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Abstract.10

A method is proposed to model by a Generative Adversarial Network the11

distribution of particles exiting a patient during Monte Carlo simulation of emission12

tomography imaging devices. The resulting compact neural network is then able to13

generate particles exiting the patient, going towards the detectors, avoiding costly14

particle tracking within the patient. As a proof of concept, the method is evaluated15

for SPECT imaging and combined with another neural network modeling the detector16

response function (ARF-nn). A complete rotating SPECT acquisition can be simulated17

with reduced computation time compared to conventional Monte Carlo simulation. It18

also allows the user to perform simulations with several imaging systems or parameters,19

which is useful for imaging system design.20

1. Introduction21

Monte Carlo simulations in medical physics are widely used in the design and22

development of imaging systems such as positron emission tomography (PET) or23

single photon emission computed tomography (SPECT), to monitor nuclear decay,24

fragmentation in the patient body or for range verification in particle therapy. For25

example, many works on emerging instrumentation for SPECT imaging systems [1, 2, 3]26

require extensive and realistic Monte Carlo simulations to investigate and optimize the27

detection modules and novel geometrical configurations such as multi-head detectors.28

In abstract terms, such simulations create a mapping from a given source distribution29

inside the patient to a signal captured by the imaging device outside of the patient by30

transporting particles one-by-one through the objects present in the simulation. Because31

some of these objects do typically not overlap, it is possible to decompose the entire32

simulation into intermediate steps. For example, in the Monte Carlo simulation of a33

SPECT imaging system, a first step transports particles through the patient anatomy34

described, e.g., by a CT image and a second step transports those particles exiting the35

patient to and through the detector system. During the first step, photons emitted36

from an activity distribution of a given radionuclide are tracked in the inhomogeneous37

medium, potentially undergoing Compton scattering, until they are absorbed or exit38

the medium. The second step involves the simulation of the photon interactions within39

the detection head, through the collimator and the scintillator.40

Decomposing a simulation is useful to avoid redundancy in certain applications.41

For example, in a given SPECT scanner, the imaging device is always identical and42

only the patient anatomy in the first step changes. In this case, the explicit transport of43

particles across the imaging device can be replaced by a collimator–detector (angular)44

response function (ARF) that combines the accumulated effects of all interactions in45

the imaging head. The ARF may be approximated by an effective numerical model,46

provides variance reduction and accelerates the simulation [4, 5, 6]. On the other hand,47

e.g., when studying different imaging system designs, only the second simulation step48

needs to be repeated while the first step, i.e. the transport across a given patient, remains49
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unchanged. This requires a way to store or model the result of the first simulation step50

and this paper proposes a method to achieve that.51

More specifically, we focus on the emission and transport of gammas in the patient52

(described by a CT image). The phase space parameters (position, momentum, and53

energy) of all particles exiting the patient provide sufficient information to serve as54

a source description for a subsequent simulation or as input to ARF. The phase55

space dataset can in principle be stored in a file and reused repeatedly later. This56

is e.g. a commonly used method for the simulation of Linac treatment heads where57

particles are transported from the electron beam hitting the tungsten target to the58

different head elements to finally be registered in a virtual plane at the exit of the59

head [7]. A disadvantage is that those files are generally large (several GB) and can be60

cumbersome to process, use and exchange, which is particularly relevant when simulating61

a complete SPECT acquisition with potentially billions of particles to be transported.62

Several works, such as in [8, 9, 10], provided methods to model accelerator phase space63

distributions analytically, but they have never been investigated for SPECT simulations.64

In this work, we propose and explore the use of a generative model to describe65

the phase space distribution of particles exiting the patient volume in SPECT Monte66

Carlo simulation. Specifically, we rely on the concept of Generative Adversarial67

Networks (GAN) which have the potential to model multidimensional probability68

distributions [11]. One component of the GAN, i.e. a neural network called generator69

G, serves as a compact and fast source of particles for the Monte Carlo simulation.70

Previous work has shown that the phase space of particles exiting a Linac head can be71

modeled with a GAN trained through analog Monte Carlo simulation [12]. The phase72

space distributions of particles in that work were overall relatively smooth. Non-smooth73

features in the distributions (e.g. photo-peaks) could not be correctly modeled by the74

GAN.75

In this paper, we propose to explore and extend the concept to a more complex76

phase space: the phase space of particles exiting a patient in a 3D SPECT acquisition.77

The goal is to develop a GAN which is able to model the distribution of the exiting78

gammas so that they can be generated without the need to track them (again) within79

the patient. Moreover, we show that it is possible to combine this GAN with another80

neural network that models the detector response, as proposed in [6].81

2. Material and methods82

Following the approach described in [12], the proposed method is split into 3 main83

steps: 1) generate the training dataset via Monte Carlo simulation, 2) train the GAN84

and 3) use the generator of the GAN as a source. In the following, a second neural85

network (ARF-nn), is used to model the imaging detector response and the two neural86

networks are combined. ARF-nn stands for neural network-based Angular Response87

Function, proposed in [6], which models the detector response. The general principle of88

the proposed concept is illustrated figure 1.89
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Figure 1. Principles of the combined method. Top row depicts the reference Monte

Carlo simulation of a SPECT acquisition, including anatomical image (a Computed

Tomography or CT here), voxelized source activity, gammas tracking and SPECT head

complete description (collimator, crystal, electronics). The bottom row illustrates the

method combining two neural networks: gammas are generated by a GAN, tracked

in straight lines to a detector plane, serving as input for the ARF-nn to create the

projection multi-channel image.

2.1. Training dataset from Monte Carlo simulation90

We considered the simulation of a complete SPECT acquisition. It consisted of a 3D91

CT image, a 3D activity source and a single SPECT head rotating around the patient.92

The 3D CT image was described as a matrix of voxels associated with material density93

and composition following the stoichiometric calibration method [13, 14]. The activity94

source can be any 3D image where voxels are associated with a known activity in MBq.95

Without loss of generality, only 177Lu was considered but any other radionuclide may96

be used. We selected 177Lu because it is currently used for several radionuclide therapy97

treatments, notably combined with somatostatine analogues or PSMA (neuroendocrine98

tumors, prostatic adenocarcinoma), and SPECT images are used to monitor the patient99

dose distribution thorough the treatment. Gammas were emitted isotropically from100

randomly sampled positions in each voxel following the emission energy spectrum of101

the radionuclide. The half-life is 159.53 hours. In addition to electrons (max 497 keV,102

abundance rate of 78.6%), each decay emits around 17.2% of gammas of which 10.3%103

of 208 keV and 6.2% of 113 keV. The activity injected into the patient is assumed to be104

7.4 GBq (typical clinical injection). We assumed the SPECT image to be acquired 24 h105

after injection leading to 7.07 GBq due to the exponential decay. We considered that106

only half of this quantity stays in the patient part visible from the camera head due to107
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the physiological washout (as can be observed in our clinical practice). Without loss108

of generality we consider that one SPECT angular projection lasts 15 seconds and that109

a complete acquisition rotation contains 60 projections every 6 degrees. This leads to110

approximately 5.3× 1010 decays or 9.1× 109 emitted gammas for one single projection111

neglecting the decay during acquisition, and about 40× 106 detected counts. Since the112

ARF-nn method was used, we only need about 4.6× 108 emitted photons to simulate113

an image with variance equivalent to a real clinical acquisition.114

In order to generate a phase space containing the gammas exiting the patient skin,115

the first step was to define the surface to which phase space information about the116

gammas refers. The following aspects are to be considered. (1) gammas are tracked117

in the voxelized CT image until they leave the boundaries of the CT image. (2) In118

most of clinical devices, SPECT heads rotate around the patient and may move as119

close as possible to the patient skin. (3) With parallel collimator, the count rate does120

not change significantly when the patient-to-collimator distance decreases, because it is121

compensated for by the increased solid angle, but the spatial resolution improves [15].122

Hence, the exiting gammas should be stored as close to the patient skin as possible in123

order to accommodate all possible collimator positions. To this end, an extension of124

the phase space scorer of Gate (GatePhaseSpaceActor) was developed to use a binary125

mask image as additional parameter (see section 3 for more information about Gate).126

This mask image was created from the anatomical image (CT here) and is used to127

store gammas in the phase space as soon as they reach the air volume surrounding the128

patient’s body, thus exiting the patient skin. The mask image (1 inside the patient, 0129

outside), is build by extracting the patient contour from the CT thanks to an automated130

algorithm [16] based on morphological operations. Moreover, it is important to ensure131

that gammas exiting the skin will not re-enter the patient, as this can be the case for132

example in the empty space between the thorax side and the arms, when arms are not133

above the head. To avoid those situations, a large morphological closing operator (60134

mm radius) was applied to remove all those types of voids and create a quasi-convex135

surface, as illustrated in figure 2. Note that the use of this mask does not modify the136

computation time of the simulation.137

It could also be interesting to only store in the phase space the gammas having138

energy that have a chance to be detected by the SPECT head and low/high energy139

thresholds can be provided. In that case, the ratio of omitted versus stored gammas140

should be taken into account in order to correctly scale the simulation. According to141

the tolerance defined by the user, more restrictive thresholds could be used to further142

reduce the number of gamma that will be generated.143

As a summary for this first step, a Monte Carlo simulation is performed to track144

emitted gammas through the patient, storing in a phase space file all exiting particles145

from a surface covering the patient skin. Stored particle information are: energy, 3D146

position and 3D direction cosines (3D normalized vector of the photon momentum), so147

seven dimensions. This phase space constitutes the training dataset that will be the148

input of the GAN (next section). Note that only gammas are considered here, but if149
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Figure 2. Example of a patient CT slices (coronal, sagittal and axial) used in the

simulation overlaid with an activity source obtained from a SPECT image. The patient

contour binary mask, enlarged by the closing operator, is shown with red contour.

During the simulation, gammas are stored when they reach the outside of the mask

(red contour). Note that one can observe artifacts in the CT due to patient breathing

motion.

needed, additional types of exiting particles (electron, positron) may also be accounted150

for.151

2.2. Training the GAN152

Taking as input the previously described dataset, the goal of training the GAN is to153

build a generative neural network G able to generate particles following the distribution154

of the gammas in the training dataset. GAN optimization alternates the interdependent155

training of two neural networks, the generator G and the critic (or discriminator) D [11].156

The proposed GAN architecture model was the following: the Wasserstein GAN loss157

function, equation 1, proposed in [17] was used together with gradient penalty (GP) [18].158

WGAN Loss = E
x̃∼Pg

[D(x̃)]− E
x∼Pr

[D(x)] + λ E
x̂∼Px̂

[GP] (1)159

In the equation, Pr refers to the (real) data distribution and Pg to the model160

(generated) distribution defined by x̃ = G(z), with the noise z following a uniform or161

a normal distribution, following the notations of [18]. Wasserstein loss is an alternative162

to previously proposed Kullback-Leibler and Jensen-Shannon divergences to quantify163

the distance between the data distribution. It is based on the Earth-Mover distance164

and Optimal Transport theory. It evaluates the cost of the cheapest transport plan165

between the multidimensional distributions and was shown to provide better stability166

compared to original GAN. It requires that D be 1-Lipschitz (the norm of its gradients is167

at most 1 everywhere). Instead of the clipping strategy that was initially recommended168
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in [17] and used in [12], several gradient penalty strategies have been reported since.169

Gulrajani et al. [18] proposed to penalize when the gradient differs from 1. The penalty170

is computed by sampling uniformly along straight lines pairs of samples from the training171

dataset and from the generator. A hyperparameter λ is used to control the strength172

of this penalty. Petzka et al. [19] and Thanh-Tung et al. [20] proposed alternative173

penalties: Square Hinge (or Lipschitz penalty in the article) and 0-GP (GP stands for174

Gradient Penalty), using maximum and zero-centered penalty instead of the distance175

to 1. Recently, Jolicoeur-Martineau et al. [21] proposed a unified way to look at those176

penalties, considering the types of norm used to penalize the gradient (L2 or L∞) and177

the loss types (Least Square or Hinge). Table 1 summarizes the considered gradient178

penalties.179

Grad. Pen. Least Square Hinge

L1 (||∇x̂D(x̂)||1 − 1)2 max {0, (||∇x̂D(x̂)||1 − 1)}

L2 (||∇x̂D(x̂)||2 − 1)2 [18] max {0, (||∇x̂D(x̂)||2 − 1)}

L∞ (||∇x̂D(x̂)||∞ − 1)2 max {0, (||∇x̂D(x̂)||∞ − 1)}

Square Hinge (max {0, (||∇x̂D(x̂)||2 − 1)})2 [19]

0-GP (||∇x̂D(x̂)||2)2 [20]

Table 1. Gradient penalties according to [21, 18, 20, 19]. In the equations,

x̂ = αx + (1 − α)y, with x sampled from Pr the real probability distribution of the

gammas from the training dataset, and y is sampled from Pg the generated gamma

distribution. α ∼ U(0, 1) is sampled from the unit hyperball (following notation of [18]).

GAN training stabilization and convergence are still intensively being studied, both180

theoretically and experimentally. It is still not clear what kind of penalty is better. The181

RMSProp method [22] was used for the GAN optimization. Learning rates for the182

G and D networks were fixed experimentally to 10−4 and 2× 10−5, respectively. The183

architecture of G and D networks was a fully connected neural network with 4 hidden184

layers, 700 neurons in each and the activation function was Rectified Linear Unit (ReLu).185

The total number of weights of both networks was almost 2 million. The number of186

dimension z of the generator was set to 9. Stochastic batches of 104 gammas were used187

at each iteration. The critic D was updated twice per generator update. The total188

number of epochs was set to 105.189

2.3. Combining GAN and ARF-nn190

Once the GAN is trained, the generator G can be used in the simulation of a complete191

SPECT acquisition. For those simulations, the initial CT and the activity source192

were removed and replaced by G as a source of gammas exiting patient skin and193
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moving towards the detectors. The SPECT heads consist of two detectors composed194

of collimator, crystal and a complete digitization chain [23]. The heads were rotated195

around the patient and acquired incoming gammas for typically 15 seconds, in order to196

create projection images with one channel per energy window. The neural network-based197

Angular Response Function (ARF-nn) method was used [6] to model the SPECT head.198

With this approach, the detector is replaced by a plane and the response function takes199

as input the energy and direction of the incoming gammas and provides the probability200

of counts in all energy windows. The response function is a neural network that was201

trained with an analog Monte Carlo simulation of the full description of the detector.202

Hence, the two neural networks, G and ARF-nn, were used successively: the gammas203

generated by G were transported in a straight lines to the ARF plane where they were204

used as input to the ARF-nn. This approach is only valid if there are no additional205

objects between the patient contour and the detector. In this paper, the reference206

simulation was also performed with ARF-nn in order to only evaluate the impact of207

using GAN.208

3. Experiments209

Simulations were performed with Gate version 9.0 [24], using Geant4 version 10.6 [25]210

and PyTorch framework version 10.1 [26] with CUDA GPU acceleration. All211

experiments used the Geant4 physics list “standard electromagnetic option 4”.212

Production cuts were set to 0.1 mm. Computations were performed on an Intel Xeon213

CPU E5-2640 v4 @ 2.40 GHz with NVIDIA Titan Xp (GP102-450-A1, 12 GB memory)214

and on the Jean Zay CNRS computing center (IDRIS, GENCI, Orsay, France).215

Throughout this work, the considered SPECT system was the imaging head of the216

GE Discovery 670 with NaI(Tl) crystal. The real camera is composed of two heads217

but only one head was considered here. The collimator used for 177Lu was the medium218

energy general purpose (MEGP) parallel-hole one. The collimator hole diameters were219

3 mm with a septal thickness of 1.05 mm and the crystal thickness was 9.525 mm220

(3/8 inch). The effect of the digitizer chain was modeled by applying a spatial Gaussian221

blurring of 3.97 mm [27] and an energy resolution of 10 % at 171 keV. The head was222

replaced by ARF-nn trained to model the detection response as described in [6]. Gantry223

rotation was performed with constant 30 cm distance between the rotation center and224

the detector.225

3.1. Experiment1: spherical sources226

The first experiment was conducted with an artificial source of activity composed of227

a hot background area and 4 spheres of 40, 30 and 20 mm radius with an activity228

concentration 20 times and 50 times higher than the background, for a total of 3.5 GBq229

of 177Lu, as shown in figure 3. The sources were positioned in the thorax region in230

the CT image of a patient to obtain various attenuation conditions (one source is231
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in the lung parenchyma, the others in soft tissues). 109 primary decays following232

the energy spectrum of 177Lu were simulated (208.4 keV at 10.4% and 112.9 keV at233

6.2% for the two main photopeaks), resulting in about 1.72× 108 emitted gammas.234

60 reference SPECT projections obtained over 360◦ were generated with 109 decays235

(1.4× 108 primary particles) per rotation angle. The projections were reconstructed236

with the method described in [28] and implemented in the RTK toolkit [29], using the237

OSEM algorithm with quadratic penalization [30], 10 iterations and 15 subsets, 5 mm238

voxel size matrix. The number of iterations/subsets were chosen empirically. Scatter239

correction was taken into account through the Double Energy Window method [31].240

Attenuation correction (AC) and point spread function (PSF) correction were performed241

during the iterative process using the method described in [32]. Moreover, the reference242

simulation was performed 30 times in order to estimate the mean and standard deviation243

of all pixels of the generated projection image.244

Figure 3. Activity sources (four spheres and background) in a non homogeneous CT

image for the Experiment1. The activity concentrations in the spheres are 20 and 50

times higher than the activity in the background.

A simulation with the same source of activity, with only 108 primary decays and245

without the SPECT device was performed to create the training phase space dataset246

containing the gammas exiting the patient. It was performed with the phase space scorer247

extension that records every gamma which traverses the patient contour as described248

previously. Two phase spaces were computed with different random seeds to be used249

as independent training and validation datasets. The GAN was trained with the first250
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dataset using the parameters detailed in the previous section. In this experiment the251

gradient penalty Square Hinge (from [19], see table 1) has been used with λ = 10. Once252

the generator was trained, the SPECT projections were generated by the combined253

method previously described and compared to the reference projections. Six energy254

windows were used (the two photopeaks and associated adjacent 8% scattering windows,255

see table 2). Projection images were generated for all six windows. Reference (ARF-nn256

only) and GAN+ARF-nn were compared based on marginal distribution histograms257

of the gammas exiting the patient and profiles in the projection images. Projections258

obtained from the GAN method were also reconstructed with the same algorithm and259

parameters than the reference.260

Energy windows low high

Scatter1 96 keV 104 keV

Peak1 113 keV 104.52 keV 121.48 keV

Scatter2 122.88 keV 133.12 keV

Scatter3 176.64 keV 191.36 keV

Peak2 208 keV 192.4 keV 223.6 keV

Scatter4 224.64 keV 243.36 keV

Table 2. Energy windows used during simulations.

3.2. Experiment2: realistic patient activity261

The second experiment was performed with a realistic activity source obtained from a262

SPECT image reconstruction scaled such that the whole source contains 3.5 GBq. Like263

for the previous experiment, 60 projections over 360◦ were generated and reconstructed264

(same parameters). Similarly to Experiment1, a phase space was generated from the265

activity source with 109 primary particles and a GAN was trained from the dataset.266

Several gradient penalties were compared. Once trained, projections were generated267

with the proposed method and compared to the reference projections using the Hellinger268

distance which takes into account the mean and the variance of the detected count269

values. This distance is computed for all pixels considering that the detected counts270

follow a Poisson distribution (the mean is equal to the variance). Let cr be the pixel271

values in the reference image and cg in the GAN generated image, the Hellinger distance272

is computed by equation 2 for all pairs of pixels and averaged for five different angles273

(every 72 degrees).274

Hd(cr, cg) = 1− exp−1

2
(
√
cr −

√
cg)

2 (2)275

4. Results276

The phase space files generated for Experiment1 and Experiment2 contained each277

approximately 1.5× 108 stored gammas (4 GB of disk space). Approximately 15% of the278
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emitted gammas are not stored in the phase space (due to attenuation) and about 20%279

of the stored gammas correspond to scattered gammas which exit the phantom/patient280

with a reduced energy (different from the two photopeaks). Of course, those values vary281

according to the activity distribution, the anatomical medium and the radionuclide type.282

The figure 2 illustrates the initial source of activity for Experiment2.283

Figure 4 depicts the values of the GAN loss during the training process, both with284

the training and the validation datasets. Figure 5 depicts the marginal distributions285

(150 bins) for the seven dimensions (energy, positions, directions) computed from 104
286

samples obtained from the reference phase space and generated by the generator G of287

the GAN. The reference phase space shows a step-like structure (especially Z) due to288

the discrete nature of the mask image where the gammas are recorded. The GAN tends289

to smooth these steps.290

Figures 6 and 7 illustrate projection obtained from the reference and from the GAN291

method, for different angles (0◦, 72◦, 222◦), for the 208 keV peak energy window and292

96-104 keV scatter window. The red lines indicate the location of the profiles in the293

figure 8. Since the reference simulation was performed 30 times, the mean was used as294

reference and the standard deviation was used to depict the error bands. The six energy295

windows (scatters and peaks) of 177Lu are compared. Note that the Y-scale of number296

of counts is different in each subplot, as it is much larger for the peaks energy windows297

than for the scatter windows. The number of detected counts in a projection was in the298

order of 0.3× 106.299

0 20000 40000 60000 80000 100000
epoch

0.1

0.0

0.1

0.2

0.3

lo
ss

D loss with validation dataset
D loss with training dataset

Figure 4. Critic (discriminator) Wasserstein loss as a function of the epoch, for

training and the validation datasets during the Experiment1 training.

The figure 9 depicts several slices, along the three axis, of the reconstructed images300

(208 keV) with reference and GAN method for the first experiment. By using the301

spherical regions of activities, we computed the relative difference between the mean302

number of counts in the regions obtained from the reference and GAN reconstructed303

images and obtained -1.7%, 2.0% and -2.6% respectively for the background, ×20 and304

×50 spheres.305

For the second experiment, the figure 10 displays the results of the reconstructed306

images both from reference and GAN based simulation. Because of the well known307
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Figure 5. Marginal histograms obtained from the reference phase space and generated

from the generator G of the GAN.

confounding physical effects such as partial volume effect due to limited spatial308

resolution, scatter, and photon attenuation of SPECT acquisition, the input activity309

(shown in figure 2) is actually expected to differ from any reconstructed images regardless310

of the simulation method. Therefore, the input activity image is not intended to be311

compared with the reconstructed ones. What counts here are the differences between312

the reconstructed images based on reference analog Monte Carlo simulation (top row)313

and on GAN (bottom row).314

The table 3 at left displays the Hellinger distance between all the 8 gradient315

penalties presented in table 1 for various λ values. At right, the table shows Hellinger316

distance for several training dataset sizes, when using Square Hinge with λ = 10.317

Note the values of the distance were scaled by 100 for clarity. The values can only be318

interpreted relatively to each others. The color scale of the table is chosen to illustrate319

the range, from green (min) to red (max) and the figure 11 illustrates the difference320

between some of the generated images according to their Hellinger distance values with321

the reference image (the chosen images are circled in blue in the table 3).322
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Figure 6. Projections from the reference and the GAN simulation, for three different

angles, for the 208 keV energy window. The two red lines indicate where the profiles

of the figure 8 are extracted.
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Figure 7. Projections from the reference and the GAN simulation, for three different

angles, for the scatter1 (96-104 keV) energy window. The two red lines indicate where

the profiles of the figure 8 are extracted.
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Figure 8. Profiles comparison for all six energy windows between reference simulation

and GAN. Error bands are 2 times the standard deviation (95.5% confidence interval)

obtained from the reference simulations. First two rows are horizontal profiles along

X axis and last two rows are vertical profiles along Y axis. Note that the vertical axis

(counts) are different for each energy window.
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Figure 9. Slices of the 3D reconstructed images of experiment1 (208 keV) with

reference and GAN methods.

decays gamma Hell dist
2.0E+09 2.9E+08 2.64
1.0E+09 1.4E+08 2.62
5.0E+08 7.2E+07 2.81
1.0E+08 1.4E+07 2.77
5.0E+07 7.2E+06 2.65
2.0E+07 2.9E+06 2.78

1.00E+07 1.4E+06 2.91

Table 3. Table at left: Hellinger distances between reference and GAN generated

images for 8 different gradient penalty functions and 8 values of λ for the Experiment2.

Value circled in blue are the selected examples of figure 11. Table at right: Hd

for various training dataset sizes, expressed in decays and number of corresponding

gammas, with Square Hinge and λ = 10.
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Figure 10. Reconstructed tomography SPECT overlaid on patient CT slides. Upper

row: reconstruction performed with the projections obtained from the reference

simulation plus ARF-nn; lower row: projections obtained via the combined GAN/ARF-

nn method.

Figure 11. Examples of projection images (208 keV peak energy window), generated

by the reference method (top-left) and with the GAN, for various Hellinger distances

encountered in table 3 in order to visually appreciate the loss of quality associated

with increasing distance. The color scale is the same for all images.
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5. Discussion323

The total computation time of the proposed method is composed of 1) the time needed324

to generate the learning dataset TMC via Monte Carlo simulation 2) the GAN training325

time Ttrain and 3) the final generation time with the combined method TGAN + TARF.326

In case of the reference method, only the Monte Carlo simulation and the ARF are327

relevant. In the following, we discuss these different contributions except TARF, which328

is the same for both methods and not detailed here.329

Computing time analysis of TMC. The computation time of the reference simulation330

depends on several parameters (energy cuts, type of physics list etc.), but the main one is331

the resolution of the voxelized CT volume. The computation speed is respectively 7300,332

5900, 5000, 3500 and 1900 PPS (particles per seconds) for 5, 4, 3, 2 and 1 mm voxel333

size. It thus requires between 0.8 and 3 days of computation time to simulate 4.6× 108
334

particles per projection and between 43 and 165 CPU-days (24 hours of computation335

time) for the SPECT acquisition comprised of 60 projections. Only a single simulation336

is necessary to generate the training dataset and the GAN is then used 60 times to337

generate all projections. Generating the training dataset is slightly slower (10%) than338

the reference simulation of one projection due to the time needed to write the particles339

in the phase-space to disk. We used a learning dataset of 109 decays corresponding to340

1.7× 108 emitted gammas, which took between 7 and 31 hours according to the voxel341

size. The resulting phase space file had 4 GB.342

Learning gamma distributions with GAN (Ttrain). Training of the GAN is an iterative343

optimization process that depends on a large number of parameters. The exact influence344

of each parameter on the final accuracy remains difficult to assess. The size of the345

network is larger than of those used to learn a Linac phase space in [12]. The number of346

layers did not have a large influence on the results. Gradient penalty was required and347

led to significantly better results than with the weight clipping method. The penalty348

weight λ is not easy to determine and depends on the type of penalty. No systematic349

differences were observed between the different penalty flavors (left table 3). The penalty350

L1-LS seems not as good as the others, whatever the value of λ, and Squared Hinge351

seems a bit better than the others for a larger range of λ values. This table gives352

an indication of the sensitivity of λ. It is reasonable to expect that the accuracy of353

the trained GAN depends on the size of the training dataset. The initial training was354

performed with 1.5× 108 particles (109 decays). The influence of using more or fewer355

particles for training is displayed in the right part of table 3: the discrepancy between356

reference and GAN based images begins to increase when fewer than 7× 107 particles357

are considered (385 MB file size). On the other hand, from a certain number of gammas358

upwards the accuracy of the GAN appears to remain relatively unaffected. We underline359

here that the statistical noise in GAN generated images mainly depends on the number360

of generated particles, i.e. the size of the input to G, and not on the size of the training361
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dataset. A detailed study of noise properties of GAN generated images was beyond the362

scope of this work and will require further investigation.363

A large batch size >105 is also required to approximate the complex 7-dimensional364

distribution. Theoretical arguments have been given to have a larger number of critic365

(D) updates than generator (G) updates during one epoch. However, we did not obtain366

any better results with more D updates. The learning rates were also set experimentally.367

The learning procedure is stochastic and slight differences were observed between two368

trainings. Hence, the provided set of parameters that have been chosen according to369

theoretical considerations in the literature lead to adequate result but it is probably not370

optimal. The training time (using GPU) was about 23 minutes for 104 epoch, leading371

to less than about 4 hours for 105.372

It is not known yet what the optimal gradient penalty function and optimal λ373

value are and how they depend on the setting of the simulation. Better or faster374

training procedures may be obtained in the future when more knowledge about GAN375

will be available. GAN is still a very active field of research and new developments and376

theoretical studies of training behavior are still ongoing. As an example, the recent work377

described in [21] studied and compared several forms of gradient norm penalty strategies.378

With the method presented in the current work, a new GAN must be trained for each379

new patient or activity distribution. Transfer learning with GAN architecture [33] could380

be a starting point to address this. As in other deep learning applications, it is expected381

that pre-trained GAN models could be used as starting point in order to speed up382

training and improve the performance. A more complex way to replace Monte Carlo383

by deep learning would be to use the patient CT and source distribution and train a384

network to predict the exit phase space. The training would not need to be repeated for385

each patient. Whether this could be achieved e.g. via conditional GAN requires further386

investigation.387

GAN and image generation time TGAN. The generation of the final images with the388

trained GAN consists in 1) generating the gamma via the GAN, 2) computing the389

intersection with the ARF plane and 3) apply the ARF-nn. The combined computation390

time of those 3 steps, was performed at approximately 600,000 particles per seconds391

(PPS) leading to about 12 min for one projection or 12 hours for the whole 60392

projections. With the proposed method, the computation time is independent of the393

voxel size (except for generating the training dataset). The training is only done once,394

so if the image detection model is modified (e.g. to study the imager design), only the395

GAN image generation part should be performed with a different ARF-nn model.396

Using a different radionuclide than 177Lu should modify only slightly those numbers.397

For example, with 99mTc that decays to lower energy gammas of 140.5 KeV, we can398

expect more scatter in the anatomical images so a slightly larger ratio between emitted399

and exited gamma, and slightly improved speed up.400
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Gamma tracking. It is worth mentioning that the currently implemented SPECT401

Monte Carlo simulation is not perfectly efficient because it simulates gammas from402

an isotropic source distribution while only those are eventually considered for image403

formation which are emitted into the solid angle defined by the SPECT imager.404

Therefore, part of the computation time is spent for tracking particles that will never405

really reach the detector. Indeed, similar simulation is simply repeated for each406

projection angle. A way to quantify the efficiency of a SPECT simulation would be407

to determine the ratio of tracked gammas to those actually used for image formation. A408

large ratio would mean inefficient simulation and a ratio of one would be ideal. In case409

of the reference simulation, the described inefficiency impacts the term TMC. Forced410

Detection techniques already available in SIMIND [34] or Gate [23] are a good way to411

improve the simulation efficiency because each photon is directed towards the detector412

and therefore contribute to the projection formation. When simulating a complete413

SPECT acquisition (i.e. rotation of the imaging device), it could also be feasible to check414

each gamma’s coordinates when exiting the patient volume and then select an imager415

position (i.e. position of the ARF plane) which the gamma would actually reach. No416

tools are currently available in GATE/Geant4 to realise this and, while feasible, it would417

require a large development to deal with overlapping planes and to handle situations418

where a photon trajectory would cross several detector planes.419

In the proposed GAN-based method, it is the term TGAN which is larger than420

it would ideally be because the GAN currently generates particles in all directions421

regardless of the placement of the ARF plane. Indeed, the same GAN+ARF step is422

executed repeatedly, i.e. once for each projection. This could be improved in future work423

either by employing a similar concept as above to dynamically select a suitable ARF424

position or by training a conditional GAN [35] to impose constraints on the generated425

gammas. We considered that this improvement is of the same order of magnitude here426

and for the reference Monte Carlo method.427

Other considerations. In terms of simulation accuracy, we quantified the difference428

between images generated via conventional simulation and with GAN generated429

gammas. According to our results, images with low error compared to the reference430

seem feasible. However, which level of difference is acceptable ultimately depends of the431

application. Further works are needed to better understand the limitation and potential432

bias of the method.433

It is difficult to provide a fair timing comparison as part of the process is performed434

by neural networks and thus use GPU, while all other computations are CPU only.435

Of course, parallelisation of Monte Carlo on multiple CPUs and GPUs is possible436

(and advocated) as every event processing is independent. As an example, hundreds437

of parallel CPUs were used here for the reference simulation, leading to a few days438

computation time, and several parallel GPUs were employed for the final computation439

which thus took a few hours. Finally, further time gain is expected when the code440

to train and apply the GAN is fully optimized. This efficiency is still far from a direct441
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fully dedicated GPU Monte Carlo code [5] reaching 3200 emitted million photons/s that442

remains perfectly adapted for reconstruction methods. The proposed principle, however,443

is more general and does not rely on forced interaction or adjusted cross-sections. It444

may therefore be adapted to other types of imaging systems. It could be particularly445

useful when designing of a new imaging system, to study acquisition parameters, to446

evaluate scatter correction techniques, or for matrix system computation.447

As a side effect, the proposed mask method allows to solve the issue of volume448

overlap in GATE simulations where the rotating SPECT head intersects the patient449

volume for some angles of rotation and system design. In Geant4, the Monte Carlo450

library underlying GATE, the behavior of the particle tracking algorithm is undefined451

and leads to incorrect results when volumes are overlap.452

Limitations. In the current experiments, the particles generated by the generator G453

are prolonged in straight lines to the detectors. If any object is present between the454

patient and the detectors, it is thus ignored. However, the generator may be used455

as a conventional source in order to let the Monte Carlo simulation engine track the456

generated particle through potential intermediate objects. In absence of such object,457

the Monte Carlo engine anyhow transports along straight lines. Currently, the GAN458

provides no information about the particle time and detector dead time is thus ignored.459

Time may potentially be added to the training dataset as an additional dimension and460

learnt with the generator. It will be for example required for exploiting the proposed461

method for other types of imaging systems that require event time coincidences, such462

as PET or Compton Camera.463

6. Conclusion464

In this work, we investigated the feasibility to learn complex particle distributions with465

GAN for SPECT simulation in order to replace a phase space with neural network466

generator during Monte Carlo simulation. Our results show that this is feasible and467

that simulations can be speed up by two or three orders of magnitude according to468

the configuration. Further work remains to be performed to better characterize the469

statistical properties of GAN generated phase space.470
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