N

N
N

HAL

open science

MAMSO (Multi-agents multi-strategies optimiser)

Maurice Clerc

» To cite this version:

‘ Maurice Clerc. MAMSO (Multi-agents multi-strategies optimiser). 2021. hal-03150719

HAL Id: hal-03150719
https://hal.science/hal-03150719

Preprint submitted on 24 Feb 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-03150719
https://hal.archives-ouvertes.fr

MAMSO (Multi-agents multi-strategies optimiser)

Maurice Clerc (Maurice.Clerc@WriteMe.com)

23rd February 2021

1 What is it, what is it for?

MAMSO is a tool to easily compare population-based stochastic black-box optimisers, and, more
important, to combine strategies coming from them. By using it you can generate many other
algorithms, and answer to some questions like "What happens if I add an estimation of distribution
algorithm to PSO?’, or * What happens if I alternate the strategies of Differential Evolution and
the ones of the Adaptive Population-based Simplex?’.

2 Coming from which algorithms?

Today the Octave/Matlab MAMSO code contains fifteen strategies or mechanisms, mainly inspired
by the following methods (alphabetical order):

e AOA - Archimedes Optimization Algorithm [6]

e APS - Adaptive Population-based Simplex [I]

¢ DE - Differential Evolution [7]

e EDA - Estimation of Distribution Algorithm (loosely borrowed from CMA-ES [3])
e MPA - Marine Predators Algorithm [4]

e PSO - Particle Swarm Optimisation [9]

However I modified most of these strategies, for example because they were not mathematically
consistent or unnecessarily complicated, or using too many user-defined parameters. Also I added
a few mechanisms never used in any published methods (to the best of my knowledge). The most
important one is an estimation of the progress of the run by computing a partial diameter.

Partial diameter

The population size is N. After each iteration, we consider the set of the N/2 agents nearest
to the current best, and we compute its diameter. See below a typical evolution of this measure
during a run. It can be used it as a criterion to select the next strategy.

3 X 04 Partial-population diameter
r : f :

25

Relative diameter
P

05 Vot

L . T T
0 100 200 300 400 500
lteration

The classical method that just compares the number of evaluations to the budget (the maximum
allowed) is sometimes inconsistent (see below the comment about MPA) but nevertheless included.

3 Comments on some algorithms

AOA

The original version is mathematically inconsistent. It also has several parameters that can be
safely removed. So the version coded here should be called in fact AOA-like. Inconsistency is due
to terms like

7 X POSiti0Npest — POSition
The moves and the final solution are therefore depending on the coordinate system. The algo-
rithm is not translation independent. Let us see an example.
Problem 1
f(x) =22 z € [-100,100]

Problem 2

f(z) = (z+100)%, z € [-200,0]
The two landscapes are exactly the same. Now let us run AOA (with Matlab 2018), under the
following conditions:
e population size= 25
e number of runs— 15

e number of iterations/run= 5

On the problem 1 the best solution found is 3.327178 x 10~%. On the problem 2, only 1.55388 x 1073.

The reason can be easily seen on the first signature [2] of the figure |1, generated after ten
run. It is highly center-biased, and too large (because the code of the confinement method
fun_checkpositions is not correct).

Sampling outside the definition space

Many algorithms sometimes sample outside the search space, particularly when they use a normal
distribution or a Lévy flight. Basically there are three ways to cope with this situation:

1. Do not evaluate the position (keep the previous value). Some PSO variants indeed apply
this 'Let it fly’ mechanism for, sooner or later, the particle comes back inside the search
space.

2. Assign an arbitrary high value. A refinement is even to assign a high value increasing
function of the distance to the center of the search space.

3. Force the position to be inside the search space (confinement). There are many variants.
For example: a) the updated position can be then on the border, or b) randomly selected,
or ¢) the result of a bounce on the border.

The algorithms on which MAMSO is based use the variant a) of the method 3. Unfortunately,
for two original versions (AOA and MPA) this mechanism is wrongly coded, so, sometimes, the
updated position is still outside the search space. The bad news is that it does not generate any
error with Octave/Matlab, even if the position is outside the definition space. Let us consider
for example the function f (x) = v/z. For a negative x the two languages just return a complex
number whose real part is null. Not only no error is generated but the comparisons are misleading
or, at least, disturbing. For example f (—9) is said to be greater than f (—4).

All positions

0 -l.n; e @
L] * l' L]
L]
1 . ¢ « 1%
2
3F
4 . « °
L]
st
.6,
1
L]
-8 i
-6 5 4 3 2 1 0 1 1 0.5 0 0.5 1

Figure 1: AOA signatures. For the original version, it is clearly highly biased. Moreover the
confinement method does not work well, and some points are outside the search space [—1, 1]2
. The signature of the AOA-like is far better, although there is now too many positions on the
borders, because of large jumps, and the confinement method, which is now correct. Also each run
generates a small cluster around a random position, as for any intrinsically convergent stochastic
algorithm.

So I modified the formulae so that the algorithm is now consistent (exactly the same result
on the two problems), and the confinement mechanism is correct. The second signature is the
one of the updated AOA-like version that we can run in MAMSO by selecting the right strategy
(code 15). It is now border-biased (because of the jumps and the confinements), and there are ten
concentration points (one for each run), because this is a general trivial property of any stochastic
convergent optimiser. But their positions are at random inside the search space, which is a good
point.

APS

Very similar to the original one (version 12). It uses expansion, contraction, local search, stagnation
detection and partial restart.

DE

The formula used in MAMSO is just a DE-like one, combining differences between N pairs of agents
randomly chosen (see the section E[), but the whole DE algorithm is not entirely emulated here.

EDA

All stochastic optimisers do use an estimation of distribution to select where to sample, but most
of the time implicitly. However it is sometimes explicit, like say in CMA-ES. So I added such a
strategy, but only thanks to a very simple formula (see the Pieces of code section E[)

MPA

The original version is mathematically inconsistent, like for AOA. And like for AOA the confinement
method is wrong, some points are evaluated outside the search space.

On the problem 1 the best solution found is 4.027 x 10~''. On the problem 2, only 1.117 x 10~5.
And, again, there is a clear difference between the signatures of the original MPA and of the
MPA-like version defined in MAMSO.

There is another feature that can be seen as a drawback, but it depends on the point of view, so
I let it as is: the choice of a given strategy is only depending on the number of iterations compared
to the maximum allowed one (budget). It implies that increasing the budget, the search effort, may
sometimes lead to a worse final result.

All positions

Figure 2: MPA signatures. For the original version, it is clearly center-biased, and many points
are sampled outside the search space. Not anymore with the modified one, although there are now
some positions on the borders, because of the Lévy flights and the confinement method. Also, as
usually, each run generates a cluster around a random position.

Example

Problem CEC 2019 F07, population 25, 15 runs

| Tterations | Min | Median | Mean |
500 24.19316 | 65.12419 | 62.39378
600 128.614 | 478.7456 | 480.8439

If you carefully examine what happens it appears than in the second case the last phase of MPA,
that can be vaguely seen as a kind of exploitation, is triggered too soon, and the best agents are in
fact trapped in the attraction basin of a local optimum.

Fortunately it apparently does not happen very often.

3.1 PSO

The original version is asynchronous. This one is synchronous (positions are evaluated after all
moves computed during an iteration. With the asynchronous version the convergence is usually
quicker, but also sometimes too quick.

The topology is randomly chosen, as in SPSO 2007 (Particle Swarm Central [9], Programs
section), but slightly different. See the details in the Pieces of codes section (ED

4 Structure and principles

The code of MAMSO is quite long, because it contains so many possibilities, but its structure,
which can also be seen as a flowchart, is simple:

1. User-defined parameters, including the sets of strategies to use. Note there are two sets: one
for the step 3 and one for the step 4 .

2. Prepare strategies (mainly some initialisations).
Use one strategy inside a loop on agents, to move them.

Use some strategies after the loop on agents, and evaluations.

ouok W

Select a next strategy to use and back to 3, until the budget is exhausted (maximum number
of evaluations).

It implies that the behaviour is synchronous. On the one hand it is not always the best approach
(as said for PSO) but, on the other hand, the synchronous approach can easily be distributed.

Thanks to this structure, it is not difficult to add more strategies/mechanisms.

An obvious drawback, though, is that the algorithm is slow. Not only because it is Oc-
tave/Matlab coded, but because of the high number of ’if ... then’ and ’switch ... case ...” in
it. Moreover I sometimes do not use too specific Matlab instructions, so that the code could be
more easily translated into a more efficient language.

Also, when the ’local search’ strategy is triggered, we can use a method natively proposed by
the language. That is why, in such a case, the results are not exactly the same with Octave and
with Matlab. Moreover it means that the search is not always really local. And if you translate
into another language, you have to replace the local search by another one. So, as proof of concept,
I coded a rudimentary local search method (localOption=1).

Note that, though, as we will see, some set of strategies can be efficient without any explicit
local search.

5 How to use MAMSO

To explain how to use this tool I consider here just one small problem: solving a Loaded Die, more
precisely the Brandeis Dice one ([I0]) by the maximum entropy method.

MaxEnt and the Brandeis Dice problem

Oun a fair die, the probability is 1/6 for each side. Therefore the expectation (mean value) is

Now, let us suppose we know that it is 4.5. What are the 'most probable’ probabilities p; for
the sides? Depending on what you mean by ’most probable’ there are several approaches, in
particular the Bayesian one and the MaxEnt (maximum entropy) one. I choosed here MaxEnt,
and therefore, as MAMSO is looking for a minimum, the objective function is simply the opposite
of the entropy:

6
min <S = sz' In (Zh’))

i=1

under the conditions

6
Zpi =1
i1

ip; = 4.5

NE

=1

The Jaynes’” MaxEnt solution presented in [I0] is S = —1.61278. Quite good, but we can do
better.

Remember we consider only stochastic methods, so we have to use a random number generator
(RNG). For reproducible results the MAMSO code always uses the same seed. I could have added
a generator like KISS ([8]) whose code is quite simple but I did not, and MAMSO calls either
an Octave or Matlab RNG. Therefore, again, depending on what language you use, results are
different, although they should be statistically equivalent.

Let us suppose we want to emulate PSO with local search.

The needed parameters are (Octave/Matlab notation):

c = 0.5+ log(2);

w=1/(2%1og(2));
The code of the strategy to use in step 3 is 6:
sequenceList=[6];
The code for local search (step 4) is 9:
outLoop=[9]
We can specify that the local search is not performed at each iteration, but about every ten time:
localFrequency=0.1;

Then we launch MAMSO like this
mamsoloop(100,25,600,’Dice?)

meaning 100 runs with a population of 25 agents, a budget of 6000 evaluations for each run, on the
Brandeis Dice problem.
It finds a solution whose opposite is a maximum entropy

1.61257
with the six probabilities
[0.06101866 0.07642109 0.1098024 0.1553628 0.22490897 0.3483054].

So, we can emulate several ’classical’ algorithms in order to compare them. But it is more interesting
to create new algorithms by trying some other sets of strategies/mechanisms. With the fifteen
strategies already implemented we could think that about 30,000 such new methods can be emulated
(215 — 1). However, on the one hand, the real number is far higher, for you can specify something
like that

sequenceList=[6, 7*ones(1,5), 8*ones(1,5), 9]
which means
e one iteration with strategy 6
e then five with strategy 7
e then five with strategy 8
e then one local search

And, on the other hand, as explained in the section [7] if there are some interesting synergies,
there also are many incompatibilities, so, finally, the number of interesting methods is probably
quite small (it is difficult to be more precise, though). The table [1] presents some of them. With
the best combination of this table, the solution found is 1.612942 on [0.05932825 0.07346170,
0.1116672, 0.1675561, 0.2393993, 0.3485876].

Note that with the same budget some strategies are designed to work well with many agents
and few iterations, and even sometimes only on relatively high dimension problems, like APS, and
for some others it is the contrary: small population and many iterations, mainly for low dimension
problems.

So, using the same population size for all methods is not really fair, but here I just want to
illustrate how to use MAMSO.

Table 1: Comparisons of MaxEnt solutions of the Brandeis Dice problem. For all set of strategies
the number of runs is 100, the population 25, the budget 6000 evaluations/run. When there is no
local search the number of iterations is 6000/25 = 240. If the local search strategy is in the list,
it is performed after each iteration, except if localFrequency is explicitly given. The instruction
sequencelption=2 means that the next strategy is selected only if stagnation is detected. Runs
with Matlab 2018, and the default local search is fmincom, if not defined as ’coded’.

’ Description \ Strategies \ MaxEnt ‘
AOA-like sequencelist=[15]; 1.575393
sequencelist=[7 8 12 |;
APS-like outLoop=[9 10 11 |; 1.588200
sequenceOption=2;
EDA-like sequenceList=[14]; 0.620131
MPA-like sequenceList=[1 2 3]; 1.578969

outLoop=[4 5 13 |;
PSO-like sequencelist=[6]; 1.597379
AOA-like+local search sequenceList=[15] 1.610661
outLoop=[4 9];
sequencelist=[14];
sutLoop=[0]. 1.609296
MPA-like (simplified)+local search | sequencelList=[1 2 3]; outLoop=[9]; | 1.604304
sequencelist=[6];
PSO-like+local search outLoop=[9]; 1.612570
localFrequency=0.1;
sequencelist=[6];
outLoop=[9];

EDA +local search

PSO-like+local search (coded) _ 1.609316

localFrequency=0.1;
localOption=1;

PSO-AOA sequencelist=[6 15]; 1.607403
sequencelist=[6*ones(1,200)...

PSO-EDA 14*ones(1,40) [; 1.600295

Si—I6*
PSO-MPA sequencelist=[6*ones(1,200)... 1.606186

3*ones(1,40) |
sequencelist=[6 15];
PSO-AOA+local search outLoop=[9]; 1.612942
localFrequency=0.1;
sequencelist=[6 15];
outLoop=[9];

PSO-AOA+local search (coded) _ 1.612139
localFrequency=0.1;
localOption=1;
sequencelist=[6*ones(1,200)...
* .
PSO-EDA + local search 14¥ones(1,40) | 1.612493

outLoop=[9];
localFrequency=0.1;
sequenceList=[6*ones(1,190) ...
PSO-AOA-EDA 15*ones(1,30)... 1.609904
14*ones(1,20)];
sequenceList=[6*ones(1,181)...
15%ones(1,21)...
PSO-AOA-EDA + local search 14*ones(1,11)]; 1.612219
outLoop=[9];
localFrequency=0.1;

Table 2: CEC 2019. 15 runs of 25 000 evaluations. D is the dimension of the search space.

PSO-AOA . .
{local search (Matlab) D Min Median Mean Std. Dev.
Storn’s Chebyshev
Polynomial Fitting Problem | 9 1.000000 1.000000 1.000000 5.934392¢-17
Inverse Hilbert 16 | 3.126630e+01 | 2.248882¢102 | 2.142521e+02 | 9.312909¢+01
Matrix Problem
Lennard-Jones 18 | 1.000000 1.409135 1.381859 | 1.056381e-01
Minimum Energy Cluster
Rastrigin’s Function 10 3.984877 8.959667 9.627396 5.252601
Griewank’s Function 10 | 1.000000 1.000000 1.005254 9.657571e-03
Weierstrass Function 10 1.007101 2.578166 2.545898 1.592436
Modified Schwefel's Function | 10 | 2.451590e+02 | 5.989860e+02 | 6.130508¢102 | 2.436936e+02
Expanded Schaffer’s 10 | 2.392202 3.761145 3.689942 8.853950e-01
F6 Function
Happy Cat Function 10 | 1.026962 1.042938 1.064724 5.436263¢-02
Ackley Function 10 | 3.579928 | 2.099713e 101 | 1.885662¢ 101 | 5.658389
Table 3: CEC 2019. 15 runs of 25 000 evaluations.
PSO . .
tlocal search (Matlab) D Min Median Mean Std. Dev.
Storn’s Chebyshev
Polynomal Fitting Problem | 9 1.000000 1.000000 1.000000 0.000000
Tnverse Hilbert 16 | 1.405335e+01 | 1.218607e+02 | 1.792922e+02 | 1.252293¢+02
Matrix Problem
Lennard-Jones 18 | 1.000000 1.409135 1.354583 | 1.439605¢-01
Minimum Energy Cluster
Rastrigin’s Function 10 | 1.393446e+01 | 3.206686e01 | 3.453766e+01 | 1.686761e+01
Griewank’s Function 10 1.000000 1.039417 1.116483 1.992705e-01
Weierstrass Function 10 | 1.073839 3.193584 3.684661 1.808272
Modified Schwefel's Function | 10 | 4.660135¢ 102 | 1.112152e+03 | 1.117533¢+03 | 4.499380¢+02
Expanded Schaffer’s 10| 3.265620 4.485090 4.209082 5.296619¢-01
F6 Function
Happy Cat Function 10 | 1.082152 1.195531 1.239123 1.293084e-01
Ackley Function 10 | 2.099181e 101 | 2.100000e+01 | 2.099943e+01 | 2.109053¢-03

Table 4: Two methods on the Dice problem. One may think that PSO-AOA is better.
’ | Min (i.e. -MaxEnt) | Mean |

PSO-MPA -1.606186 -1.359439
PSO-AOA -1.607403 -1.405675
0.6
05
z 04
=
&
[=]
g 03
é = Hybrid PSO-MPA
E 0.2 e Hybrid PSO-AOA
3]
01
0

-1.607403 -1.54268 -1.477957 -1.413233 -1.34851

Classes

Figure 3: Two CDF for the Dice problem. As the curves cross, what is the ’best’ algorithm is
depending on the user’s requirement.

6 More examples

For the Brandeis Dice problem we were only interested on the best solution (the maximum entropy).
However, in practice, the user wants to know what kind of results can be found for a given budget.
A classical approach is to consider as criteria not only the minimum found over many runs, but also
the median, the mean, the standard deviations, like in the tables[2]and Bpnd to perform a statistical
analysis (Wilcoxon, Friedman, etc.). You can compare these results with the one of some classical
algorithms you know: they are not bad at all (remember that for this benchmark, the minimum is
always 1).

However I explain in detail in [2] why this approach is not always pertinent and may even lead to
wrong conclusions, and why a safer one is to compute the CDF (Cumulative distribution functions)
of the best results over a big number of runs, at least 100. I give here just an example on the Dice
problem solved by two methods. According to the table [it is tempting to claim that PSO-AOA
is slightly better.

But the CDF curves show that this conclusion has to be qualified (ﬁgure. It depends on what
is the requirement of the user, for the curves cross two times. If you want a result smaller than
-1.606, even with a very small probability, then PSO-AOA is indeed the best. But if you are less
demanding and happy with a result just smaller than -1.41 (which is of course far more probable,
about half of the time), then PSO-MPA is now the best choice. And if you are even less demanding,
PSO-AOA becomes again preferable.

7 A few remarks

If you play with MAMSO you will quickly see that many combinations are in fact very bad. Actually
even applying a local search is not always a good idea. This is because it may be applied too often
or too early, leading the algorithm towards a local minimum.

Another remark is that is seems difficult to successfully combine more than five or six strategies.

We can note on the Dice problem that the two algorithms that use six strategies (APS and MPA)
are not very good (table [)).

On the other hand, this table suggests interesting synergies. For example AOA and PSO alone
are not particularly good, but there combination is. And of course the challenge is to find an even
better set of strategies.

We could use brute force, by coding a meta-MAMSO that would systematically try many com-
binations on a given benchmark.

But sometimes it is possible to predict that some combinations will induce a synergy, as for
PSO-EDA. It does not call local search, all first iterations are PSO, the last ones are EDA. The
reason is that EDA is a greedy strategy, so applying it only at the end of the run performs a kind
of local search around the best position found by PSO. When an explicit local search is used, the
result is indeed even better, but just a little.

So, before to run a meta-MAMSO it would be useful to define prediction rules in order to
seriously decrease the number of combinations to try.

8 How to improve?

There are of course many ways to improve MAMSO. T just focus here on a few important ones.

8.1 Manual strategy selection

After having defined a set of strategies, the main difficulty is to define rules to select which one has
to be used for the current iteration.

For example MPA has three strategies (coded here 1, 2 and 3) to apply inside the loop on
agents, and three to apply after this loop, coded here 4, 5 and 13. These last three ones are always
triggered. But 1 is applied as long as the effort (number of evaluations) is less than one third of the
allowed budget, then 2 is applied as long as the effort is less than two-thirds of the budget, and,
finally, 3. No adaptation at all and, as we have seen, increasing the search effort may decrease the
efficiency.

In APS, there is a kind of adaptation, for the next strategy in the ’in loop’ list is triggered only
if a stagnation is detected. However this detection is not very satisfying (see the code in E[)

A better approach could be like this:

e For each effort define what a successful iteration is. Indeed, from the user point of view, a
"success’ has probably not the same meaning at the beginning of the run and at its end.

e Progressively build a ’profile’ for each strategy used, depending on the rank of the iteration
and of the (evolutive) definition of ’successful’.

e According to these profiles, select the strategy for the next iteration, in a probabilistic way.

8.2 Automatic strategy selection

A really great improvement would be an automatic adaptive selection in the port-folio of the whole
list. There is already something like that, in fact, thanks to the rule ’if stagnation then try the
next strategy’, but quite rudimentary, for the user has nevertheless to predefine the sequence of the
strategies.

Again, to implement such a meta-strategy, some strategy profiles has to be built. Note that it
could be partly done before the run. Usually we already know that this strategy is good to search
around a good position, that this other one is good to escape a local attraction basin, etc.

8.3 Local search

Asg said, the ’local search’ of Octave or Matlab is not always really local, although it is used here by
setting the current best position as starting point. Another method could be used. A rudimentary
one is coded in MAMSO (see in the section E[)

10

Also, defining when the local search has to be triggered should be more flexible. An easy way
would be to modify its probability by adapting the localFrequency parameter. Maybe increasing it
during the run? This is related to the trade off between exploration and exploitation. For rigorous
definitions of these concepts, how to measure them, and how to use them, see [3].

9 Pieces of code

Notations

N=number of agents
D= number of dimensions of the search space. Note that some dimensions can be discrete.
x(n,d)=coordinate of the agent n on dimension d. It means x is the matrix of all positions.
xBest=position of the current best agent (a vector of D values)
FEmax= budget (maximum number of evaluations allowed)
FEs=number of evaluations already done

DE

Actually I call it DE for simplicity, but this strategy is not exactly the one used in Differential
evolution.

Moving strategy (step 4 of MAMSO).

Typical parameter values:

aroundCoeff=0.2

progressCoeff1=2

u=FEs/FEmax;

prog=u- (N-1) /FEmax;

progress=(1-prog) ~ (progressCoefflx*prog) ;
if rand>aroundCoeff

dx=progress*rand* (x (randperm(N),:) -x(randperm(N),:));
x=x+dx;

end

EDA

Moving strategy (step 3 of MAMSO). Just looking around the best current position, according to
a bell-like distribution. If used alone this strategy is of course very greedy, but it can be combined
with some others in order to avoid premature convergence to a local minimum.

sigm=0.5*diam(iter)*ones(1,D); % Here the partial diameter is used
for n=1:N
for d=1:D

dxb=sigm(d);
a=mu(d)-dxb; b=mu(d)+dxb;
x(n,d)=belllLike(a,b,1,5);

end

end

function rnd=belllike(a,b, nRnd, nSum)

% Sample nRnd random numbers from a bell-like distribution

% The higher nSum, the more similar to the Normal distribution
% The support is [a, b]

% The mean is (a+b)/2

11

rnd=zeros(1,nRnd) ;
for k=1:nSum

rnd=rnd+rand(1,nRnd) ;

end
rnd=rnd/nSum; % in [0,1]
rnd=a+(b-a) *rnd;

end

Random topology in PSO
A typical value for K is 2.

function informers=inform(N,K)

% Note that each particle informs itself
thresh=K/N;
informers=zeros(N,N) ;
for i=1:N
for j=1:N
if rand<thresh
informers(i,j)=1;
end

end
informers(i,i)=1;

end

end

Stagnation detection

The following method is coming from APS but is not very satisfying, for it depends only on the
results of the previous iteration.

function stagn=stagnation(fPrev,f, FEprev, FEs,expBeta)

% Normalised pseudo-gradient of the fitness evolution
N=length(f);
stagna= true*ones(1,N); % Just to speed up a bit

for n=1:N
u=abs (fPrev(n)+f(n));
if uw>0

delta=2* (fPrev(n)-f(n))/u;
delta=delta/(FEs-FEprev) ;
stagProba=expBeta*exp(-delta);
% Probabilistic decision
stagna(n)= rand<stagProba;

end
s=sum(stagna)/N; % We assume true=1, false=0
stagn=rand<s;

end

12

Local search, a rudimentary method

function [x,fitness,FEs]=localSearch(x,fitness,FEs,fobj,LB,UB,FEmax,...
quantis,quantOnce, diam, option)
% Here x is the real position, not the normalised one

[N,D]=size(x);
[fCenter,Ind]=min(fitness);
xCenter=x(Ind,:); % Best known position
if FEmax-FEs<=N return; end
TolFun=1.e-6; TolX=1.e-6;
% Pseudo-gradient local search.
xTry=xCenter;
stop=false;
FEsLocal=0;
dfBest=0;
dBest=1;
stepSign=0;
step=diam/2; % Rule of thumb, using the partial diameter
while “stop
% Find the best dimension to move along
for d=1:D
xTry(d)= xTry(d)+TolX;
fTry=fobj (xTry); FEsLocal=FEsLocal+1;
df=fCenter-£fTry;
if df>dfBest), Improvement
dfBest=df;
dBest=d;
stepSign=1;
end
xTry(d)= xTry(d)-2*TolX; % Try the opposite direction
fTry=fobj(xTry); FEsLocal=FEsLocal+1;
df=fCenter-fTry;
if df>dfBest
dfBest=df;
dBest=d;
stepSign=-1;
end
xTry(d)=xCenter(d); % Back
end
% Move
step=step/2; 7% Decrease the step size
if step<TolX
stop=true;
else
xNew=xCenter;
xNew (dBest)=xNew(dBest) +stepSign*step;
% Evaluate
fNew=fobj(xNew); FEsLocal=FEsLocal+1;
dF=abs (fNew-fCenter) ;
fitness(Ind)=fNew;
x(Ind, :)=xNew;
stop=FEsLocal>=N || dF<=TolFun;
end
FEs=FEs+FEsLocal;

13

end

References
[1] APS. Adaptive Population-based Simplex. http://aps-optim.info/.

[2] Maurice Clerc. Guided Randomness in Optimization. ISTE (International Scientific and Tech-
nical Encyclopedia), Wiley, 2015.

[3] Maurice Clerc. Iterative Optimisation The Questionable Balance Mantra.
https:/ /hal.archives-ouvertes.fr /hal-01930529, November 2018.

[4] Afshin Faramarzi, Mohammad Heidarinejad, Seyedali Mirjalili, and Amir Gandomi. Marine
Predators Algorithm: A Nature-inspired Metaheuristic. FEzpert Systems with Applications,
152:113377, March 2020.

[5] Nikolaus Hansen. The CMA Evolution Strategy. https://www.lri.fr/ hansen/cmaesintro.html.

[6] Fatma A. Hashim, Kashif Hussain, Essam H. Houssein, Mai S. Mabrouk, and Walid
Al-Atabany. Archimedes optimization algorithm: a new metaheuristic algorithm for
solving optimization problems. Applied Intelligence, 51(3):1531-1551, March 2021.
https://doi.org/10.1007 /s10489-020-01893-z.

[7] Jouni Lampinen and Rainer Storn. Differential Evolution. In New Optimization Techniques in
Engineering, pages 124-166. Springer, Heidelberg, Germany, 2004. pressure vessel, gear train,
coil compression spring.

[8] George Marsaglia. KISS PRNG. http://zuttobenkyou.wordpress.com/2012/05/01/kiss-2011-
version-in-c-and-haskell/, 2011.

[9] PSC. Particle Swarm Central. http://particleswarm.info.

[10] Steven J. van Enk. The Brandeis Dice Problem and Statistical Mechanics. Studies in History
and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 48:1—
6, November 2014. https://www.sciencedirect.com/science/article/pii/S1355219814000914.

14

	What is it, what is it for?
	Coming from which algorithms?
	Comments on some algorithms
	PSO

	Structure and principles
	How to use MAMSO
	More examples
	A few remarks
	How to improve?
	Manual strategy selection
	Automatic strategy selection
	Local search

	Pieces of code

