Maurice Clerc
email: clerc@writeme.com

MAMSO (Multi-agents multi-strategies optimiser)

MAMSO (Multi-agents multi-strategies optimiser)

Partial diameter

The population size is N . After each iteration, we consider the set of the N/2 agents nearest to the current best, and we compute its diameter. See below a typical evolution of this measure during a run. It can be used it as a criterion to select the next strategy.

The classical method that just compares the number of evaluations to the budget (the maximum allowed) is sometimes inconsistent (see below the comment about MPA) but nevertheless included. [START_REF] Clerc | Iterative Optimisation : The Questionable Balance Mantra[END_REF] Comments on some algorithms AOA The original version is mathematically inconsistent. It also has several parameters that can be safely removed. So the version coded here should be called in fact AOA-like. Inconsistency is due to terms like r × position best -position

The moves and the nal solution are therefore depending on the coordinate system. The algorithm is not translation independent. Let us see an example. Problem 1

f (x) = x 2 , x ∈ [-100, 100] Problem 2 f (x) = (x + 100) 2 , x ∈ [-200, 0]
The two landscapes are exactly the same. Now let us run AOA (with Matlab 2018), under the following conditions: population size= 25 number of runs= 15 number of iterations/run= 5 On the problem 1 the best solution found is 3.327178×10 -8 . On the problem 2, only 1.55388×10 -3 .

The reason can be easily seen on the rst signature [START_REF] Clerc | Guided Randomness in Optimization[END_REF] of the gure 1, generated after ten run. It is highly center-biased, and too large (because the code of the connement method fun_checkpositions is not correct).

Sampling outside the denition space

Many algorithms sometimes sample outside the search space, particularly when they use a normal distribution or a Lévy ight. Basically there are three ways to cope with this situation:

1. Do not evaluate the position (keep the previous value). Some PSO variants indeed apply this 'Let it y' mechanism for, sooner or later, the particle comes back inside the search space.

2. Assign an arbitrary high value. A renement is even to assign a high value increasing function of the distance to the center of the search space.

3. Force the position to be inside the search space (connement). There are many variants. For example: a) the updated position can be then on the border, or b) randomly selected, or c) the result of a bounce on the border.

The algorithms on which MAMSO is based use the variant a) of the method 3. Unfortunately, for two original versions (AOA and MPA) this mechanism is wrongly coded, so, sometimes, the updated position is still outside the search space. The bad news is that it does not generate any error with Octave/Matlab, even if the position is outside the denition space. Let us consider for example the function f (x) = √ x. For a negative x the two languages just return a complex number whose real part is null. Not only no error is generated but the comparisons are misleading or, at least, disturbing. For example f (-9) is said to be greater than f (-4). . The signature of the AOA-like is far better, although there is now too many positions on the borders, because of large jumps, and the connement method, which is now correct. Also each run generates a small cluster around a random position, as for any intrinsically convergent stochastic algorithm.

So I modied the formulae so that the algorithm is now consistent (exactly the same result on the two problems), and the connement mechanism is correct. The second signature is the one of the updated AOA-like version that we can run in MAMSO by selecting the right strategy (code 15). It is now border-biased (because of the jumps and the connements), and there are ten concentration points (one for each run), because this is a general trivial property of any stochastic convergent optimiser. But their positions are at random inside the search space, which is a good point.

APS

Very similar to the original one (version 12). It uses expansion, contraction, local search, stagnation detection and partial restart.

DE

The formula used in MAMSO is just a DE-like one, combining dierences between N pairs of agents randomly chosen (see the section 9), but the whole DE algorithm is not entirely emulated here. EDA All stochastic optimisers do use an estimation of distribution to select where to sample, but most of the time implicitly. However it is sometimes explicit, like say in CMA-ES. So I added such a strategy, but only thanks to a very simple formula (see the Pieces of code section 9)

MPA

The original version is mathematically inconsistent, like for AOA. And like for AOA the connement method is wrong, some points are evaluated outside the search space.

On the problem 1 the best solution found is 4.027 × 10 -11 . On the problem 2, only 1.117 × 10 -6 . And, again, there is a clear dierence between the signatures of the original MPA and of the MPA-like version dened in MAMSO.

There is another feature that can be seen as a drawback, but it depends on the point of view, so I let it as is: the choice of a given strategy is only depending on the number of iterations compared to the maximum allowed one (budget). It implies that increasing the budget, the search eort, may sometimes lead to a worse nal result. If you carefully examine what happens it appears than in the second case the last phase of MPA, that can be vaguely seen as a kind of exploitation, is triggered too soon, and the best agents are in fact trapped in the attraction basin of a local optimum.

Fortunately it apparently does not happen very often.

PSO

The original version is asynchronous. This one is synchronous (positions are evaluated after all moves computed during an iteration. With the asynchronous version the convergence is usually quicker, but also sometimes too quick.

The topology is randomly chosen, as in SPSO 2007 (Particle Swarm Central [START_REF]Particle Swarm Central[END_REF], Programs section), but slightly dierent. See the details in the Pieces of codes section [START_REF]Particle Swarm Central[END_REF]. [START_REF] Faramarzi | Marine Predators Algorithm: A Nature-inspired Metaheuristic[END_REF] Structure and principles

The code of MAMSO is quite long, because it contains so many possibilities, but its structure, which can also be seen as a owchart, is simple:

1. User-dened parameters, including the sets of strategies to use. Note there are two sets: one for the step 3 and one for the step 4 .

2. Prepare strategies (mainly some initialisations).

3. Use one strategy inside a loop on agents, to move them.

4. Use some strategies after the loop on agents, and evaluations.

5. Select a next strategy to use and back to 3, until the budget is exhausted (maximum number of evaluations).

It implies that the behaviour is synchronous. On the one hand it is not always the best approach (as said for PSO) but, on the other hand, the synchronous approach can easily be distributed. Thanks to this structure, it is not dicult to add more strategies/mechanisms. An obvious drawback, though, is that the algorithm is slow. Not only because it is Octave/Matlab coded, but because of the high number of 'if ... then' and 'switch ... case ...' in it. Moreover I sometimes do not use too specic Matlab instructions, so that the code could be more easily translated into a more ecient language.

Also, when the 'local search' strategy is triggered, we can use a method natively proposed by the language. That is why, in such a case, the results are not exactly the same with Octave and with Matlab. Moreover it means that the search is not always really local. And if you translate into another language, you have to replace the local search by another one. So, as proof of concept, I coded a rudimentary local search method (localOption=1).

Note that, though, as we will see, some set of strategies can be ecient without any explicit local search.

How to use MAMSO

To explain how to use this tool I consider here just one small problem: solving a Loaded Die, more precisely the Brandeis Dice one ([START_REF] Steven | The Brandeis Dice Problem and Statistical Mechanics[END_REF]) by the maximum entropy method.

MaxEnt and the Brandeis Dice problem

On a fair die, the probability is 1/6 for each side. Therefore the expectation (mean value) is

E = 1 6 6 i=1 i = 3.5
Now, let us suppose we know that it is 4.5. What are the 'most probable' probabilities p i for the sides? Depending on what you mean by 'most probable' there are several approaches, in particular the Bayesian one and the MaxEnt (maximum entropy) one. I choosed here MaxEnt, and therefore, as MAMSO is looking for a minimum, the objective function is simply the opposite of the entropy:

min S = 6 i=1 p i ln (p i)
under the conditions

6 i=1 p i = 1 6 i=1 ip i = 4.5
The Jaynes' MaxEnt solution presented in [START_REF] Steven | The Brandeis Dice Problem and Statistical Mechanics[END_REF] The code of the strategy to use in step 3 is 6:

sequenceList= [START_REF] Fatma | Archimedes optimization algorithm: a new metaheuristic algorithm for solving optimization problems[END_REF];

The code for local search (step 4) is 9:

outLoop= [START_REF]Particle Swarm Central[END_REF] We can specify that the local search is not performed at each iteration, but about every ten time: localFrequency=0.1; Note that with the same budget some strategies are designed to work well with many agents and few iterations, and even sometimes only on relatively high dimension problems, like APS, and for some others it is the contrary: small population and many iterations, mainly for low dimension problems.

So, using the same population size for all methods is not really fair, but here I just want to illustrate how to use MAMSO. For the Brandeis Dice problem we were only interested on the best solution (the maximum entropy). However, in practice, the user wants to know what kind of results can be found for a given budget. A classical approach is to consider as criteria not only the minimum found over many runs, but also the median, the mean, the standard deviations, like in the tables 2 and 3and to perform a statistical analysis (Wilcoxon, Friedman, etc.). You can compare these results with the one of some classical algorithms you know: they are not bad at all (remember that for this benchmark, the minimum is always 1). However I explain in detail in [START_REF] Clerc | Guided Randomness in Optimization[END_REF] why this approach is not always pertinent and may even lead to wrong conclusions, and why a safer one is to compute the CDF (Cumulative distribution functions) of the best results over a big number of runs, at least 100. I give here just an example on the Dice problem solved by two methods. According to the table 4 it is tempting to claim that PSO-AOA is slightly better.

But the CDF curves show that this conclusion has to be qualied (gure 3). It depends on what is the requirement of the user, for the curves cross two times. If you want a result smaller than -1.606, even with a very small probability, then PSO-AOA is indeed the best. But if you are less demanding and happy with a result just smaller than -1.41 (which is of course far more probable, about half of the time), then PSO-MPA is now the best choice. And if you are even less demanding, PSO-AOA becomes again preferable.

7

A few remarks

If you play with MAMSO you will quickly see that many combinations are in fact very bad. Actually even applying a local search is not always a good idea. This is because it may be applied too often or too early, leading the algorithm towards a local minimum. Another remark is that is seems dicult to successfully combine more than ve or six strategies.

We can note on the Dice problem that the two algorithms that use six strategies (APS and MPA) are not very good (table 1).

On the other hand, this table suggests interesting synergies. For example AOA and PSO alone are not particularly good, but there combination is. And of course the challenge is to nd an even better set of strategies.

We could use brute force, by coding a meta-MAMSO that would systematically try many combinations on a given benchmark.

But sometimes it is possible to predict that some combinations will induce a synergy, as for PSO-EDA. It does not call local search, all rst iterations are PSO, the last ones are EDA. The reason is that EDA is a greedy strategy, so applying it only at the end of the run performs a kind of local search around the best position found by PSO. When an explicit local search is used, the result is indeed even better, but just a little.

So, before to run a meta-MAMSO it would be useful to dene prediction rules in order to seriously decrease the number of combinations to try. [START_REF] Marsaglia | KISS PRNG[END_REF] How to improve?

There are of course many ways to improve MAMSO. I just focus here on a few important ones.

Manual strategy selection

After having dened a set of strategies, the main diculty is to dene rules to select which one has to be used for the current iteration.

For example MPA has three strategies (coded here 1, 2 and 3) to apply inside the loop on agents, and three to apply after this loop, coded here 4, 5 and 13. These last three ones are always triggered. But 1 is applied as long as the eort (number of evaluations) is less than one third of the allowed budget, then 2 is applied as long as the eort is less than two-thirds of the budget, and, nally, 3. No adaptation at all and, as we have seen, increasing the search eort may decrease the eciency.

In APS, there is a kind of adaptation, for the next strategy in the 'in loop' list is triggered only if a stagnation is detected. However this detection is not very satisfying (see the code in 9).

A better approach could be like this:

For each eort dene what a successful iteration is. Indeed, from the user point of view, a 'success' has probably not the same meaning at the beginning of the run and at its end.

Progressively build a 'prole' for each strategy used, depending on the rank of the iteration and of the (evolutive) denition of 'successful'.

According to these proles, select the strategy for the next iteration, in a probabilistic way.

Automatic strategy selection

A really great improvement would be an automatic adaptive selection in the port-folio of the whole list. There is already something like that, in fact, thanks to the rule 'if stagnation then try the next strategy', but quite rudimentary, for the user has nevertheless to predene the sequence of the strategies. Again, to implement such a meta-strategy, some strategy proles has to be built. Note that it could be partly done before the run. Usually we already know that this strategy is good to search around a good position, that this other one is good to escape a local attraction basin, etc.

Local search

As said, the 'local search' of Octave or Matlab is not always really local, although it is used here by setting the current best position as starting point. Another method could be used. A rudimentary one is coded in MAMSO (see in the section 9).

Also, dening when the local search has to be triggered should be more exible. An easy way would be to modify its probability by adapting the localFrequency parameter. Maybe increasing it during the run? This is related to the trade o between exploration and exploitation. For rigorous denitions of these concepts, how to measure them, and how to use them, see [START_REF] Clerc | Iterative Optimisation : The Questionable Balance Mantra[END_REF].

Figure 1 :

 1 Figure 1: AOA signatures. For the original version, it is clearly highly biased. Moreover the connement method does not work well, and some points are outside the search space [-1, 1]

2

 2

Figure 2 :

 2 Figure 2: MPA signatures. For the original version, it is clearly center-biased, and many points are sampled outside the search space. Not anymore with the modied one, although there are now some positions on the borders, because of the Lévy ights and the connement method. Also, as usually, each run generates a cluster around a random position.

sigm=0. 5 *

 5 diam(iter)*ones(1,D); % Here the partial diameter is used ... for n=1:N for d=1:D dxb=sigm(d); a=mu(d)-dxb; b=mu(d)+dxb; x(n,d)=bellLike(a,b,1,5); end end function rnd=bellLike(a,b, nRnd, nSum) % Sample nRnd random numbers from a bell-like distribution % The higher nSum, the more similar to the Normal distribution % The support is [a, b] % The mean is (a+b)/2

 is S = -1.61278. Quite good, but we can do better.Remember we consider only stochastic methods, so we have to use a random number generator (RNG). For reproducible results the MAMSO code always uses the same seed. I could have added a generator like KISS ([START_REF] Marsaglia | KISS PRNG[END_REF]) whose code is quite simple but I did not, and MAMSO calls either an Octave or Matlab RNG. Therefore, again, depending on what language you use, results are dierent, although they should be statistically equivalent.Let us suppose we want to emulate PSO with local search.

	w=1/(2*log(2));
	The needed parameters are (Octave/Matlab notation):
	c = 0.5 + log(2);

 And, on the other hand, as explained in the section 7, if there are some interesting synergies, there also are many incompatibilities, so, nally, the number of interesting methods is probably quite small (it is dicult to be more precise, though). The table 1 presents some of them. With the best combination of this table, the solution found is 1.612942 on [0.05932825 0.07346170, 0.1116672, 0.1675561, 0.2393993, 0.3485876].

	Then we launch MAMSO like this
	mamsoloop(100,25,600,'Dice')
	meaning 100 runs with a population of 25 agents, a budget of 6000 evaluations for each run, on the
	Brandeis Dice problem.
	It nds a solution whose opposite is a maximum entropy
	1.61257
	with the six probabilities
	[0.06101866 0.07642109 0.1098024 0.1553628 0.22490897 0.3483054].
	something
	like that
	sequenceList=[6, 7*ones(1,5), 8*ones(1,5), 9]
	which means
	one iteration with strategy 6
	then ve with strategy 7
	then ve with strategy 8
	then one local search

So, we can emulate several 'classical' algorithms in order to compare them. But it is more interesting to create new algorithms by trying some other sets of strategies/mechanisms. With the fteen strategies already implemented we could think that about 30,000 such new methods can be emulated (2 15 -1). However, on the one hand, the real number is far higher, for you can specify

Table 1 :

 1 Comparisons of MaxEnt solutions of the Brandeis Dice problem. For all set of strategies the number of runs is 100, the population 25, the budget 6000 evaluations/run. When there is no local search the number of iterations is 6000/25 = 240. If the local search strategy is in the list, it is performed after each iteration, except if localFrequency is explicitly given. The instruction sequenceOption=2 means that the next strategy is selected only if stagnation is detected. Runs with Matlab 2018, and the default local search is fmincom, if not dened as 'coded'.

	Description	Strategies	MaxEnt
	AOA-like	sequenceList=[15];	1.575393
		sequenceList=[7 8 12];	
	APS-like	outLoop=[9 10 11];	1.588200
		sequenceOption=2;	
	EDA-like	sequenceList=[14];	0.620131
	MPA-like	sequenceList=[1 2 3]; outLoop=[4 5 13];	1.578969
	PSO-like	sequenceList=[6];	1.597379
	AOA-like+local search	sequenceList=[15]; outLoop=[4 9];	1.610661
	EDA+local search	sequenceList=[14]; outLoop=[9];	1.609296
	MPA-like (simplied)+local search sequenceList=[1 2 3]; outLoop=[9]; 1.604304
		sequenceList=[6];	
	PSO-like+local search	outLoop=[9];	1.612570
		localFrequency=0.1;	
		sequenceList=[6];	
	PSO-like+local search (coded)	outLoop=[9]; localFrequency=0.1;	1.609316
		localOption=1;	
	PSO-AOA	sequenceList=[6 15];	1.607403
	PSO-EDA	sequenceList=[6*ones(1,200)... 14*ones(1,40)];	1.600295
	PSO-MPA	sequenceList=[6*ones(1,200)... 3*ones(1,40)];	1.606186
		sequenceList=[6 15];	
	PSO-AOA+local search	outLoop=[9];	1.612942
		localFrequency=0.1;	
		sequenceList=[6 15];	
	PSO-AOA+local search (coded)	outLoop=[9]; localFrequency=0.1;	1.612139
		localOption=1;	
		sequenceList=[6*ones(1,200)...	
	PSO-EDA + local search	14*ones(1,40)]; outLoop=[9];	1.612493
		localFrequency=0.1;	
		sequenceList=[6*ones(1,190) ...	
	PSO-AOA-EDA	15*ones(1,30)...	1.609904
		14*ones(1,20)];	
		sequenceList=[6*ones(1,181)...	
		15*ones(1,21)...	
	PSO-AOA-EDA + local search	14*ones(1,11)];	1.612219
		outLoop=[9];	
		localFrequency=0.1;	

Table 2 :

 2 CEC 2019. 15 runs of 25 000 evaluations. D is the dimension of the search space.

	PSO-AOA +local search (Matlab)	D	Min	Median	Mean	Std. Dev.
	Storn's Chebyshev Polynomial Fitting Problem	9	1.000000	1.000000	1.000000	5.934392e-17
	Inverse Hilbert Matrix Problem	16 3.126630e+01 2.248882e+02 2.142521e+02 9.312909e+01
	Lennard-Jones Minimum Energy Cluster	18	1.000000	1.409135	1.381859	1.056381e-01
	Rastrigin's Function	10	3.984877	8.959667	9.627396	5.252601
	Griewank's Function	10	1.000000	1.000000	1.005254	9.657571e-03
	Weierstrass Function	10	1.007101	2.578166	2.545898	1.592436
	Modied Schwefel's Function	10 2.451590e+02 5.989860e+02 6.130508e+02 2.436936e+02
	Expanded Schaer's F6 Function	10	2.392202	3.761145	3.689942	8.853950e-01
	Happy Cat Function	10	1.026962	1.042938	1.064724	5.436263e-02
	Ackley Function	10	3.579928	2.099713e+01 1.885662e+01	5.658389

Table 3 :

 3 CEC 2019. 15 runs of 25 000 evaluations.

	PSO +local search (Matlab)	D	Min	Median	Mean	Std. Dev.
	Storn's Chebyshev Polynomial Fitting Problem	9	1.000000	1.000000	1.000000	0.000000
	Inverse Hilbert Matrix Problem	16 1.405335e+01 1.218607e+02 1.792922e+02 1.252293e+02
	Lennard-Jones Minimum Energy Cluster	18	1.000000	1.409135	1.354583	1.439605e-01
	Rastrigin's Function	10 1.393446e+01 3.206686e+01 3.453766e+01 1.686761e+01
	Griewank's Function	10	1.000000	1.039417	1.116483	1.992705e-01
	Weierstrass Function	10	1.073839	3.193584	3.684661	1.808272
	Modied Schwefel's Function	10 4.660135e+02 1.112152e+03 1.117533e+03 4.499380e+02
	Expanded Schaer's F6 Function	10	3.265620	4.485090	4.209082	5.296619e-01
	Happy Cat Function	10	1.082152	1.195531	1.239123	1.293084e-01
	Ackley Function	10 2.099181e+01 2.100000e+01 2.099943e+01 2.109053e-03

Table 4 :

 4 Two methods on the Dice problem. One may think that PSO-AOA is better.

		Min (i.e. -MaxEnt)	Mean
	PSO-MPA	-1.606186	-1.359439
	PSO-AOA	-1.607403	-1.405675

Figure 3: Two CDF for the Dice problem. As the curves cross, what is the 'best' algorithm is depending on the user's requirement.

6

More examples

 dimensions of the search space. Note that some dimensions can be discrete. x(n,d)=coordinate of the agent n on dimension d. It means x is the matrix of all positions. xBest=position of the current best agent (a vector of D values) FEmax= budget (maximum number of evaluations allowed) FEs=number of evaluations already done DE Actually I call it DE for simplicity, but this strategy is not exactly the one used in Dierential evolution.Moving strategy (step 4 of MAMSO). step 3 of MAMSO). Just looking around the best current position, according to a bell-like distribution. If used alone this strategy is of course very greedy, but it can be combined with some others in order to avoid premature convergence to a local minimum.

	9	Pieces of code
	Notations
	N=number of agents
		D= number of Typical parameter values:
		aroundCoe=0.2
		progressCoe1=2
		u=FEs/FEmax;
		prog=u-(N-1)/FEmax;
		progress=(1-prog)^(progressCoeff1*prog);
		if rand>aroundCoeff
		dx=progress*rand*(x(randperm(N),:) -x(randperm(N),:));
		x=x+dx;
		end
	EDA
	Moving strategy (

end

rnd=zeros (