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Introduction

In 1940, the famous celebrated mathematician Graham Higman published a theorem [START_REF] Higman | The Units of Group Rings[END_REF] in group algebra which is valid only for a field or an integral domain with some specific conditions. In 1999, the author noticed that this theorem can be extended to a rich class of rings called halidon rings [START_REF] Telveenus | Circulants and Group Algebras[END_REF]. In complex analysis, |z| = 1 is the set of all points on a circle with centre at the origin and radius 1. The solutions of z n = 1, which are usually called the n th roots of unity, which can be computed by DeMoivre's theorem, will form a regular polygon with vertices as the solutions. As n -→ ∞ this regular polygon will become a unit circle. This is the ordinary concept of n th of unity in the field of complex numbers. For a ring, we need to think differently.

A primitive m th root of unity in a ring with unit element is completely different from that of in a field, because of the presence of nonzero zero divisors. So we need a separate definition for a primitive m th root of unity. An element ω in a ring R is called a primitive m th root if m is the least positive integer such that ω m = 1 and m-1 r=0 ω r(i-j) = m, i = j( mod m) = 0, i = j( mod m).

A ring R with unity is called a halidon ring with index m if there is a primitive m th root of unity and m is invertible in R. The ring of integers is a halidon ring with index m = 1 and ω = 1. The halidon ring with index 1 is usually called a trivial halidon ring. The field of real numbers is a halidon ring with index m = 2 and ω = -1. The field Q (i) = {a + ib|a, b ∈ Q } is a halidon ring with ω = i and m = 4. Z 65 is an example of a halidon ring with index 4 and ω = 8 which is not a field. In general Z 4r 2 +1 is a halidon ring with index 4 and ω = 2r for each integer r > 0. Z p is a halidon ring with index p -1 for every prime p. Interestingly, Z p k is also a halidon ring with same index for any integer k > 0 and it is not a field if k > 1. Note that if ω is a primitive m th root of unity, then ω -1 is also a primitive m th root of unity.

Preliminary results

We state the following propositions without proof. The proofs are available in [START_REF] Telveenus | Circulants and Group Algebras[END_REF] and [START_REF]Telveenus Halidon Rings and Group Algebras Algebras[END_REF]. Let U (R) and ZD(R) denote the unit group of R and the set of zero divisors in R respectively. Clearly, they are disjoint sets for a finite commutative halidon ring R. Proposition 1. A finite commutative ring R with unity is a halidon ring with index m if and only if there is a primitive m th root of unity ω such that m, ω r -1 ∈ U (R); the unit group of R for all r = 0, 1, .., m -1. If m is a prime number it is enough to have m, ω -1 ∈ U (R).

Corollary 1. Let R be a finite commutative halidon ring with index m. Then m divides the number of nonzero zero divisors in R.

Corollary 2. Let R be a commutative halidon ring with index m and let k > 1 be a divisor of m. Then R is also a halidon ring with index k. Proposition 2. Let R be a finite commutative halidon ring with index m. Then R = U (R) ∪ ZD(R) with U (R) ∩ ZD(R) = {}; the empty set.

Proof. Since R is finite and m is invertible in R, the proof is evident. Proposition 3. Let R be a finite commutative halidon ring with index m. Then |R|=1 (mod m). Proposition 4. Let R 1 and R 2 be two halidon rings with same index m, then R 1 R 2 is also a halidon ring with same index m. Proposition 5. Let h:R→ R be a homomorphism from a halidon ring with index m to another ring R such that the unit elements correspond. Then h(R)⊂ R is also a halidon ring with same index. Corollary 3. Let S be a multiplicatively closed subset of a halidon ring R with index m, then R S = {a/s|a ∈ R, s ∈ S} is also a halidon ring with same index. Corollary 4. Let I be an ideal of a halidon ring with index m. Then R/I is also a halidon with same index m.

Corollary 5. Let R be a ring and G be a group. The group ring RG is a halidon group ring with index m if and only if R is a halidon ring with the index m. Proposition 6. Let M be an R-module over a halidon ring with index m and let End M be the ring of endomorphisms of M, then End M is also a halidon ring with same index that of R.

Proposition 7. Let R be a finite commutative halidon ring with index m such that U(R)=< ω >, where < ω > is the cyclic group generated by ω; a primitive m th root of unity. Then (1) R = T L, where T is a subfield of R and L is a subspace of R as a vector space over T, (2) R is semisimple.

Theorem 1. A ring R is a finite field if and only if R is a finite commutative halidon ring with index m such that U(R)=< ω >. Let u = m i=1
α i g i be an element in the group algebra RG and let

λ r = m i=1 α m-i+2 (ω (i-1) ) (r-1)
where ω ∈ R is a primitive m th root of unity. Then u is said to be depending on λ 1 , λ 2 , ......, λ m . Proposition 8. Let S be a subring with unity of a halidon ring R with index m and let G =< g >= {g 1 = 1, g 2 = g, ......, g m = g m-1 } be a cyclic group of order m generated by g. Let

u = m i=1 α i g i ∈ U (RG) ∩ SG be depending on λ 1 , λ 2 , ......, λ m .Then u -1 ∈ SG if and only of λ = λ 1 λ 2 ......λ m is invertible in S.
The next theorem is about the existence of units in integral group rings which is an important area of study in group rings or group algebras.

Theorem 2. Let ω ∈ C be a complex primitive m th root of unity and let G =< g >= {g 1 = 1, g 2 = g, ......, g m = g m-1 } be a cyclic group of order m generated by g. Let

u = m i=1 α i g i ∈ CG be depending on λ 1 , λ 2 , ......, λ m . Let λ * i = m r=1,r =i λ r and λ = m r=1 λ r Then u = m i=1 α i g i ∈ U (ZG) if and only if λ = ±1. If λ -1 m = f (ω); a polynomial function of ω, then u -1 = f (g).
Remark 1. When we use the formula u -1 = f (g), ensure that the use of m-1 r=0 ω r = 0 should be avoided in the calculation of λ i or λ in order to make the behaviour of ω exactly same as that of g. For an example see [START_REF] Telveenus | Circulants and Group Algebras[END_REF]. 

y i = (-1) m-i+1 S m-i+1 if i = 1 = 1 + (-1) m S m if i = 1
where S i 's are the elementary symmetric polynomials in λ 1 , λ 2 , ......, λ m .

Corollary 6. If R = Z p , the ring of integer modulo p where p>2 is a prime integer in the above theorem and m=p-1, then the trace of u r = 0 (that is the coefficient of identity in G of u r ), for r=1,2,...,p-2.

Corollary 7. If R = Z p , the ring of integer modulo p where p>2 is a prime integer in the above theorem and m=p-1, then S r = 0(mod p) for r=1,2,..., p-2 [Lagrange's Theorem] and 1 + (p -1)! = 0(mod p) [Wilson's Theorem].

Theorem 4. Let R be a commutative halidon ring with index m and let G be a cyclic group of order m. Then RG ∼ = R m as R-algebras.

Theorem 5 (Higman's Theorem [START_REF] Higman | The Units of Group Rings[END_REF], [START_REF] Karpilovsky | Commuataive Group Algebras Marcel[END_REF]). Let R be a commutative halidon ring with index m and let G be an finite abelian group of order n with exponent m and n is a unit in R. Then RG ∼ = R n as R-algebras.

Let R be a commutative halidon ring with index m and let G be an abelian group of order n with exponent m and n is a unit in R. By the fundamental theorem on finite abelian groups, G is a direct product of cyclic groups say

< ζ 1 >, < ζ 2 >, ...., < ζ k >, where ζ s is of order n s and n = n 1 n 2 n 3 ...n k . Assume that n 1 ≤ n 2 ≤ n 3 ≤ ... ≤ n k . Then m = n k .
Since n 1 , n 2 , n 3 , ..., n k divide n and since n is a unit in R, n 1 , n 2 , n 3 , ..., n k are also units in R. An arbitrary element of z ∈ G can be uniquely written as

z = ζ α 1 1 ζ α 2 2 .....ζ α k k where 0 ≤ α s < n s .
Let ω be a primitive m th root of unity over R. Corresponding to each k tuples r = [r 1 , r 2 , ....r k ] where 0 ≤ r s < n s , Γ [r] be a map of G into U (R) defined by

Γ [r] (z) = k s=1 [ω αs( ds c ) ] rs ( * )
where

d i = k s=1,s =i n s
and c is given by n = cm. We define

e [r] = 1 n x∈G Γ [r] (x)x
Then {e [r] } forms an orthogonal R-basis for RG.

Theorem 6. Let R be a halidon ring with index m and let G be a finite abelian group of order n with exponent m such that n is invertible in R. Let

u = x∈G u x x be a unit in RG with inverse v = x∈G v x x, then v x = 1 n s β -1 [s] Γ [s] (x)
where

β [s] = x∈G u x Γ [s] (x -1
).

Theorem 7. Let R be a halidon ring with index m and let G be a finite abelian group of order n and exponent m such that n is invertible in R. Let

u = x∈G u x x
be an idempotent in RG, then

u x = 1 n s β [s] Γ [s] (x)
where β [s] are idempotents in R.

Let D 2m =< a, b|a m = b 2 = 1, abab = 1 > be the dihedral group of order 2m and let R be a halidon ring with index m. Any element in RD 2m can be taken as

u = m i=1 α i a i-1 + m i=1 α m+i a i-1 b. Let Λ u = Λ 11 Λ 12 Λ 21 Λ 22
, where

Λ 11 = diag(λ 1 , λ 2 , ...., λ m )
and

λ i = m r=1 α m-r+2 (ω (i-1) ) (r-1)
where ω ∈ R is a primitive m th root of unity, m -r + 2 is being taken reduction modulo m, zero is treated as m and i = 1, 2, ...., m.

Λ 12 = diag(γ 1 , γ 2 , ...., γ m )
and

γ j = m r=1
α m+r (ω (j-1) ) (r-1) ; j = 1, 2, ...., m

Λ 21 = diag(δ 1 , δ 2 , ...., δ m ) and δ k = m r=1
α m+(m-r+2) (ω (i-1) ) (r-1) ; k = 1, 2, ...., m where m -r + 2 is being taken reduction modulo m and zero is treated as m.

Λ 22 = diag(η 1 , η 2 , ...., η m ) and η s = m r=1 α r (ω (s-1) ) (r-1) ; s = 1, 2, ...., m. Theorem 8. RD 2m ∼ = V , as R-algebras, where V = {Λ u |u ∈ RD 2m } is a subalgebra of the algebra of matrices M at 2m (R), of order 2m over R.

Theorem 9. U (ZD 2m ) ∼ = {Λ u | |Λ u | = ±1, u ∈ ZD 2m }. Let T 2m =< a, b|a m = 1, b 2 = a m 2 , b -1 ab = a -1 >
be the dicyclic group of order 2m where m = 2n and let R be a halidon ring with index m.

Let Q 2m =< a, b|a m = 1, b 2 = a p , b -1 ab = a -1 , m = 2 n+1 , p = 2 n
> be the generalised quaternion group of order 2m and n > 1. Clearly Q 2m arises as a particular case of dicyclic group.

Theorem 10. RT 2m ∼ = V 1 , as R-algebras, where V 1 is a subalgebra of the algebra of matrices M at 2m (R), of order 2m over R.

Let S 2m =< a, b|a m = 1, b 2 = a p , b -1 ab = a -1 , m = 2 n+1 , p = 2 n -1 > be the semidihedral group of order 2m and n > 1 and let R be a halidon ring with index m.

Theorem 11. RS 2m ∼ = V 2 , as R-algebras, where V 2 is a subalgebra of the algebra of matrices M at 2m (R), of order 2m over R.

Main Result-Maschke's Theorem

In this section, we discuss the characters of a group over halidon rings and Maschke's Theorem. Usually, the character of a group is defined over a real field R or a complex field C. But, here we define character of a group over a halidon ring which need not be a field. Since the field of complex numbers is a halidon ring with any index greater than 1, all the properties of characters over halidon rings will automatically satisfied over the field of complex numbers. Now we are looking into those properties of characters of a group over a complex field which are also true over halidon rings.

Let R be a commutative halidon ring with index m and let G be a finite group of order n with exponent m such that n is invertible in R. A homomorphism ρ : G → GL(k, R) is defined as a representation of G over R of degree k, where GL(k, R) is the general linear group of invertible matrices of order k over R. The character of G is defined as a homomorphism χ : G → R such that χ(g) = tr(ρ(g)) for ∀ g ∈ G where tr(ρ(g) is the trace of the matrix ρ(g). A representation is faithful if it is injective. When k = 1, we call the character χ as linear character and it is actually a homomorphism χ : G → u(R). In the standard definition, by a linear character χ of G, mean a homomorphism χ :

G → C -{0}. If R = C, then U (R) = C -{0}.
So the linear characters are precisely Γ [r] . Thus we have the following theorem which is already known to be true for linear characters of a group over C.

Theorem 12. Let R be a commutative halidon ring with index m and let G be a group of order n and exponent m such that n is invertible in R. Let G * be the set of homomorphisms Γ [s] of G into U(R), which are given by(*). Then G * is a group under the product Γ [s] Γ [t] = Γ [s+t] and G * ∼ = G.

Proof. Refer to [START_REF]Telveenus Halidon Rings and Group Algebras Algebras[END_REF] for the proof.

Suppose that

ρ : G → GL(k, R) is a representation of G over R. Write V = R k ,
the module of all row vectors (λ 1 , λ 2 , ..., λ k ) with each λ i ∈ R. For all v ∈ R and g ∈ G, the matrix product vρ(g), of the row vector v with the matrix ρ(g) is a row vector in V . With the multiplication vg = vρ(g), V becomes an RG-module. Refer to [START_REF] James | Liebeck Representations and Characters of Groups[END_REF]. The next theorem is the Maschke's Theorem for a cyclic group over a halidon ring.

Theorem 13. Let G be a finite cyclic group of order m and let R be a commutative halidon ring with index m. Let V = R m be an RG-module. Then there are m irreducible RG-submodules

U 1 , U 2 , ......., U m such that V = U 1 ⊕ U 2 ⊕ ...... ⊕ U m . Proof. Let ρ be the regular representation of G =< g|g m = 1 >. Then ρ(g) = cirulant(0, 0, 0, ...., 1) =     0 0 0.... 0 1 1 0 0.... 0 0 . . ..... . . 0 0 0.... 1 0    
is a square matrix of order m and each row is obtained by moving one position right and wrapped around of the row above. The eigen values are

1, ω, ω 2 ......, ω m-1 ,
where ω is a primitive m th root of unity and with corresponding eigen vectors (1, 1, ...., 1), (1, ω, ω 2 ......, ω m-1 ), (1, ω 2 , (ω 2 ) 2 ......, (ω m-1 ) 2 ), ....., (1, ω m-1 , (ω m-1 ) 2 ......, (ω m-1 ) m-1 ). Let U r = span{(1, ω r-1 , (ω r-1 ) 2 ......, (ω r-1 ) m-1 )}. Then any element u r of U r can be taken as λ(1, ω r-1 , (ω r-1 ) 2 ......, (ω r-1 ) m-1 ) for some λ ∈ R. Therefore

ug = uρ(g) = λ(1, ω r-1 , (ω r-1 ) 2 ......, (ω r-1 ) m-1 )cirulant(0, 0, 0, ...., 1) = λω r-1 (1, ω r-1 , (ω r-1 ) 2 ......, (ω r-1 ) m-1 ) ∈ U r . This means that U r is an RG-submodule of V for each r = 1, 2, 3, ....m. We define π r : V → V by π r (v) = u r ∈ U r . Then π 2 r = π r and therefore V = U 1 ⊕ U 2 ⊕ ...... ⊕ U m . Corollary 8.
Let G be a finite cyclic group of order k and let R be a commutative halidon ring with index m. Let V = R k be an RG-module where k | m. Then there are k irreducible RG-submodules

U 1 , U 2 , ......., U k such that V = U 1 ⊕ U 2 ⊕ ...... ⊕ U k .
Proof. Since k | m, we can take m=ck. Then ω 1 = ω c is a primitive k th root of unity. Applying the above theorem, the result follows.

Theorem 14 (Mascheke's Theorem). Let G be a finite group of order n with exponent m, let R be a commutative halidon ring with index m and n is invertible in R. Let V = R m be an RG-module. If U is an RG-submodule of V, then there is an RG-submodule W such that V = U ⊕ W .

Proof. First choose any submodule W 0 of V such that V = U ⊕ W 0 . Since V is a free module with rank m, we can find a basis {v 1 , ..., v p } of U. Next we have to show that this basis can be extended to a basis {v

1 , ..., v p , v p+1 , ...., v m } of V . Let v p+1 / ∈ span{v 1 , ..., v p }. Suppose that α 1 v 1 + α 2 v 2 + ..... + α p v p + α p+1 v p+1 = 0. Then α p+1 v p+1 = -α 1 v 1 -α 2 v 2 -..... -α p v p If α p+1 = 0, then v 1 , ..., v p , v p+1 are linearly independent. If α p+1 ∈ U (R); the unit group of R, then v p+1 ∈ span{v 1 , ..., v p }, which is a contradiction. So α p+1 / ∈ U (R). If α p+1 = 0 ∈ ZD(R); the set of zero divisors of R, then there exists a β p+1 = 0 ∈ ZD(R) such that α p+1 β p+1 = 0. ⇒ -β p+1 α 1 v 1 -β p+1 α 2 v 2 -..... -β p+1 α p v p = 0 ⇒ β p+1 α i =
0 for all i = 1, 2, 3, ..., p. Since the above is true for all i = 1, 2, 3, ..., p, β p+1 must be zero. This is a contradiction as β p+1 = 0. Therefore α p+1 must be zero. So v 1 , ..., v p , v p+1 are linearly independent. Continuing like this we can extend a basis {v 1 , ..., v p } of U to a basis {v 1 , ..., v p , v p+1 , ...., v m } of V . Then W 0 = span{v p+1 , ..., v m }. Rest of the proof is in line with [START_REF] James | Liebeck Representations and Characters of Groups[END_REF]. Now for all v ∈ V there exist unique vectors u ∈ U and w ∈ W 0 such that v = u + w. We define φ : V → V by setting φ(v) = u. Recall from algebra that if V = U ⊕ W , and if we define π : V → V by π(u + w) = u f or all u ∈ U, w ∈ W then π is an endomorphism of V . Moreover, Im(π) = U , Ker(π) = W and π 2 = π. With this in mind we see that φ is a projection of V with kernel W 0 and image U . Our aim is to modify the projection φ to create an RG-homomorphism from V → V with image U . Define τ : V → V by

τ (v) = 1 n g∈G g -1 φ(gv), v ∈ V
Then τ is an endomorphism of V and Im(τ ) ⊆ U . Now we will show that τ is an RGhomomorphism. For v ∈ V and x ∈ G we have

τ (xv) = 1 n g∈G g -1 φ(gxv)
As g runs through the elements of G, so does h = gx. Thus we have

τ (xv) = 1 n h∈G xh -1 φ(hv) = 1 n x h∈G h -1 φ(hv) = xτ (v)
Thus τ is an RG-homomorphism.

It remains to show that τ is a projection with image U . To show that τ is a projection it suffices to demonstrate that τ 2 = τ . Note that given u ∈ U and g ∈ G, we have gu ∈ U , so φ(gu) = gu. Using this we see that:

τ (u) = 1 n g∈G g -1 φ(gu) = 1 n g∈G g -1 gu = 1 n g∈G u = u Now let v ∈ V . Then τ (v) ∈ U , so we have τ (τ (v)) = τ (v) . We have shown that τ 2 = τ .
In [START_REF] James | Liebeck Representations and Characters of Groups[END_REF], the authors have stated the Maschke's theorem for vector spaces over the field of real numbers R or complex numbers C and provided an example where Maschke's theorem can fail(see chapter 7) if the field is not a R or C. In the light of the theorem 14, we can still have a vector space over the field Z p ; which is a halidon ring with index m = p -1 for prime p. By theorem 1, there is a primitive m th root of unity ω such that

U (Z p ) =< ω >. Let G = C m =< a : a m = 1 > and let R = Z p . Note that we cannot take G as C p =< a : a p = 1 > as |G| = p has no multiplicative inverse in Z p . Let V = R 2 and let {v 1 , v 2 } be the standard basis for V . We define σ : G -→ GL(2, R) by σ(a j ) = ω j 0 0 ω j for j = 1, 2, 3, ....m.. Clearly σ is a representation of G. Also, U = span{v 1 } is an RG- submodule of V. Define W = span{v 1 + v 2 }, which is also an RG-submodule of V . Any element v in V can be written as v = (α 1 -α 2 )v 1 + α 2 (v 1 + v 2 ) for some α 1 , α 2 ∈ R. If x ∈ U ∩ W , then x ∈ U and x ∈ W . So x = λ 1 v 1 = (λ 1 , 0) and x = λ 2 (v 1 + v 2 ) = (λ 2 , λ 2 )
for some λ 1 , λ 2 ∈ R. This implies x = (0, 0) and hence V = U ⊕ W as desired.

Definition 1. Let R be a commutative halidon ring with index m > 2 and let S n be the symmetric group on n symbols such that |S n | = m. Let S n = {g 1 , g 2 , g 3 , ..., g m } be in some order and let {e g 1 , e g 2 , e g 3 , ..., e gm } be the standard basis for V = R m . Define ρ(g)(h) = e gh for all g, h ∈ S n . This is called the permutation representation of S n .

Example 1. Let us order the elements of S 3 as follows:

S 3 = {g 1 = id, g 2 = (1, 2) g 3 = (1, 3) g 4 = (2, 3) g 5 = (1, 2, 3) g 6 = (1, 3, 2)}.
Then the composition table is given as below.

g 1 g 2 g 3 g 4 g 5 g 6 g 1 g 1 g 2 g 3 g 4 g 5 g 6 g 2 g 2 g 1 g 5 g 6 g 3 g 4 g 3 g 3 g 6 g 1 g 5 g 4 g 2 g 4 g 4 g 5 g 6 g 1 g 2 g 3 g 5 g 5 g 4 g 2 g 3 g 6 g 1 g 6 g 6 g 3 g 4 g 2 g 1 g 5

Let R be a halidon ring with index m=6 and V = R 6 (for example, R = Z 49 ). Let {e g 1 , e g 2 , e g 3 , ..., e g 6 } be the standard basis for V . The representation ρ is given by ρ(g i )g j = e g i g j . Using the composition table, for example, we can see that

ρ(g 3 ) =         0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0         Let W 0 = span{e g 1 , e g 2 ,
e g 3 , e g 4 , e g 5 } and U = span{e g 1 + e g 2 + e g 3 + e g 4 + e g 5 + e g 6 }.

Then clearly V = W 0 ⊕ U . We define a projection φ(e g i ) = 0, f or i = 1, 2, 3, 4, 5 and φ(e g 6 ) = e g 1 + e g 2 + e g 3 + e g 4 + e g 5 + e g 6 . From the proof of Maschke's Theorem, we have τ (e g i ) = 1 6 (e g 1 + e g 2 + e g 3 + e g 4 + e g 5 + e g 6 )f or all i = 1, 2, 3, 4, 5, 6. Let W = Ker τ = span{e g 1 -e g 2 , e g 2 -e g 3 , e g 3 -e g 4 , e g 4 -e g 5 , e g 5 -e g 6 }. Then wg ∈ W for all w ∈ W and g ∈ S 3 . Therefore W is an RS 3 submodule and V = U ⊕ W as expected from the Maschke's Theorem.

Proposition 9. Let R and D 2m be as in theorem 8. The isomorphism ρ between RD 2m and V = {Λ u |u ∈ RD 2m } is defined by ρ(u) = Λ u . Then tr(ρ(u)) is 2mα 1 .

Proof. The trace function

tr(ρ(u)) = trΛ u = m i=1 λ i + m i=1 η i = m i=1 m r=1 α m-r+2 (ω (i-1) ) (r-1) + m s=1 m r=1 α r (ω (s-1) ) (r-1) = m r=1 (α m-r+2 + α r ) m i=1 (ω (i-1) ) (r-1) = 2mα 1 as m r=1 ω (i-1)(r-1) = m, r = 1 = 0, r = 1 Corollary 9. If χ = ρ|D 2m , the restriction of ρ to D 2m , then χ is a character of D 2m such that (1) χ(1) = 2m (2) χ(g) = 0 ∀ g = 1 ∈ D 2m .
Proof.

α 1 = 1 if g = 1 = 0 if g = 1.
Remark 2. The results in the proposition 9 and corollary 9 are also valid for RT 2m and RS 2m .

Rososhek's problem

In speaking at the Ergolol-2007 conference, Prof. S. K. Rososhek came up with a new cryptosystem, which is based on the use of group rings [START_REF] Ponomaryov | Automorphically rigid group algebras. I. Semisimple algebras Algebra Logika[END_REF]. Let R be a commutative ring and G be a group. We say that an automorphism ψ : RG -→ RG is standard if it is defined by some ring automorphism α : R -→ R and by a group automorphism σ : G -→ G, so that

ψ(x) = g∈G α(a g )σ(g) for every x = g∈G a g g ∈ RG .
Rososhek's problem: For which finite commutative rings R and finite groups G does the group ring RG have standard automorphisms only?

We refer to group rings RG possessing just standard automorphisms as automorphically rigid, and the problem then consists in defining finite automorphically rigid group rings. In [START_REF] Ponomaryov | Automorphically rigid group algebras. I. Semisimple algebras Algebra Logika[END_REF], the author has proved the following theorem for a finite field:

Theorem 15. Let K be a finite field of characteristic p and G a finite group. A group algebra KGis automorphically rigid if and only if one of the following conditions holds:

(1) G is a trivial group, i.e., G = e;

(2) G is a cyclic group of odd prime order q, i.e., G = C q , q = 2, and K = F p is a prime field of characteristic p, with p a primitive root modulo q;

(3) G is a direct product of an order 2 cyclic group and a cyclic group C q of odd prime order q = 2, i.e., G = C 2 × C q , with 2 a primitive root modulo q, and K = F 2 is a two-element field; (4) G is a permutation group on three symbols, i.e., G = S 3 , and K = F 2 is a two-element field.

Still, the question remains unanswered for a finite commutative ring which is not a field.

Proposition 10. Let R = Z n [X] (X 2 -1)
. Then the number of automorphisms of R, |AutR| is given by |AutR| = 2 if n = p s where s ≥ 1 is an integer and p is an odd prime number

= 2 k if n = p e 1 1 p e 2 2 p e 3 3 .....p e k k with prime numbers 2 < p 1 < p 2 < ..... < p k .
Proof. This proof is somewhat similar to example 2 in [START_REF] Kumar | A Graphical Representation of Rings via Automorphism Groups[END_REF]. Let x be the image of X in R. Any element in R can be uniquely written as ax + b with a, b ∈ Z n . Let σ ∈ AutR. Then σ(a) = a for every a ∈ Z n . Therefore σ(x) = ax + b for some a, b ∈ Z n . Since σ is an automorphism, there exists an element px+q with p, q ∈ Z n such that x = σ(px+q) = pσ(x)+q = pax+pb+q. then we get pa = 1 and so a must be a unit in

Z n . Further, if σ(x) = ax + b with a ∈ U (Z n ), we must also have 0 = σ(x 2 -1) = σ(x 2 ) -1 = (ax + b) 2 -1 = a 2 x 2 + 2abx + b 2 -1 = a 2 (x 2 -1) + 2abx + a 2 + b 2 -1 = 2abx + a 2 + b 2 -1.
Since n is odd, 2ab = 0 =⇒ b = 0 as a ∈ U (Z n ). This implies a 2 = 1. Therefore |AutR|=no. of involutions in Z n . But, the number of involutions in Z n clearly follows the statement in the proposition. Programme-3 mentioned below is useful to compute involutions in Z n .

If Z n is halidon ring with index m, then so is

Z n [X]. By corollary 4, Z n [X] (X 2 -1)
is also a halidon ring with index m. The only solution to the above proposition is m = 2. So one of the solutions (there may have other solutions) to the Rososhek's problem is given by R

Proposition 11. Let R = Z n [X] (X 2 -
= Z p s [X] (X 2 -1)
where p is an odd prime, s ≥ 1 is an integer and ω = p s -1 = -1modp s ∈ Z p s is a primitive m th root of unity and G = C 2 .

The computational aspects of halidon rings and halidon group rings

The main purpose this section is to verify Maschke's Theorem using some computer codes. The computer programme-5, is very useful to verify the Maschke's theorem for cyclic group. Throughout this section, let R = Z n be a halidon ring with index m and primitive m th root of unity ω. Let G =< g >= {g 1 = 1, g 2 = g, ......, g m = g m-1 } be a cyclic group of order m generated by g. We study the computational aspects of finding halidon rings for any integer n > 2 and computing the units and idempotents in the halidon group ring RG based on the related theorems.

Theorem 16. A finite commutative ring R with unity is a halidon ring with index m if and only if there is a primitive m th root of unity ω such that m, ω d -1 ∈ U (R); the unit group of R for all divisors d of m and d < m.

Proof. If R is a finite commutative halidon ring with index m, then it is evident that there is a primitive m th root of unity ω such that m, ω d -1 ∈ U (R); the unit group of R for all divisor d of m. Conversely, assume that there is a primitive m th root of unity ω such that m, ω d -1 ∈ U (R); the unit group of R for all divisor d of m. We would like to show that ω r -1 ∈ U (R), for r = 1, 2, 3, ..., m -1. Let g be the greatest common divisor of r and m. Then there are integers u and v such that ur + vm = g. Using the well known geometric series, we have (p -1)(1 + p + p 2 + ... + p k-1 ) = p k -1.

Put p = ω r and k = u. Then we get (ω r -1).a = ω ru -1 for some a ∈ R. This means that (ω r -1) divides ω ru -1 = ω ru .ω vm -1 = ω ru+vm -1 = ω g -1. Now we can choose a divisor d of m such that g divides d. Let p = ω g and k = d g . Thus we have

(ω g -1).b = ω d -1
for some b ∈ R. If (ω g -1).c = 0, multiplying by b, we get (ω d -1).c = 0. Since (ω d -1) ∈ U (R), c = 0. Therefore (ω g -1) is not a zero divisor. Since R is finite and using proposition 2, we get (ω g -1) ∈ U (R). Also, (ω r -1) divides ω g -1. Therefore (ω r -1) is a unit in R. Thus we have (ω r -1) is a unit in R for r = 1, 2, , 3..., m -1. By theorem 1, R is a halidon ring with index m. 

ψ(n) = gcd{p 1 -1, p 2 -1, p 3 -1, ...., p k -1},
which is independent of the exponents e 1 , e 2 , e 3 , ...., e k .

Proof. The proof follows immediately from the fact that p 1 , p 2 , p 3 , ...., p k are distinct primes.

It is well-known that the carmichael function λ(n) is the exponent of U (Z n ). The proof of the following proposition is evident. 1. If n is even, then Z n is a trivial halidon ring. 2. Else for i=1,2,...., n-1 for j=1,2,3,,,,,,n-1 do compute i * jmodn if i*j mod n=1, w ←-i 3. for i=1,2,3,,,,,, n-1 do compute w i 4. if w i modn = 1 , m ←-i 5. compute divisors d of m and d < m 6. compute w d -1 and if w d -1 = 1modn for all d, then Z n is a nontrivial halidon ring with index m. As there are two for loops, the complexity of the above algorithm is in polynomial time O(n 2 ).

Proposition 13. If λ(n) is the carmichael function, then (1) ψ(n) divides λ(n), (2) ψ(n k ) = ψ(n) if n is odd, (3) ψ(p 1 p 2 p 3 ....p s ) = ψ(p d 1 1 p d 2 2 p d 3 3 .....p ds s ) if each integer d i > 0 for i = 1,
There are infinitely many halidon rings which are not fields. For example, using the programme-1, we can see that: 

β i = 1 m m r=1 λ -1 r (ω i-1 ) r-1 .
The computer programme-2 can be used to test whether a given element u in RG is a unit or not. If it is a unit, then the programme will give the multiplicative inverse v in RG. 

λ i ∈ U (R), (2) u ∈ E(RG) if and only if each λ i ∈ E(R), where E(RG) is the set of idempotents in RG. More over, |U (RG)| = |U (R)| |G| and |E(RG)| = |E(R)| |G| .
Proof. The proof follows from the isomorphism ρ(u) = (λ 1 , λ 2 , ......, λ m ) from RG onto R m . This is the isomorphism used to prove theorem 4.

In order to find a unit element or an involution or an idempotent in R, we can use the programme-3.

Input: n=25 Output: Involutions are 1 and 24. Idempotents are 0 and 1. The units and their inverses are (1, 1), (2, 13), [START_REF] Higman | The Units of Group Rings[END_REF]17), [START_REF] Von | Modern Computer Algebra[END_REF]19), (6, 21), [START_REF] Kumar | A Graphical Representation of Rings via Automorphism Groups[END_REF]18), [START_REF] Ponomaryov | Automorphically rigid group algebras. I. Semisimple algebras Algebra Logika[END_REF]22), [START_REF] Telveenus | Circulants and Group Algebras[END_REF]14), (11, 16), (12, 23), (13, 2), (14, 10), (16, 11), (17, 3), (18, 7), [START_REF] Telveenus | Circulants and Group Algebras[END_REF][START_REF] Von | Modern Computer Algebra[END_REF], (21, 5), (22, 20), (23, 12) and (24, 24).

After finding the units and involutions in R, using the programme-4, we can compute the units and involutions in RG. 3 , which is an involution. All outputs can be verified through direct calculations. After finding the idempotents in R, using the programme-5, we can compute the idempotents in RG.

Input: n = 25, m = 4, m -1 = 19, ω = 7, l[1] = 7, l[2] = 3, l[3] = 13, l[4] = 21, l1[1] = 18, l1[2] = 17, l1[3] = 2, l1[4] = 5 Output: The multiplicative inverse of a = 11 + 17g + 24g 2 + 5g 3 is b = 23 + 12g 2 + 8g 3 . Input: n = 25, m = 4, m -1 = 19, ω = 7, l[1] = 1, l[2] = 24, l[3] = 24, l[4] = 1, l1[1] = 1, l1[2] = 24, l1[3] = 24, l1[4] = 1 Output: The multiplicative inverse of a = 22g + 4g 3 is b = 22g + 4g
Input:

n = 49, m = 6, m -1 = 41, ω = 19, l[1] = 1, l[2] = 0, l[3] = 0, l[4] = 0, l[5] = 0, l[6] = 0 Output: e 1 = 41 + 41g + 41g 2 + 41g 3 + 41g 4 + 41g 5 Input: n = 49, m = 6, m -1 = 41, ω = 19, l[1] = 0, l[2] = 1, l[3] = 0, l[4] = 0, l[5] = 0, l[6] = 0 Output: e 2 = 41 + 44g + 3g 2 + 8g 3 + 5g 4 + 46g 5 Input: n = 49, m = 6, m -1 = 41, ω = 19, l[1] = 0, l[2] = 0, l[3] = 1, l[4] = 0, l[5] = 0, l[6] = 0 Output: e 3 = 41 + 3g + 5g 2 + 41g 3 + 3g 4 + 5g 5 Input: n = 49, m = 6, m -1 = 41, ω = 19, l[1] = 0, l[2] = 0, l[3] = 0, l[4] = 1, l[5] = 0, l[6] = 0 Output: e 4 = 41 + 8g + 41g 2 + 8g 3 + 41g 4 + 8g 5 Input: n = 49, m = 6, m -1 = 41, ω = 19, l[1] = 0, l[2] = 0, l[3] = 0, l[4] = 0, l[5] = 1, l[6] = 0 Output: e 5 = 41 + 5g + 3g 2 + 41g 3 + 5g 4 + 3g 5 Input: n = 49, m = 6, m -1 = 41, ω = 19, l[1] = 0, l[2] = 0, l[3] = 0, l[4] = 0, l[5] = 0, l[6] = 1
Output: e 6 = 41 + 46g + 5g 2 + 8g 3 + 3g 4 + 44g 5 Clearly e 1 , e 2 , e 3 , e 4 , e 5 and e 6 are orthogonal idempotents such that e 1 +e 2 +e 3 +e 4 +e 5 +e 6 = 1. Therefore 5 g + (ω 5 ) 2 g 2 + (ω 5 ) 3 g 3 + (ω 5 ) 4 g 4 + (ω 5 ) 5 g 5 }, after multiplying by 6, the inverse of 41. This confirms the theorem 13.

Z 49 G = U 1 ⊕ U 2 ⊕ U 3 ⊕ U 4 ⊕ U 5 ⊕ U 6 where U 1 = span{41 + 41g + 41g 2 + 41g 3 + 41g 4 + 41g 5 } = span{1 + g + g 2 + g 3 + g 4 + g 5 }, U 2 = span{41 + 44g + 3g 2 + 8g 3 + 5g 4 + 46g 5 } = span{1 + ωg + ω 2 g 2 + ω 3 g 3 + ω 4 g 4 + ω 5 g 5 }, U 3 = span{41 + 3g + 5g 2 + 41g 3 + 3g 4 + 5g 5 } = span{1 + (ω) 2 g + (ω 2 ) 2 g 2 + (ω 2 ) 3 g 3 + (ω 2 ) 4 g 4 + (ω 2 ) 5 g 5 }, U 4 = span{41 + 8g + 41g 2 + 8g 3 + 41g 4 + 8g 5 } = span{1 + (ω) 3 g + (ω 3 ) 2 g 2 + (ω 3 ) 3 g 3 + (ω 3 ) 4 g 4 + (ω 3 ) 5 g 5 }, U 5 = span{41 + 5g + 3g 2 + 41g 3 + 5g 4 + 3g 5 } = span{1 + (ω) 4 g + (ω 4 ) 2 g 2 + (ω 4 ) 3 g 3 + (ω 4 ) 4 g 4 + (ω 4 ) 5 g 5 }, U 6 = span{41 + 46g + 5g 2 + 8g 3 + 3g 4 + 44g 5 } = span{1 + (ω)
Input: n = 65, m = 4, m -1 = 49, ω = 8, l[1] = 1, l[2] = 26, l[3] = 40, l[4] = 26 Output: The idempotent in Z 65 G is e = 7 + 39g + 46g 2 + 39g 3 .
A direct calculation verifies that all outputs are correct.

Bilinear Forms and Circulant Matrices

Let ring R be a commutative halidon ring with index m and primitive m th root of unity ω. Let G be a cyclic group of order m, generated by g. We define g i = g i-1 . ∴ g i g j = g i+j-1 ; i = 1, 2, 3, ...., m. By the extension theorem of Higman, we have RG ∼ = R m as R-algebras and the isomorphism ρ is given by

ρ m i=1 α i g i = (λ 1 , λ 2 , λ 3 ...., λ m )
where

λ i = m r=1 α m-r+1 (ω i-1 ) r-1 .
Since {g i } is an R-basis for RG, {ρ(g i )} is a basis for R m and s 1 = ρ(g 1 ) = (1, 1, 1, ..., 1), 

s 2 = ρ(g 2 ) = (1, ω m-1 , (ω m-1 ) 2 , ..., (ω m-1 ) m-1 ), s 3 = ρ(g 3 ) = (1, ω m-2 , (ω m-2 ) 2 , ..., (ω m-2 ) m-
     s 1 s 2 s 3 . . . s m       =       1 1 1 . . . 1 1 ω m-1 (ω m-1 ) 2 . . . (ω m-1 ) m-1 1 ω m-2 (ω m-2 ) 2 . . . (ω m-2 ) m-1 . . . . . . . . . . . . . . . 1 ω (ω) 2 . . . (ω m-1 )             e 1 e 2 e 3 . . . e m       s T = Φ * e T ∴ e T = 1 m Φs T where Φ =           1 1 1 ..... 1 1 ω ω 2 ..... ω m-1 1 ω 2 (ω 2 ) 2 ..... (ω 2 ) m-1 . . . ..... . . . . ..... . . . . ..... . 1 ω m-1 (ω m-1 ) 2 ..... (ω m-1 ) m-1          
and Φ * is the Φ conjugate transposed [START_REF] Davis | Circulant Matrices John[END_REF]. Thus we have the following theorem.

Theorem 19. Let ring R be commutative halidon ring with index m and primitive m th root of unity ω. Let G be a cyclic group of order m, generated by g. We define g i = g i-1 ; i = 1, 2, 3, ...., m and let {s i } be the image of {g i } under the isomorphism RG ∼ = R m and let {e i } be the standard basis for R n . Then s T = Φ * e T or e T = 1 m Φs T . For each u = (u 1 , u 2 , u 3 , ..., u m ) ∈ R m , we define C u = circu(u 1 , u 2 , u 3 ..., u m ). Also, we define f u : R m × R m -→ R by f u (x, y) =< x, y > u = xC u y T for every x = (x 1 , x 2 , x 3 ..., x m ), y = (y 1 , y 2 , y 3 ..., y m ) ∈ R m . We adopt some standard definitions of bilinear form for < x, y > u . < x, y > u is said to symmetric if < x, y > u =< y, x > u for every x, y ∈ R m . It is said to be skewsymmetric if < x, y > u = -< y, x > u for every x, y ∈ R m . < x, y > u is said to alternating if < x, x > u = 0 for every x ∈ R m [START_REF]Serge Algebra Graduate Texts in Mathematics[END_REF].

Theorem 20. f u is a bilinear form and

< s i , s j > u = m(u 1 + u 2 ω i-1 + u 3 (ω i-1 ) 2 + ... + u m (ω i-1 ) m-1 ), if i + j = 2 (mod m) = 0 otherwise.
Proof. It is clear that f u is a bilinear form.

< e i , e j > u = e i C u e T j = u j-i+1 if i ≤ j = u m+j-i+1 if i > j. < s i , s j > u =< e 1 + ω m-i+1 e 2 + (ω m-i+1 ) 2 e 3 + ... + (ω m-i+1 ) m-1 )e m , e 1 + ω m-j+1 e 2 + (ω m-j+1 ) 2 e 3 + ... + (ω m-j+1 ) m-1 )e m > u = (u 1 + ω m-j+1 u 2 + (ω m-j+1 ) 2 u 3 + ... + (ω m-j+1 ) m-1 )u m ) + (ω m-i+1 )(u m + ω m-j+1 u 1 + (ω m-j+1 ) 2 u 2 + ... + (ω m-j+1 ) m-1 )u m-1 ) + (ω m-i+1 ) 2 (u m-1 + ω m-j+1 u m + (ω m-j+1 ) 2 u 1 + ... + (ω m-j+1 ) m-2 )u m-1 ) + ... + (ω m-i+1 ) m-1 (u 2 + ω m-j+1 u 3 + (ω m-j+1 ) 2 u 4 + ... + (ω m-j+1 ) m-1 )u 1 ) = u 1 (1 + ω 2m-i-j+2 ) + (ω 2m-i-j+2 )) 2 + ... + (ω 2m-i-j+2 )) m-1 ) + u 2 ω m-i+1 (1 + ω 2m-i-j+2 ) + (ω 2m-i-j+2 )) 2 + ... + (ω 2m-i-j+2 )) m-1 ) u 3 (ω m-i+1 ) 2 (1 + ω 2m-i-j+2 ) + (ω 2m-i-j+2 )) 2 + ... + (ω 2m-i-j+2 )) m-1 ) + ... + u m (ω m-i+1 ) m-1 (1 + ω 2m-i-j+2 ) + (ω 2m-i-j+2 )) 2 + ... + (ω 2m-i-j+2 )) m-1 ) = (1 + ω 2m-i-j+2 + (ω 2m-i-j+2 )) 2 + ... + (ω 2m-i-j+2 )) m-1 ) (u 1 + u 2 ω m-j+1 + u 3 (ω m-j+1 ) 2 + ... + u m (ω m-j+1 ) m-1 ) ω 2m-i-j+2 = 1 if i + j = 2 (mod m) = 1 otherwise ∴< s i , s j > u = m(u 1 + u 2 ω i-1 + u 3 (ω i-1 ) 2 + ... + u m ) if i + j = 2 (mod m) = 0 otherwise.
Hence the proof.

Corollary 10. < s i , s j > u = 0 for all i, j ∈ {1, 2, 3, , , , m} if and only if u = 0.

Proof. If u = 0, there is nothing to prove. By theorem 20, < s i , s j > u = 0 for all i, j other than i + j = 2 (mod m). So it is enough to consider < s i , s j > u = 0 for i + j = 2 (mod m). Since m is invertible in R, < s i , s j > u = 0 for i + j = 2 (mod m) implies 

u 1 + u 2 + u 3 + ... + u m = 0 u 1 + u 2 ω + u 3 (ω) 2 + ... + u m (ω) m-1 = 0 u 1 + u 2 ω 2 + u 3 (ω 2 ) 2 + ... + u m (ω 2 ) m-1 =
+ u 2 ω m-1 + u 3 (ω m-1 ) 2 + ... + u m (ω m-1 ) m-1 = 0
This can be put into the matrix form Φu T = 0. Since Φ -1 exists, u T = 0 and therefore u = 0.

We write

x ⊥ y if < x, y > u = 0. We define (R m ) ⊥ = {x ∈ R m | < x, y > u = 0 for all y ∈ R m }. We say that < x, y > u is nondegenerate if (R m ) ⊥ = {0}.
Corollary 11. < x, y > u is a nondegenerate bilinear form if < s i , s j > u ∈ U (R) for all i and j such that i + j = 2 (mod m).

Proof. < x, y > u = i,j x i y j < s i , s j > u = i+j=2mod(m) x i y j < s i , s j > u by 20. Therefore < x, y > u = x 1 y 1 < s 1 , s 1 > u +x 2 y m < s 2 , s m > u + x 3 y m-1 < s 3 , s m-1 > u +.... + x m y 2 < s m , s 2 > u < x, y > u = 0 =⇒ x 1 y 1 < s 1 , s 1 > u +x 2 y m < s 2 , s m > u + x 3 y m-1 < s 3 , s m-1 > u +.... + x m y 2 < s m , s 2 > u = 0 =⇒ x 1 < s 1 , s 1 > u x 2 < s 2 , s m > u x 3 < s 3 , s m-1 > u ... x m < s m , s 2 > u       y 1 y m y m1 . y 2       = 0.
Since this is true for all y = (y 1 , y 2 , y 3 , ...y m ),

x 1 < s 1 , s 1 > u x 2 < s 2 , s m > u x 3 < s 3 , s m-1 > u ..... x m < s m , s 2 > u =(0,0,..,0) =⇒ x 1 < s 1 , s 1 > u = 0, x 2 < s 2 , s m > u = 0, x 3 < s 3 , s m-1 > u = 0.. x m < s m , s 2 > u = 0 x 1 = x 2 = x 3 = ... = x m = 0 only when < s i , s j > u ∈ U (R) for i + j = 2 (mod m).
Thus (R m ) ⊥ = {0} and therefore < x, y > u is a nondegenerate bilinear form.

Corollary 12. Let < x, y > u be a nondegenerate bilinear form. Then M = (< s i , s j >) is an invertible matrix of order m.

Proof. By theorem 20, the matrix M can be written as

M =       < s 1 , s 1 > u 0 0 ... 0 0 0 0 0 ... 0 < s 2 , s m > u 0 0 0 ... < s 3 , s m-1 > u 0 ... ... ... ... ... ... 0 < s m , s 2 > u 0 ... 0 0       Clearly D = det M = ± < s 1 , s 1 > u < s 2 , s m > u < s 2 , s m-1 > u ..... < s m , s 2 
> u and the sign is depending on m. By corollary 11, D ∈ U (R). So M -1 exists and M -1 is given by

M -1 =       < s 1 , s 1 > -1 u 0 0 ... 0 0 0 0 0 ... 0 < s m , s 2 > -1 u 0 0 0 ... < s m-1 , s 3 > -1 u 0 ... ... ... ... ... ... 0 < s 2 , s m > -1 u 0 ... 0 0       .
Corollary 13. Let R = Z n be the ring integers modulo n. It is a halidon ring with maximum index m max = ψ(n); where ψ(n) is the halidon function. Then the number of nondegerate bilinear forms < x, y > u is φ(n) ψ(n) .

Proof. By 11, < x, y > u is nondegenrate if and only if < s i , s j > u ∈ U (R) for all i and j such that i + j = 2 (mod m).

Here |U (R)| = φ(n) and m = ψ(n). Therefore | < x, y > u |=φ(n) ψ(n) . Theorem 21. Let C = {C u |u = (u 1 , u 2 , u 3 , ..., u m ) ∈ R m } and let G be as in theorem 19. Then C is an R-algebra. Proof. Let u = (u 1 , u 2 , u 3 , ..., u m ), v = (v 1 , v 2 , v 3 , ..., v m ) ∈ R m be any two elements in R.
Since RG ∼ = R m , we can identify the elements u and v as m i=1 α i g i and m i=1 β i g i respectively, where

u i = m r=1 α m-r+2 (ω i-1 ) r-1 . and v i = m r=1 β m-r+2 (ω i-1 ) r-1 .
Since R is a halidon ring with index m and ω is a primitive m th root of unity, the circulant matrix C u can be written as

C u = 1 m ΦΛ u Φ * , where Λ u = diag(λ 1 , λ 2 , λ 3 ...., λ m ) such that λ i = m r=1 u i (ω (i-1) ) (r-1)
and Φ * is the conjugate transposed of Φ [START_REF] Davis | Circulant Matrices John[END_REF]and

1 m ΦΦ * = I = 1 m Φ * Φ. Clearly Λ u Λ v = Λ uv . ∴ C uv = 1 m ΦΛ uv Φ * = 1 m ΦΛ u Λ v Φ * = 1 m ΦΛ u 1 m Φ * ΦΛ v Φ * = ( 1 m ΦΛ u Φ * )( 1 m ΦΛ v Φ * ) = C u C v
We define h : R m → C by h(u) = C u ; which is clearly an algebra isomorphism. ∴ R m ∼ = C. And hence the theorem.

Theorem 22. Let B = {< x, y > u | < x, y > u = xC u y T , for each u ∈ R m , x, y ∈ R m }. Then B is an R-module.

Proof. Let α ∈ R be any element in R. Then < x, y > u+v =< x, y > u + < x, y > v and < x, y > αu = α < x, y > u . Therefore B is an R-module.

Discrete Fourier Transforms

In this section, we deal with the ring of polynomials over a halidon ring which has an application in Discrete Fourier Transforms [START_REF] Von | Modern Computer Algebra[END_REF]. Throughout this section, let R be a finite commutative halidon ring with index m and R[x] denotes the ring of polynomials degree less than m over R. The notion of convolution is equivalent to polynomial multiples in the ring R[x]/ < x m -1 >. The l th coefficient of the product f (x)g(x) is j+k=l mod m f j g k and hence f (x) * g(x) = f (x)g(x) mod(x m -1). Proposition 14. [START_REF] Von | Modern Computer Algebra[END_REF] For polynomials f (x), g(x) ∈ R[x], DF T ω (f (x) * g(x)) = DF T ω (f (x)).DF T ω (g(x)), where . denotes the pointwise multiplication of vectors.

Proof. f (x) * g(x) = f (x)g(x) + q(x)(x m -1) for some q(x) ∈ R[x]. Replace x by ω j , we get f (ω j ) * g(ω j ) = f (ω j )g(ω j ) + 0. The matrix φ is the well known Vandermonde matrix and its inverse is 1 m φ * , where φ * is the matrix transpose conjugated [START_REF] Davis | Circulant Matrices John[END_REF]. Since φ is a square matrix and the conjugate of ω is ω -1 , we have DF T -1 ω (f (x)) = 1 m DF T ω -1 (f (x)). Example 2. We know that R = Z 49 is a halidon ring with index m = 6 and ω = 19. Also, ω -1 = ω 5 = 31. Let f (x) = 2 + x + 2x 2 + 3x 3 + 5x 4 + 10x 5 ∈ R[x]. Then DF T ω (f (x)) can be expressed as

        F 0 F 1 F 2 F 3 F 4 F 5         =         1 1 1 1 1 1 1 ω ω 2 ω 3 ω 4 ω 5 1 ω 2 ω 4 1 ω 2 ω 4 1 ω 3 1 ω 3 1 ω 3 1 ω 4 ω 2 1 ω 4 ω 2 1 ω 5 ω 4 ω 3 ω 2 ω                 f 0 f 1 f 2 f 3 f 4 f 5         ⇒         F 0 F 1 F 2 F 3 F 4 F 5         =         23 24 32 44 9 27                 f 0 f 1 f 2 f 3 f 4 f 5        
If R = Z 100001 , m = 10, ω = 26364 and f (x) = 1 + 2x + 3x 2 + 4x 3 + 5x 4 + 6x 5 + 7x 6 + 8x 7 + 9x 8 + x 9 ∈ R[x], then

                F 0 F 1 F 2 F 3 F 4 F 5 F 6 F 7 F 8 F 9

Theorem 3 .

 3 Let R be a halidon ring with index m and G =< g >= {g 1 = 1, g 2 = g, ......, g m = g m-1 } be a cyclic group of order m generated by g. Let u = m i=1 α i g i be an element in the group algebra RG depending on λ 1 , λ 2 , ......, λ m such that u m = 1. Then there is a homomorphism φ : RG → RG and an element y = m i=1 y i g i ∈ Kerφ such that

1 )

 1 be a halidon ring with index m and let G = C m be a cyclic group of order m. If m! = 2 k × φ(m) for some positive integer k, then RG is automorphically rigid. Proof. Clearly R is not a field. By theorem 5, RG ∼ = R m . So |AutRG| = |AutR m |. But, AutR m is just the collection of automorphisms which permute the positions of the elements of R m . Thus we have |AutR m | = m!. By proposition 10, we have |AutR| = 2 k for some positive integer k. So m! = 2 k × φ(m) implies |AutRG| = |AugR| × |AugG| and therefore RG is automorphically rigid.

2 , 3 ,

 23 ...., s. I have developed 5 computer programme codes in c++ (Microsoft Visual Studio 2019) based on the theorems 16, 18 and 2 programmes for Discrete Fourier Transforms. The programme codes are included in the appendix. The computer programme-1 can be used to find a halidon ring Z n of given order n ≥ 1. The author would like to provide its algorithm as follows: ***************************** ALGORITHM for Programme-1 ***************************** Input: n. Output:Z n is a trivial halidon ring or not.

( 1 )

 1 Z 49 is halidon ring with index m = 6 and ω = 19, (2) Z 2001 is a trivial halidon ring with index m = 2 and ω = 2000, (3) Z 2501 is halidon ring with index m = 20 and ω = 8 or 2493, (4) Z 3601 is halidon ring with index m = 12 and ω = 1350 or 2528, (5) Z 10001 is halidon ring with index m = 8 and ω = 10 or 9220, (6) Z 100001 is halidon ring with index m = 10 and ω = 26364 or 73728 (running time 35 minutes). By running the same programme several times for different values of n, the author has come to the conclusion of the following conjecture. Conjecture 1. If R = Z n and n = p e 1 1 p e 2 2 p e 3 3 .....p e k k with primes p 1 < p 2 < p 3 < .... < p k including 2, then R is a halidon ring with maximal index m max = ψ(n).Theorem 17. Let u = m i=1 α i g i ∈ U (RG) be depending on λ 1 , λ 2 , ......, λ m . Let v = m i=1 β i g i be the multiplicative inverse of u in RG. Then

  Input: n = 121, m = 10, m -1 = 109, ω = 94, a[1] = 62, a[2] = 21, a[3] = 22, a[4] = 85, a[5] = 81, a[6] = 95, a[7] = 24, a[8] = 30, a[9] = 1, a[10] = 65 Output: The multiplicative inverse of a = 62 + 21g + 22g 2+ 85g 3 + 81g 4 + 95g 5 + 24g 6 + 30g 7 + g 8 + 65g 9 is b = 102 + 68g + 34g 2 + 61g 3 + 73g 4 + 54g 5 + 102g 6 + 109g 7 + 18g 8 + 455g 9 . Input: n = 121, m = 10, m -1 = 109, ω = 94, a[1] = 72, a[2] = 71, a[3] = 89, a[4] = 48, a[5] = 54, a[6] = 0, a[7] = 2, a[8] = 105, a[9] = 25, a[10] = 19 Output: The multiplicative inverse of a = 72 + 71g + 89g 2 + 48g 3 + 54g 4 + 0g 5 + 2g 6 + 105g 7 + 25g 8 + 19g 9 is b = 72 + 71g + 89g 2 + 48g 3 + 54g 4 + 0g 5 + 2g 6 + 105g 7 + 25g 8 + 19g9 , which is an involution. Input: n = 121, m = 10, m -1 = 109, ω = 94, a[1] = 5, a[2] = 7, a[3] = 2, a[4] = 40, a[5] = 22, a[6] = 90, a[7] = 20, a[8] = 25, a[9] = 10, a[10] = 55 Output: The element a = 5 + 7g + 2g 2 + 40g 3 + 22g 4 + 90g 5 + 20g 6 + 25g 7 + 10g 8 + 56g 9 has no multiplicative inverse. A direct calculation shows that all outputs are correct. Theorem 18. Let u = m i=1 α i g i ∈ RG be depending on λ 1 , λ 2 , ......, λ m . Then (1) u ∈ U (RG) if and only if each

  1 ), ............., s m = ρ(g m ) = (1, ω, ω 2 , ..., ω m-1 ). Let {e i } be the standard basis in R m . Thens 1 = e 1 + e 2 + e 3 + ... + e m , s 2 = e 1 + ω m-1 e 2 + (ω m-1 ) 2 e 3 + ... + (ω m-1 ) m-1 )e m , s 3 = e 1 + ω m-2 e 2 + (ω m-2 ) 2 e 3 + ... + (ω m-2 ) m-1 )e m , ......................................, s m = e 1 + ωe 2 + ω 2 e 3 + ... + ω m-1 )e m . This gives 

Definition 3 . [ 4 ]Remark 3 .

 343 Let ω ∈ R be a primitive m th root of unity in R and letf (x) = m-1 j=0 f j x j ∈ R[x] with its coefficients vector (f 0 , f 1 , f 2 , ...., f m-1 ) ∈ R m . The Discrete Fourier Transform (DFT) is a map DF T ω : R[x] → R m defined by DF T ω (f (x)) = (f 0 (1), f 1 (ω), f 2 (ω 2 ), ...., f m-1 (ω m-1 )).Clearly DF T ω is a R-linear map as DF T ω (af (x) + bg(x)) = aDF T ω (f (x)) + bDF T ω (g(x)) for all a, b ∈ R. Also, if R = C, the field of complex numbers, then ω = cos( 2π m ) + isin( 2π m ) = e i 2π m and the Fourier series will become the ordinary series of sin and cos functions.

Definition 4 . [ 4 ]

 44 The convolution of f (x) = m-1 j=0 f j x j and g(x) = m-1 k=0 g k x k in R[x] is defined by h(x) = f (x) * g(x) = m-1 l=0 h l x l ∈ R[x] where h l = j+k=l mod m f j g k = m-1 j=0 f j g l-jfor 0 ≤ l < m.

∴

  DF T ω (f (x) * g(x)) = DF T ω (f (x)).DF T ω (g(x)). Theorem 23. For a polynomial f (x) ∈ R[x], DF T -1 ω (f (x)) = 1 m DF T ω -1 (f (x)). Proof. The matrix of the transformation DF T ω (f (x)) is [DF T ω (f (x))] = φ = -1 (ω m-1 ) 2 ..... (ω m-1 )

  Definition 2. Let p 1 , p 2 , p 3 , ...., p k be odd primes and let φ(x) be the Euler's totient function.

	We define the halidon function
	ψ(n) =	gcd{φ(p e 1 1 ), φ(p e 2 2 ), φ(p e 3 3 ), ...., φ(p e k k )}, n = p e 1 1 p e 2 2 p e 3 3 .....p e k

k 1, n is even Proposition 12. Let n be as in 2. Then the halidon function
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Appendix A.

Programme-1 : To check whether Z(n) is a trivial or nontrivial halidon ring #include <iostream> #include <cmath> using namespace std; int main() { cout << "To check whether Z(n) is a trivial or nontrivial halidon ring." << endl; unsigned long long int t = 0, n = 1, w = 1, hcf, hcf1, d = 1, k = 1, q = 1, p = 1, b=0, c=0, temp = 1; cout << "Enter an integer n >0: "; cin >> n; if (n % 2 == 0) { cout << "Z(" << n << ") is a trivial halidon ring." << endl; } for (w = 1; w < n; ++w) { for (int i = 1; i <= n; ++i) { if (w % i == 0 && n % i == 0) { hcf = i; } } if (hcf == 1) { ++t; // cout << " " << w << " "; } } for (w = 1; w < n; ++w) { for (int i = 1; i <= n; ++i) { if (w % i == 0 && n % i == 0) { hcf = i; } } if (hcf == 1) { for (int k = 1; k <= t; ++k) { q = q * w; q = q % n; if (q == 1) { if (temp <= k) { temp = k; } break; } } } } for (w = 2; w < n; ++w) { for (int i = 1; i <= n

" is a halidon ring with index m= " << k << " and w= " << w << ". , m = 1, t = 0, x = 1, s = 0, s1 = 0, l = 0, m1 = 1, hcf = 1, n = 1, i = 1, k = 0, q = 1, p = 1, r = 1, w = 1; cout << "Enter n =" << endl; cin >> n; cout << "Enter index m =" << endl; cin >> m; cout << "Enter m^(-1) =" << endl; cin >> m1; cout << "Enter primitive m th root w =" << endl; cin >> w; for (i = 0; i < m; ++i) { w1[i] =( (long long int)pow(w, i)) % n; cout << "w1[" << i << "]" << w1[i] << endl; } for (int i = 1; i < m + 1; ++i) { cout << "Enter a["<<i<<"]=" << endl; cin >> a[i]; } a[0] = a[m]; for (int r = 1; r < m + 1; ++r) { for (int j = 1; j < m + 1; ++j) { l = (m -j + 2) % m; x = ((j -1) * (r -1)) % m;

"has no multiplicative inverse." << endl; } else {cout << "The inverse of "; s = m; mylabel: cout << a[m -s + 1] << "g^(" << m -s << ") + "; s--; if (s > 0) goto mylabel; cout << "is" << endl; s1 = m; mylabel1: cout << d[m -s1 + 1] << "g^(" << m -s1 << ") + "; s1--; if (s1 > 0) goto mylabel1; cout << "." << endl; } return 0; } Programme-3: To find idempotents, involutions and units in Zn #include<iostream> #include<cmath> using namespace std; int main() { cout << "To find idempotents, involutions and units in Z(n)." << endl; long long int i, j=0,n, k=0, x, y; cout << "Enter n=" << endl; cin >> n; cout << "The involutions are "; for (i = 1; i < n + 1; ++i) { x = (i * i) % n; if (x == 1) { cout << i << " "; } } cout << "." << endl; cout << "The idempotents are "; for (i = 0; i < n + 1; ++i) { x = (i * i) % n; if (x == i) { cout << i << " "; j++; } } cout << "." << endl; cout << "Number of idempotents = " << j << endl; cout << "The units and its inverse are "<<endl; for (y = 1; y < n + 1; ++y) { for (i = 1; i < n + 1; ++i) { x = (y * i) % n; if (x == 1) { cout << y << " , " << i << endl; k++; } } } cout << "Number of units = " << k; return 0; } Programme-4: To find the inverse of an element in Z(n)G;G is a cyclic group of order m through lambda units #include<iostream> #include<cmath> using namespace std; int main() { cout << "To find the inverse of an element in Z(n)G;" << "G is a cyclic group of order m through lambda units." << endl; int a[100], b[100], l[100], l1[100], w1[100], m = 1, t = 0, x = 1, y=1,s = 0, s1 = 0, m1 = 1, hcf = 1, n = 1, i = 1, k = 0, q = 1, p = 1, r = 1, w = 1; cout << "Enter n =" << endl; cin >> n; cout << "Enter index m =" << endl; cin >> m; cout << "Enter m^(-1) =" << endl; cin >> m1; cout << "Enter primitive m th root w =" << endl; cin >> w; for (i = 0; i < m; ++i) { w1[i] = ((long long int)pow(w, i)) % n; cout << "w1[" << i << "]=" << w1[i] << endl; } cout << "Enter lambda values which have inverse" << endl; for (int i = 1; i < m + 1; ++i) { cout<< "l[" << i << "]=" << endl; cin >> l[i]; } cout << "Enter lambda inverse values " << endl; for (int i = 1; i < m + 1; ++i) { cout << "l1[" << i << "]=" << endl; cin >> l1[i]; } for (int r = 1; r < m + 1; ++r) { for (int j = 1; j < m + 1; ++j) { x = ((j -1) * (r -1)) % m; k = k + (m1*l[j] * w1[x]) % n; k = k % n; // cout << "k=" << k << endl; } a[r] = k; cout << "a[" << r << "]=" << a[r] << endl; k = 0; } for (int r = 1; r < m + 1; ++r) { for (int j = 1; j < m + 1; ++j) { x = ((j -1) * (r -1)) % m; cout << "x= " << x << endl; k = k + (m1 * l1[j] * w1[x]) % n; k = k % n; cout << "k=" << k << endl; } b[r] = k; cout << "b[" << r << "]=" << b[r] << endl; k = 0; } cout << "The inverse of a= "; s = 1; mylabel: cout << a[s ] << "g^(" << s-1 << ") + "; s++; if (s <m+1) goto mylabel; cout << endl; cout << "is b="; s1 = m; mylabel1: cout << b[m -s1 + 1] << "g^(" << m -s1 << ") + "; s1--; if (s1 > 0) goto mylabel1; cout << "." << endl; cout << "Note: Please neglect the last + as" << "it is unavoidable for a for loop."; return 0; } Programme-5: To find the idempotent elements in ZnG;G is a cyclic group of order m through lambda takes idempotent values in Zn \begin{verbatim} #include<iostream> #include<cmath> using namespace std; int main() { cout << "To find the idempotent elements in Z(n)G;"<< "G is a cyclic group of order m through" << "lamda takes idempotent values in Z(n)." << endl; int a[100], l[100], w1[100], m = 1, t = 0, x = 1, y = 1, s = 0, s1 = 0, m1 = 1, n = 1, i = 1, k = 0, r = 1, w = 1; cout << "Enter n =" << endl; cin >> n; cout << "Enter index m =" << endl; cin >> m; cout << "Enter m^(-1) =" << endl; cin >> m1; cout << "Enter primitive m th root w =" << endl; cin >> w; for (i = 0; i < m; ++i) { w1[i] = ((long long int)pow(w, i)) % n; cout << "w1[" << i << "]=" << w1[i] << endl; } cout << "Enter lambda values which are idempotents" << endl; for (int i = 1; i < m + 1; ++i) { cout << "l[" << i << "]=" << endl; cin >> l[i]; } for (int r = 1; r < m + 1; ++r) { for (int j = 1; j < m + 1; ++j) { x = ((j -1) * (r -1)) % m;

The idempotent element in RG is e= "; s = 1; mylabel: cout << a[s] << "g^(" << s -1 << ") + "; s++; if (s < m + 1) goto mylabel; cout << endl; cout << endl; cout << "Note: Please neglect the last + as it is" << "unavoidable for a for loop."; return 0; mult [200][200],q=1,m=1, n=1, w2=1,w=1, r1, c1, r2, c2, i, j, k, t=1; cout << "Enter n,m,w: "; cin >> n >> m >> w; r1 = m; c1=m; r2 = m; c2=1; for (i = 0; i < r1; ++i) for (j = 0; j < c1; ++j) { t = (i*j)%m; if (t == 0) a[i][j] = 1; else for (q = 1; q < t + 1; ++q) { w2 = (w2 * w) % n; } a[i][j] = w2; w2 = 1; } for (i = 0; i < r1; ++i) for (j = 0; j < c1; ++j) { cout<<" a"<<i+1<<" "<<j+1<<"="<<a[i][j] ; if (j == c1 -1) cout << endl; } cout << endl << "Enter coefficient vector of the polynomial:" << endl; for (i = 0; i < r2; ++i) for (j = 0; j < c2; ++j) { cout << "Enter element f" << i << " = "; cin >> b[i][j]; } for (i = 0; i < r1; ++i) for (j = 0; j < c2; ++j) { mult[i][j] = 0; } for (i = 0; i < r1; ++i) for (j = 0; j < c2; ++j) for (k = 0; k < c1; ++k)

); } cout << endl << "DFT Output: " << endl; for (i = 0; i < r1; ++i) for (j = 0; j < c2; ++j) { cout << "F"<< i << "="<< mult for (i = 0; i < r1; ++i) for (j = 0; j < c1; ++j) { t = (i * j) % m; if (t == 0) a[i][j] = 1; else for (q = 1; q < t + 1; ++q) { w2 = (w2 * w1) % n; } a[i][j] = w2; w2 = 1; } for (i = 0; i < r1; ++i) for (j = 0; j < c1; ++j) { cout << " a" << i + 1 << j + 1 << "=" << a[i][j]; if (j == c1 -1) cout << endl; } cout << endl << "Enter DFT vector :" << endl; for (i = 0; i < r2; ++i) for (j = 0; j < c2; ++j) { cout << "Enter element F" << i << " = "; cin >> b[i][j]; } for (i = 0; i < r1; ++i) for (j = 0; j < c2; ++j) { mult[i][j] = 0; } for (i = 0; i < r1; ++i) for (j = 0; j < c2; ++j) for (k = 0; k < c1; ++k) { mult[i][j] += (a[i][k]) * (m1 * b[k][j]); } cout << endl << "Polynomial vector: " << endl; for (i = 0; i < r1; ++i) for (j = 0; j < c2; ++j) { cout << "f" << i << "=" << mult [