
reachability parent root x → x = root }

by { parent = (fun _ → n); root = n; nodes = F.singleton n }

(* Paths already present in the tree remain in the tree after executing

the add operation *)

axiom remaining_nodes_add: forall n w p: elt, s: state, l: seq elt.

path s.parent w s.root l → not (mem n l) →
F.mem w s.nodes → F.mem p s.nodes → not (F.mem n s.nodes) →

RR n° 9395

28 Sreeja S. Nair, Filipe Meirim, Mário Pereira, Carla Ferreira, Marc Shapiro

w 6= n → n 6= p → path (M.set s.parent n p) w s.root l

(* Descendants of the node being moved continue to be its descendants *)

axiom descendants_move: forall x c np: elt, f: elt → elt, p: seq elt.

x 6= np → c 6= np → x 6= c → not (reachability f np c) →
path f x c p → distinct (cons c p) → not (mem np p) →
(path (M.set f c np) x c p)

(* Paths nodes unreachable to the node being moved are not affected *)

axiom remaining_nodes_move: forall x c np: elt, s: state, p: seq elt.

c 6= np → x 6= c → not (reachability s.parent np c) →
path s.parent x s.root p → (not reachability s.parent x c) →
distinct p → (path (M.set s.parent c np) x s.root p)

let ghost add (n p : elt) (s : state) : unit

requires { [@expl:pre_add1] not F.mem n s.nodes }

requires { [@expl:pre_add2] F.mem p s.nodes }

ensures { s.parent = M.set (old s.parent) n p }

ensures { edge n p s.parent }

ensures { s.nodes = F.add n (old s).nodes }

= s.parent ← M.set s.parent n p;

s.nodes ← F.add n s.nodes;

let ghost remove (n : elt) (s : state) : unit

requires { [@expl:pre_remove1] forall x. s.parent x 6= n }

requires { [@expl:pre_remove2] n 6= s.root }

ensures { s.nodes = F.remove n (old s).nodes }

= s.nodes ← F.remove n s.nodes;

let ghost move (c np : elt) (s : state) : unit

requires { [@expl:pre_move1] F.mem np s.nodes }

requires { [@expl:pre_move2] F.mem c s.nodes}

requires { [@expl:pre_move3] not (reachability s.parent np c) }

requires { [@expl:pre_move4] c 6= s.root }

requires { [@expl:pre_move5] c 6= np }

ensures { edge c np s.parent }

ensures { s.parent = M.set (old s.parent) c np }

= s.parent ← M.set s.parent c np;

Inria

A coordination-free, convergent, and safe replicated tree 29

B CISE analysis on sequential specification

use export why3.BuiltIn.BuiltIn

use export why3.Bool.Bool

use export why3.Unit.Unit

use export file_system_alternative.S

use export why3.Tuple2.Tuple2

use export int.Int

use import map.Map as M

use import set.Fset as F

use seq.Seq, seq.Mem, seq.Distinct

predicate same_ext (m1 m2: ’a → ’b) = forall x: ’a. m1 x = m2 x

val equal_elt (e1 e2 : elt) : bool

ensures {result ↔ e1 = e2}

let ghost predicate state_equality (s1 s2 : state)

=

same_ext s1.parent s2.parent &&

equal_elt s1.root s2.root &&

F.(==) s1.nodes s2.nodes

let ghost move_move_analysis (ghost _:()) : (state, state)

ensures { match result with

| x1, x2 → state_equality x1 x2

end } =

let ghost c1 = any elt in

let ghost np1 = any elt in

let ghost state1 = any state in

let ghost c2 = any elt in

let ghost np2 = any elt in

let ghost state2 = any state in

assume { (F.mem np1 state1.nodes) ∧
(F.mem np2 state2.nodes) ∧
(F.mem c1 state1.nodes) ∧
(F.mem c2 state2.nodes) ∧
(not (reachability state1.parent np1 c1)) ∧
(not (reachability state2.parent np2 c2)) ∧
(c1 6= state1.root) ∧
(c2 6= state2.root) ∧
(c1 6= np1) ∧
(c2 6= np2) ∧
state_equality state1 state2 };

move c1 np1 state1;

move c2 np2 state1;

move c2 np2 state2;

move c1 np1 state2;

(state1, state2)

let ghost remove_remove_analysis (ghost _:()) : (state, state)

ensures { match result with

| x1, x2 → state_equality x1 x2

RR n° 9395

30 Sreeja S. Nair, Filipe Meirim, Mário Pereira, Carla Ferreira, Marc Shapiro

end } =

let ghost n1 = any elt in

let ghost state1 = any state in

let ghost n2 = any elt in

let ghost state2 = any state in

assume { (F.mem n1 state1.nodes) ∧
(F.mem n2 state2.nodes) ∧
(forall x. state1.parent x 6= n1) ∧
(forall x. state2.parent x 6= n2) ∧
(n1 6= state1.root) ∧
(n2 6= state2.root) ∧
state_equality state1 state2 };

remove n2 state1;

remove n1 state1;

remove n1 state2;

remove n2 state2;

(state1, state2)

let ghost add_add_analysis (ghost _:()) : (state, state)

ensures { match result with

| x1, x2 → state_equality x1 x2

end } =

let ghost n1 = any elt in

let ghost p1 = any elt in

let ghost state1 = any state in

let ghost n2 = any elt in

let ghost p2 = any elt in

let ghost state2 = any state in

assume { ((not F.mem n1 (nodes state1) ∧ F.mem p1 (nodes state1)) ∧
not F.mem n2 (nodes state2) ∧ F.mem p2 (nodes state2)) ∧
state_equality state1 state2 };

add n1 p1 state1;

add n2 p2 state1;

add n2 p2 state2;

add n1 p1 state2;

(state1, state2)

let ghost remove_move_analysis (ghost _:()) : (state, state)

ensures { match result with

| x1, x2 → state_equality x1 x2

end } =

let ghost n1 = any elt in

let ghost state1 = any state in

let ghost c2 = any elt in

let ghost np2 = any elt in

let ghost state2 = any state in

assume { (forall x. state1.parent x 6= n1) ∧
(n1 6= state1.root) ∧
(F.mem np2 state2.nodes) ∧
(F.mem c2 state2.nodes) ∧
(not (reachability state2.parent np2 c2)) ∧
(c2 6= state2.root) ∧
(c2 6= np2) ∧

Inria

A coordination-free, convergent, and safe replicated tree 31

state_equality state1 state2 };

move c2 np2 state1;

remove n1state1;

remove n1 state2;

move c2 np2 state2;

(state1, state2)

let ghost add_move_analysis (ghost _:()) : (state, state)

ensures { match result with

| x1, x2 → state_equality x1 x2

end } =

let ghost n1 = any elt in

let ghost p1 = any elt in

let ghost state1 = any state in

let ghost c2 = any elt in

let ghost np2 = any elt in

let ghost state2 = any state in

assume { (not F.mem n1 (nodes state1) ∧ F.mem p1 (nodes state1)) ∧
(F.mem np2 state2.nodes) ∧
(F.mem c2 state2.nodes) ∧
(not (reachability state2.parent np2 c2)) ∧
(not (reachability state1.parent np2 c2)) ∧
(c2 6= state2.root) ∧
(c2 6= np2) ∧

state_equality state1 state2 };

add n1 p1 state1;

move c2 np2 state1;

move c2 np2 state2;

add n1 p1 state2;

(state1, state2)

let ghost add_remove_analysis (ghost _:()) : (state, state)

ensures { match result with

| x1, x2 → state_equality x1 x2

end } =

let ghost n1 = any elt in

let ghost p1 = any elt in

let ghost state1 = any state in

let ghost n2 = any elt in

let ghost state2 = any state in

assume { (not F.mem n1 (nodes state1) ∧ F.mem p1 (nodes state1)) ∧
(forall x. state2.parent x 6= n2) ∧
(n2 6= state2.root) ∧
state_equality state1 state2 };

remove n2 state1;

add n1 p1 state1;

add n1 p1 state2;

remove n2 state2;

(state1, state2)

B.1 Why3 proof sessions

This section presents the quantitative results of using Why3 and CISE3 to analyse the sequential
operations. Each table presents the set of generated verification conditions for a specific pair of

RR n° 9395

32 Sreeja S. Nair, Filipe Meirim, Mário Pereira, Carla Ferreira, Marc Shapiro

operations, whose names appear in the head of the table. For each verification condition, we run
the available SMTs until one of them is able to discharge it, or else every one fails to complete
the proof. Finally, each verification condition is identified with a name of the form lemma P,
where P for the nature of the condition, i.e., it is either a precondition or a postcondition. For
instance, on the first table, pre move1 stands for the first precondition of the move operation,
and so on. Times are given in seconds.

Proof obligations A
lt

-E
rg

o
2
.3

.2

C
V

C
4

1
.7

Z
3

4
.8

.6

lemma VC for lemma pre move1 0.10
move move analysis lemma pre move2 0.10

lemma pre move3 0.07
lemma pre move4 0.10
lemma pre move5 0.11
lemma pre move1 0.21
lemma pre move2 0.22
lemma pre move3 (1s) (1s) (1s)
lemma pre move4 0.15
lemma pre move5 0.09
lemma pre move1 0.11
lemma pre move2 0.10
lemma pre move3 0.09
lemma pre move4 0.09
lemma pre move5 0.11
lemma pre move1 0.24
lemma pre move2 0.22
lemma pre move3 (1s) (1s) FAILURE

lemma pre move4 0.14
lemma pre move5 0.09
lemma postcondition 0.26 (1s) FAILURE

C Specification of Maram in Why3

This section presents the Why3 specification of Maram.

type state = {

(* parent relation: up-pointers to direct ancestor *)

mutable parent : elt → elt;

(* parent root *)

mutable root : elt;

(* nodes in the parent *)

mutable nodes : fset elt;

(* rank for each node *)

mutable rank : elt → int;

Inria

A coordination-free, convergent, and safe replicated tree 33

Proof obligations A
lt

-E
rg

o
2
.3

.2

C
V

C
4

1
.7

Z
3

4
.8

.6

lemma VC for lemma pre remove1 0.16
remove remove analysis lemma pre remove2 0.22

lemma pre remove1 0.20
lemma pre remove2 0.16
lemma pre remove1 0.27
lemma pre remove2 0.21
lemma pre remove1 0.24
lemma pre remove2 0.15
lemma postcondition 0.10

0.09
0.23

lemma VC for lemma pre add1 0.11
add add analysis lemma pre add2 0.11

lemma pre add1 (1s) (1s) FAILURE

lemma pre add2 0.22
lemma pre add1 0.10
lemma pre add2 0.11
lemma pre add1 (1s) (1s) (1s)
lemma pre add2 0.22
lemma postcondition 0.51 (1s) FAILURE

lemma VC for lemma pre move1 0.24
remove move analysis lemma pre move2 0.23

lemma pre move3 0.93
lemma pre move4 0.15
lemma pre move5 0.11
lemma pre remove1 (1s) (1s) FAILURE

lemma pre remove2 0.23
lemma pre remove1 0.19
lemma pre remove2 0.19
lemma pre move1 0.32
lemma pre move2 (1s) (1s) FAILURE

lemma pre move3 0.15
lemma pre move4 0.17
lemma pre move5 0.11
lemma postcondition 0.22

0.16
0.23

RR n° 9395

34 Sreeja S. Nair, Filipe Meirim, Mário Pereira, Carla Ferreira, Marc Shapiro

Proof obligations A
lt

-E
rg

o
2
.3

.2

C
V

C
4

1
.7

Z
3

4
.8

.6

lemma VC for lemma pre add1 0.12
add move analysis lemma pre add2 0.11

lemma pre move1 0.35
lemma pre move2 0.41
lemma pre move3 0.11
lemma pre move4 0.15
lemma pre move5 0.09
lemma pre move1 0.10
lemma pre move2 0.22
lemma pre move3 0.12
lemma pre move4 0.11
lemma pre move5 0.11
lemma pre add1 0.31
lemma pre add2 0.34
lemma postcondition 0.35

0.20
0.35

lemma VC for lemma pre remove1 0.17
add remove analysis lemma pre remove2 0.16

lemma pre add1 0.19
lemma pre add2 (1s) (1s) FAILURE

lemma pre add1 0.25
lemma pre add2 0.23
lemma pre remove1 0.29
lemma pre remove2 0.11
lemma postcondition 0.27

0.19
(1s) (1s) (1s)

Inria

A coordination-free, convergent, and safe replicated tree 35

(* tombstone nodes *)

mutable tombstones : fset elt;

(* ancestors relation: all ancestors of a node *)

mutable ancestors : elt → fset elt;

} invariant { F.mem root nodes }

invariant { parent root = root }

invariant { forall x. F.mem x nodes → F.mem (parent x) nodes }

invariant { forall x. F.mem x nodes → reachability parent x root }

invariant { forall x. F.mem x nodes →
reachability parent root x → x = root }

invariant { forall x y. F.mem x nodes ∧ F.mem y nodes ∧ x 6= root ∧
x 6= y ∧ F.mem y (ancestors x) → rank x > rank y }

invariant { forall x. F.mem x nodes ∧ x 6= root →
ancestors x = F.add (parent x) (ancestors (parent x))}

by { parent = (fun _ → n); root = n; nodes = F.singleton n ;

rank = (fun _ → 1); tombstones = F.empty;

ancestors = (fun _ → F.empty) }

let ghost predicate state_equality (s1 s2 : state)

= same_ext s1.parent s2.parent ∧
equal_elt s1.root s2.root ∧
F.(==) s1.nodes s2.nodes) ∧
same_ext s1.rank s2.rank ∧
same_ext s1.ancestors s2.ancestors ∧
F.(==) s1.tombstones s2.tombstones

val ghost add (n p : elt) (s : state) : unit

requires { [@expl:add1] not F.mem n s.nodes }

requires { [@expl:add2] F.mem p s.nodes }

writes { s.parent, s.nodes, s.rank, s.ancestors }

ensures { s.parent = M.set (old s.parent) n p }

ensures { edge n p s.parent }

ensures { s.nodes = F.add n (old s).nodes }

ensures { s.rank = M.set (old s).rank n ((s.rank p) + 1) }

ensures { s.ancestors = M.set ((old s).ancestors) n

(F.add p ((old s).ancestors p)) }

val ghost remove (n : elt) (s : state) : unit

requires { n 6= s.root }

writes { s.tombstones }

ensures { s.tombstones = F.add n (old s).tombstones }

val ghost move (c np : elt) (s : state) : unit

requires { F.mem np s.nodes }

requires { F.mem c s.nodes }

requires { not (reachability s.parent np c) }

requires { c 6= s.root }

requires { c 6= np }

writes { s.parent, s.ancestors, s.rank }

ensures { [@expl:post1] s.parent = M.set (old s.parent) c np }

let ghost move_refined (c1 np1 c2 np2 : elt) (pr1 pr2 : int)

(s : state) : unit

RR n° 9395

36 Sreeja S. Nair, Filipe Meirim, Mário Pereira, Carla Ferreira, Marc Shapiro

requires { pr1 6= pr2 }

requires { F.mem c1 s.nodes ∧ F.mem c2 s.nodes }

requires { F.mem np1 s.nodes ∧ F.mem np2 s.nodes }

requires { not (reachability s.parent np1 c1) ∧
not (reachability s.parent np2 c2) }

requires { c1 6= s.root ∧ c2 6= s.root }

requires { c1 6= np1 ∧ c2 6= np2 }

ensures { (s.parent = M.set (old s.parent) c2 np2) ∨
(s.parent = M.set (old s.parent) c1 np1) ∨
(same_ext s.parent (old s).parent) }

= if (equal_elt c1 c2) then

if (pr1 < pr2) then move c2 np2 s else move c1 np1 s

else if (s.rank np1 < s.rank c1) then move c1 np1 s

else if (F.mem c2 (diff (F.add np1 (s.ancestors np1))

s.ancestors c1))) then

if (s.rank np2 < s.rank c2) then ()

else if (pr1 < pr2) then move c2 np2 s else move c1 np1 s

else move c1 np1 s

Inria

RESEARCH CENTRE
PARIS

2 rue Simone Iff - CS 42112
75589 Paris Cedex 12

Publisher
Inria
Domaine de Voluceau - Rocquencourt
BP 105 - 78153 Le Chesnay Cedex
inria.fr

ISSN 0249-6399

	Introduction
	Preliminaries
	System Model
	State and invariant
	Operations
	Updates

	Properties and associated proof rules
	Sequential safety
	Convergence
	Precondition stability
	Mechanized verification

	Sequential specification of a tree
	State
	Invariant
	Operations
	Mechanized verification of the sequential specification

	Concurrent tree specification
	Precondition stability
	Stability of add operation
	Stability of remove operation
	Stability of move operation

	Safety of concurrent moves
	Convergence
	Safe specification of a replicated tree
	Mechanized verification of the concurrent specification
	Provable concurrent execution

	Evaluation
	Related work
	Discussion
	Moving from causal consistency to eventual consistency
	Message overhead for conflict resolution

	Conclusion
	Specification of sequential tree in Why3
	CISE analysis on sequential specification
	Why3 proof sessions

	Specification of Maram in Why3

