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Most SUSY searches at the LHC are optimised for the MSSM, where gauginos are Majorana
particles. By introducing Dirac gauginos, we obtain an enriched phenomenology, from which
considerable differences in the LHC signatures and limits are expected as compared to the MSSM.
Concretely, in the minimal Dirac gaugino model (MDGSSM) we have six neutralino and three
chargino states. Moreover, production cross sections are enhanced for gluinos, while for squarks
they are suppressed. In this contribution we show concrete results for the current LHC limits on
gluinos and squarks in this model.
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1. Introduction.

Originally proposed to allow the gluino to be massive [1], models with Dirac Gauginos (DG)
have interesting features such as providing a tree level boost to the Higgs mass, being able to be
associated to N = 2 supersymmetry, posibility of preserving R-symmetry and increase naturalness.
See [2], for a concise review on Dirac Gauginos.

Names Spin 0 Spin 1/2 Spin 1 SU(3), SU(2), U(1)Y
Quarks Q Q̃ = (ũL, d̃L) (uL,dL) (3, 2, 1/6)

uc ũc
L uc

L (3, 1, -2/3)
(×3 families) dc d̃c

L uc
L (3, 1, 1/3)

Leptons L (ν̃eL,ẽL) (νeL,eL) (1, 2, -1/2)
(×3 families) ec ẽc

L ec
L (1, 1, 1)

Higgs Hu (H+
u ,H0

u ) (H̃+
u , H̃0

u ) (1, 2, 1/2)
Hd (H0

d ,H
−
d ) (H̃0

d , H̃
−
d ) (1, 2, -1/2)

Gluons W3α g̃α g (8, 1, 0)
W W2α W̃±,W̃ 0 W±,W 0 (1, 3, 0)
B W1α B̃ B (1, 1, 0 )

DG-octet Og Og g̃′ (8, 1, 0)
DG-triplet T {T 0,T±} {W̃ ′±,W̃ ′0} (1,3, 0 )
DG-singlet S S B̃′ (1, 1, 0 )

Table 1: Chiral and gauge multiplet fields in the model. The red coloured section corresponds to
the new chiral multiplets that completes the DG model. The rest, are the usual multiplets found in
the MSSM.

To introduce Dirac masses for the gauginos, we need to add a Weyl fermion in the adjoint
representation of each gauge group; these are embedded in chiral superfields S,T,O which are
respectively a singlet, triplet and octet, and carry zero R-charge. The resulting field content is
summarised in Table 1. The singlet and triplet fields can have new superpotential couplings with
the Higgs,

W ⊃ λSSHu ·Hd +2λT Hd ·THu . (1.1)

In DG models, different limits from collider searches can be expected when looking at the
production cross sections of squarks and gluinos. For squarks, pair production is suppressed due to
the absence of a chirality flip (see Fig. 1), whereas gluino-pair production is enhanced, because of
an enlarged number of degrees of freedom compared to the MSSM. We can also expect different
limits from the fact that DG models have a more complex electroweak-ino spectrum, with six
neutralino and three chargino mass eigenstates (as compared to four and two, respectively, in the
MSSM), which may appear in gluino and squark cascade decays.

In the following, we show limits to the masses of the gluinos and squarks in the MDGSSM
obtained from reintepreting LHC results. A complete description of this work can be found in [3].
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Figure 1: Squark production cross-sections at leading order (LO) for the 13 TeV LHC as a function of the
gluino mass in the MSSM (in red) and in the DG case (in blue).

2. Deriving limits on the masses of gluinos and squarks.

In this contribution, we will focus on three benchmark scenarios, denoted as DG1, DG2 and
DG3. In all of them, mDY = 200GeV , µ = 400 GeV and tanβ = 2, mD2 = 500 GeV and λT =2,
where mDY and mDY are the soft mass terms of the Dirac binos and winos, respectively. This
translates into a hierarchical spectrum of bino (χ̃0

1,2)-, higgsino (χ̃0
3,4)- and wino (χ̃0

5,6)-like states
with masses of about 200, 400 and 500 GeV, respectively.

With this configuration χ̃0
1,2, will be mostly bino states with a mass splitting given by m

χ̃0
2
−

m
χ̃0

1
=

M2
Z sinθW

µ

2λ 2
S−g2

Y
g2

Y
sin2β . The influence of λS on the mass splitting of the bino like states and,

subsequently, on the mean decay length of χ̃0
2 , is shown in Fig. 2; this was important for choosing

our benchmark scenarios. When |λS| is small, the mass difference is on the MeV range, and the
mean decay length of χ̃0

2 can be of the order of kilometers, so it will appear as a co-LSP. With this
in mind, we have chosen λS = −.27, for the DG1 scenario. When |λS| is large, the mean decay
length χ̃0

2 is so small that it decays promptly; this is the case in DG2 and DG3, where λS =−.74.
Finally, the masses of gluinos and squarks are treated as free parameters, while the masses

of the 3rd generation squarks are adjusted such that mh1 ∈ [123, 127] GeV. The rest of the particle
content is decoupled.

As a first step, we applied the Simplified Model Limit approach using SModelS [4]. The
result for the DG1 scenario, is shown in Fig. 3. When mg̃ < mq̃ the strongest constraint comes from
the pp→ g̃g̃, g̃→ qq̄χ̃0

1 simplified model (denoted as T1) and excludes gluino masses up to about
1250 GeV for LO cross-sections. When mq̃ < mg̃, the strongest constraint mostly comes from the
pp→ q̃q̃(∗), q̃→ qχ̃0

1 simplified model (denoted as T2), excluding squark masses up to roughly
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Figure 2: Influence of λS on the mass splitting between the two bino-like mass eigenstates χ̃0
1,2 (left) and on

the lifetime of the χ̃0
2 (right) .

1300 GeV as long as the gluino is not too heavy.
We have to keep in mind, however, that the constraints which can be derived in the context

of simplified models considerably weaken in realistic scenarios where the gluinos (squarks) share
out their branching ratios over several decay channels [5]. For instance, in the DG1 scenario
BR(g̃→ qq̄χ̃0

1 )v 0.1, which means that only 1% of the total gluino-pair production is constrained
by the pp→ g̃g̃, g̃→ qq̄χ̃0

1 simplified model. This clearly suggests that the simplified model limits
are not sufficient for constraining complex scenarios as the ones considered here. Nonetheless, this
approach provides a very fast way to derive results that can serve as lower bounds, when scanning
for the true exclusion lines of such cases. To obtain more realistic constraints, a full recasting of

Figure 3: SModelS constraints in the gluino versus squark mass plane, for DG1. The colour code de-
notes the simplified model which gives the strongest constraint (T1: pp→ g̃g̃, g̃→ qq̄χ̃0

1 ; T2: pp→ q̃q̃(∗),
q̃→ qχ̃0

1 ; TChiWW: pp→ χ̃
±
i χ̃
±
i , χ̃

±
i →W±χ̃0

1 ). Full-colour (non-transparent) points are excluded by
SModelS, while light-shaded points escape the simplified model limits.

experimental searches should be performed. With this aim, we implemented (see [6]) the ‘Meff-
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based search’ signal regions of the ATLAS multijet search [7] for squarks and gluinos in final states
with 2-6 jets and large missing transverse momentum, using 36 fb−1 of

√
s = 13 TeV pp collision

data, in MadAnalysis5 [8].
We scanned over gluino and light-flavor squark masses for the DG1 DG2 and DG3 scenarios.

For each scan point, we simulated 30K events with MadGraph5_aMC@NLO [9], parton shower
and hadronization were done in Pythia8.2 [10] and the simulation of the ATLAS detector with
Delphes3 [11]. Afterwards, the events were analysed with MadAnalysis5 and exclusion
confidence levels (CL) were computed. Finally, for limit setting, since signal regions are inclusive,
only the “best” (i.e. the statistically most sensitive) was used.

Figure 4 shows the 95% CL exclusion lines in the gluino vs. squark mass plane for the three
benchmark scenarios and for MSSM1, an MSSM scenario equivalent to DG1. In the region mq̃ >

mg̃ we found a robust limit of mg̃ & 1.65 TeV when squarks are very heavy, in all cases. In the
region mg̃ > mq̃, for DG2 and DG3 we obtained a squark limit of mq̃ & 1.1 TeV, while for DG1 the
limit reaches mq̃ & 1.4 TeV. The difference is a consequence of the χ̃0

2 → Z∗χ̃0
1 decays, which are

present in DG3 and DG2, but not in DG1.
We also observe different “dips” in the exclusion contours for the different benchmark sce-

narios which originate from a switch of the best signal region from 6j-Meff-1800 (6 jets, Meff >

1800 GeV) to 6j-Meff-2600 (6 jets, Meff > 2600 GeV) at different, but close, values of gluino
mass for each scenario. Finally, looking at the exclusion line for MSSM1, we see the expected

Figure 4: 95% CL exclusion limits in the gluino vs. squark mass plane for DG1 (green), DG2 (blue) and
DG3 (red) contrasted with MSSM1 (black dashed line), derived from the recasting of [7].

∼ 200 GeV lower gluino mass limit for an MSSM scenario and a stronger squark mass limit when
gluinos are heavy, still reaching mq̃ & 2 TeV for 4 TeV gluinos, as Majorana gluinos decouple very
slowly.

3. Conclusions.

As expected, by allowing Dirac gauginos we obtained LHC limits that differ from the ones
of the MSSM. The differences found come mainly from suppressed squark production, enhanced
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gluino production and a more complicated electroweakino spectrum. Also interesting is the pos-
sibility of a long lived χ̃0

2 ; a follow-up project aims to study this kind of scenarios, in the light of
Long Lived Particle searches.

In general, we think that studying the MDGSSM and other non-minimal SUSY models is
a well motivated endeavor, and we hope that this contribution provides a good example of its
usefulness.
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