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Abstract: Phenolic compounds are involved in plant response to environmental conditions and are
highly present in leaves of Coffea arabica L., originally an understory shrub. To increase knowledge of
C. arabica leaf phenolic compounds and their patterns in adaptation to light intensity, mature leaves
of Ethiopian wild accessions, American pure lines and their relative F1 hybrids were sampled in
full sun or under 50% shade field plots in Mexico and at two contrasting elevations in Nicaragua
and Colombia. Twenty-one phenolic compounds were identified by LC-DAD-MS2 and sixteen were
quantified by HPLC-DAD. Four of them appeared to be involved in C. arabica response to light
intensity. They were consistently more accumulated in full sun, presenting a stable ratio of leaf content
in the sun vs. shade for all the studied genotypes: 1.6 for 5-CQA, F-dihex and mangiferin and 2.8 for
rutin. Moreover, 5-CQA and mangiferin contents, in full sun and shade, allowed for differentiating
the two genetic groups of Ethiopian wild accessions (higher contents) vs. cultivated American pure
lines. They appear, therefore, to be potential biomarkers of adaptation of C. arabica to light intensity
for breeding programs. We hypothesize that low 5-CQA and mangiferin leaf contents should be
searched for adaptation to full-sun cropping systems and high contents used for agroforestry systems.

Keywords: adaptive response; biomarkers; Coffea arabica L.; full-sun conditions; light response;
phenolic compounds

1. Introduction

Arabica coffee (Coffea arabica L.) is a cash crop of major social–economic importance throughout
the intertropical zone. Wild C. arabica is an understory bush that originated in the southwest Ethiopian
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highlands and in the Boma Plateau forests in southern Sudan [1]. However, from its early domestication
in Yemen (secondary dispersal center [2]) to the most recent cultivation of homozygous varieties, such
as the American pure lines, C. arabica has been mainly bred for full-sun growing conditions, particularly
in intensive cropping systems. It has recently been shown that wild C. arabica germplasm resulting
from a recent speciation process has low genetic diversity [3]. Cultivated material has particularly
low genetic diversity because traditional cultivars derive from only two narrow genetic groups that
spread from Yemen: var. Typica and var. Bourbon [4]. From the 1970s on, coffee breeding programs
aimed to introgress coffee leaf rust (Hemileia vastatrix) resistance genes from accessions of the hybrid
of Timor—a natural interspecific hybrid of C. arabica and C. canephora [5]—leading to the creation of
the Catimor and Sarchimor cultivar families [6]. Nevertheless, the genetic base of C. arabica cultivars
remains narrow since very few traditional Timor hybrid progenitors or traditional recurrent parents
were used in these introgression breeding programs [7].

A recent study sequenced and independently assembled the two-component genome of the
allotetraploid C. arabica species (putatively deriving from two other species, C. canephora and C. eugenioides).
Genome-wide SNP genotyping of the genetic diversity was also performed in cultivated coffee
germplasm and in wild populations [3]. The study revealed a weak population structure due to
low frequency-derived alleles and a cline of genetic diversity reflecting west-to-east geographical
distribution, from the center of origin in East Africa to the Arabian Peninsula. Two main genetic groups
were identified: the eastern and wilder plants, consisting in two populations, “Sheka” and “Jimma
Bonga”, and the “Harar-Yemen” group corresponding to the very early domestication process of C. arabica.
The eastern group thus appeared to be a valuable untapped genetic reservoir for the improvement of
cultivated C. arabica varieties. It could, for example, be valued in breeding programs such as those started
in the 1990s that led to most current improved F1 hybrids with the best yields and beverage quality
obtained using controlled crosses between wild Ethiopian progenitors and American cultivars [6].

Current research in many coffee growing countries aims to improve, or reintroduce, agroforestry
cropping systems because of the many ecosystem services they deliver [8] and their resilience in the
face of climate change in the most exposed regions, mainly at medium to low elevations [9]. However,
for a variety of reasons, the agroforestry model, which may limit profitability in countries such as Brazil
or food plant intercropping in some African countries, is not always applicable. To develop unshaded
coffee cropping systems, new C. arabica varieties must be developed to improve sustainability and
enable the agro-ecological transition by introducing genotypes that are naturally resistant to abiotic
and biotic stresses. To achieve this aim, new high-throughput phenotyping tools are needed to identify
candidate progenitor parents among wild and cultivated germplasms.

Secondary metabolites (SMs) are among the main tools that enable plants to adapt to biotic
and abiotic stresses [10]. Their accumulation is finely tuned to perceived environmental cues [11].
They belong to different chemical classes, including phenolic compounds, alkaloids and terpenes.
A large body of literature is devoted to phenolic compounds as they are involved in plant resistance
and acclimation to environmental constraints. Different mechanisms are involved, including strong
antioxidant activity that enables them to quench the reactive oxygen species (ROS) emitted during
any form of stress, their capacity to absorb UV [12–14] and their toxicity to plant pests [15]. They are
key players in the adaptation of Arabidopsis thaliana leaves to intense light [16]. Caffeoylquinic acids
(CQAs) and chlorogenic acids (CGAs) described as lignin precursors and carbon reservoirs [17],
accumulate in greater quantities in response to temperature and light in Solanum tuberosum leaves and
in Capsicum annuum seedlings [18,19].

In coffee plants, SMs are well described in the economically valuable beans because of their
contribution to coffee beverage quality and human health [20–22]. They include a variety of CGAs
(esters of hydroxycinnamic acids—mainly 5-CQA), alkaloids such as caffeine and its derivatives [23,24],
lipids [25,26] and volatile organic compounds [27]. Studies on SMs in leaves are rare and are often
limited to caffeine and CGAs [28,29]. Recently, the presence of other phenolics, such as flavonoids [30]
and the xanthone mangiferin [31,32], have been reported, promoting the use of coffee leaves like tea
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leaves, and leading to studies on leaf nutraceutical compounds [33,34]. However, studies on the role of
leaf phenolic compounds in coffee adaptation to environmental constraints are rare, with the exception
of those on CGAs in the response to cold of tolerant genotypes [35] and on glycosylated flavonoids in
high light tolerance of Catuai, an American pure line variety [30].

The aim of the present study was thus to increase current knowledge of C. arabica leaf phenolic
compounds and their patterns in plant adaptation to light intensity.

2. Results

2.1. Identification of Phenolic Compounds in Mature Leaves of C. arabica Using LC-MS2

To enable the most thorough analysis possible of the phenolic compounds present in the mature leaves
of C. arabica, even those accumulated at very low concentrations, a LC-DAD-MS2 analysis was conducted
on leaf extracts from a C. arabica variety (cv. Marsellesa) grown under full sun. Only 23 substances reached
the automatic pseudomolecular ion detection threshold that triggers introduction of ionized substances
in the collision cell for fragmentation pattern acquisition. All generated a fragmentation pattern after
positive ionization, while only 21 yielded a fragmentation pattern under negative ionization (Table 1).
The identity of 10 compounds was confirmed by parallel analysis of pure standards, while basic
structural information is suggested for the others based on their high-resolution mass, fragmentation
pattern and UV spectrum.

Compounds 2, 5 and 6 were characterized in negative mode by a pseudomolecular ion [M−H]−

at m/z 353.0901 and in positive mode ([M+H]+) m/z 355.1002, corresponding to a molecular formula
of C16H18O10. The three compounds share the same UV spectrum with a shoulder at 300 nm and
a maximum at 325 nm. These characteristics correspond to mono-CQA isomers. Compound 5 was
identified as 5-O-CQA by comparison with a standard, while compounds 2 and 6 were identified as
3-O- and 4-O-CQA, respectively, based on the literature describing their retention time (RT) elution
order and their specific MS2 spectra in negative mode [36,37]. Using the same combined analyses, 9 and
11 were identified as 5-O-coumaroylquinic acid (5-CoumQA) and 5-O-feruloylquinic acid (5-FQA),
respectively. Compound 3 was characterized by m/z 409.1107 and 407.1012 in positive and negative
mode, respectively, suggesting a molecular formula of C19H20O10. The UV absorption spectrum (λmax

at 296 nm) and complex MS2 fragmentation suggest that 3 is a glycosylated benzophenone-C-heteroside,
tentatively identified as iriflophenone 3-C-β-glucoside [38]. By comparison with standards, peaks
4 and 8 were identified as (+)-catechin and (−)-epicatechin, respectively, and peak 10 as mangiferin
(Mang). Compound 23 showed a UV spectrum similar to Mang, indicating that 23 is a Mang derivative.
Its m/z under positive and negative modes corresponded to Mang + C7H4O2. Compared to Mang,
it displayed an additional fragment ion at m/z 385 in negative ionization mode corresponding to a loss
of [parahydroxybenzoate+H2O], and a major fragment ion at m/z 121 in positive mode, corresponding
to a benzoic acid ion ([C7H5O2

.]+). This suggests that 23 is mangiferin parahydroxybenzoate
(Mang-OHbenz). Peak 12 was characterized by a pseudomolecular ion at m/z 595.1643 and at
m/z 593.1555, in positive and negative mode, respectively, leading to a molecular formula of C27H30O15.
Its UV spectrum (λmax at 265 and 330 nm) resembles a di-hexosyl flavone [39]. Its MS2 fragmentation
in positive and negative modes suggests that 12 is a flavone-di-C-hexose (F-dihex).

Peaks 13, 14, 16 and 18 shared the same UV spectra (λmax at 257 and 353 nm with 13 and 14 but
with an additional shoulder at 300 nm) indicative of 3-O-substituted flavonols [39]. Compounds 14, 16
and 18 were identified as quercetin-3,4-di-O-glucoside (Q-diglu), rutin (quercetin-3-O-rutinoside) and
quercetin-3-β-D-glucoside (Q-glu), respectively, by comparison with standards. Peak 13 showed the
same UV spectrum as compound 14 but eluted earlier. The two substances therefore shared the same
UV-absorbing moiety. In addition, 13 displayed pseudomolecular ions at m/z 773.2129 and 771.2036 in
positive and negative mode, respectively (this is a gain of 146 amu compared to 14, corresponding to
the addition of a deoxyhexose). It was therefore annotated as quercetin-3-O-dihexose-deoxyhexose
(Q-dihex-dhex).
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Table 1. Result of the LC-DAD-MS2 analysis performed with a leaf methanolic extract of C. arabica cv. Marsellesa. RT, retention time in the analytic system in minutes;
Mass, theoretical mass expressed in Da; Wavelength, maximum absorbance in the UV range; sh, shoulder. Experimental mass accuracy of less than 2 ppm. ND: not
detected; *: metabolites identified by comparison with a pure standard compound.

Peak
N◦

RT
(min)

Mass
(Da)

Molecular
Formula Wavelength (nm) Compound Name [M−H]− MS2 [M+H]+ MS2

1 2.61 180.1640 C7H8N4O2 272 Theobromine * - 181.0718
67 (100) 85 (78) 181 (74) 138 (65)
69 (61) 108 (61) 56 (43) 163 (43)
122 (28) 117 (13) 156 (9)

2 3.00 354.3087 C16H18O10 300sh-325 3-O-Caffeoylquinic acid 353.0901 191 (100) 179 (61) 135 (47)
173 (6) 355.1002 163 (100) 145 (24) 89 (9)

3 4.02 408.3561 C19H20O10 286 Iriflophenone-C-hexose 407.1012 287 (100) 317 (23) 245 (61) 193
(47) 125 (8) 409.1107

195 (100) 231 (79) 13 (61) 325 (46)
177 (43) 121 (39) 271 (39) 355 (14)
85 (7)

4 4.20 290.2700 C15H14O6 278 (+)-Catechin * 289.0769

109 (100) 123 (69) 125 (64) 203
(56) 151 (44) 245 (40) 137 (36)
205 (26) 97 (25) 121 (23) 289
(21) 187 (21) 188 (20) 149 (20)
221 (20) 161 (20)

291.0858 139 (100) 123 (59) 147 (23) 161
(12) 207 (6)

5 4.42 354.3087 C16H18O10 300sh-325 5-O-Caffeoylquinic acid * 353.0901 191 (100) 161 (2) 179 (2) 173 (1) 355.1002 163 (100) 145 (11) 164 (11) 135 (4)
117 (3) 89 (2)

6 4.74 354.3087 C16H18O10 300sh-325 4-O-Caffeoylquinic acid 353.0901 173 (100) 191 (85) 179 (73) 135
(51) 93 (20) 355.1002 163 (100) 145 (14) 164 (9) 117 (6)

135 (5) 89 (4)
7 4.90 194.1900 C8H10N4O2 272 Caffeine * - 195.089 138 (100) 110 (36) 195 (29) 69 (21)

8 5.42 290.2700 C15H14O6 278 (-)-Epicatechin * 289.0709

109 (100) 125 (74) 203 (69) 123
(60) 151 (43) 245 (40) 137 (37)
205 (34) 161 (26) 97 (23) 188
(23) 221 (22) 187 (20) 121 (20)
179 (20) 289 (19)

191.0844 139 (100) 123 (63) 147 (24) 161
(12) 207 (6)

9 5.62 338.3093 C16H18O8 310 5-O-Coumaroylquinic acid 337.0953
191 (100) 133 (17) 53 (12) 93
(12) 253 (12) 145 (10) 75 (2)
302 (2)

339.1085
147 (100) 75 (23) 97 (23) 236 (23)
127 (19) 258 (16) 341 (16) 65 (10)
189 (10) 217 (10) 306 (10)

10 6.08 422.3400 C19H18O11 257-317-365 Mangiferin * 421.0799 301 (100) 331 (85) 259 (12) 421
(15) 273 (10) 423.0906 273 (100) 303 (74) 327 (51) 369

(22) 351 (18) 299 (15) 357 (9)

11 6.79 368.3353 C17H20O9 258-267sh-300sh-327 5-O-Feruloylquinic acid 367.1058 191 (100) 93 (21) 173 (11) 111
(7) 134 (4) 369.1157 177 (100) 145 (42) 117 (5)

12 6.81 594.5181 C27H30O15 256(sh)-265-330 Flavone di-C-hexose 593.1555 593 (100) 473 (11) 353 (10) 406
(10) 503 (8) 595.1643 457 (100) 427 (67) 379 (35) 325

(29) 295 (12)

13 6.86 772.6581 C33H40O21 257-300sh-353 Quercetin-3-O-dihexose-
deoxyhexose 771.2036 771 (100) 300 (53) 179 (5) 273

(5) 271 (5) 773.2129 303 (100) 125 (53) 84 (26) 194 (13)
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Table 1. Cont.

Peak
N◦

RT
(min)

Mass
(Da)

Molecular
Formula Wavelength (nm) Compound Name [M-H]− MS2 [M+H]+ MS2

14 6.97 626.5169 C27H30O17 257-300sh-353 Quercetin-3,4-di-O-glucoside * 625.1449 625 (100) 300 (72) 271 (10) 179
(3) 445 (3) 463 (3) 505 (3) 627.1514 303 (100)

15 7.34 756.659 C33H40O20 265-346 Kaempferol-3-O-dihexose-
deoxyhexose 755.2128 ND 757.2131 287 (100) 449 (6) 129 (6) 757 (6)

612 (1)
16 7.74 610.5175 C27H30O16 257-353 Quercetin-3-O-rutinoside * 609.1539 609 (100) 300 (20) 611.1595 303 (100)

17 7.90 578.5202 C30H26O12 276 Procyanidin dimer 577.1396 289 (100) 577 (83) 407 (72)
125 (61) 161 (17) 451 (11) 579.1472 287 (100) 409 (94) 127 (84) 580

(64) 163 (31) 247 (19) 579 (13)

18 7.96 464.3800 C21H20O12 257-353 Quercetin-3-O-glucoside * 463.0908 300 (100) 463 (48) 191 (19)
271 (10) 465.1018 303 (100)

19 8.20 594.5181 C27H30O15 265-346 Kaempferol-3-O-hexose-
deoxyhexose 593.1540 ND 595.1629 287 (100) 596 (1)

20 8.39 516.451 C25H24O12 246-300sh-324 3,4-O-Dicaffeoylquinic acid * 515.1221 173 (100) 353 (95) 179 (70) 191
(34) 354 (21) 515 (21) 335 (14) 517.1323 163 (100) 63 (27) 140 (18) 191 (18)

370 (11)

21 8.48 516.451 C25H24O12 243-297sh-327 3,5-O-Dicaffeoylquinic acid * 515.1229 191 (100) 353 (91) 179 (63) 135
(13) 173 (6) 515 (3) 517.1323

140 (100) 163 (77) 519 (64) 213
(59) 117 (41) 303 (41) 189 (27) 238
(27) 367 (27) 442 (27) 492 (23)

22 8.93 516.4510 C25H24O12 243-297sh-327 4,5-O-Dicaffeoylquinic acid * 515.1229
353 (100) 173 (92) 179 (53) 354
26) 191 (16) 135 (11) 137 (7)
203 (6)

517.1323 163 (100) 111 (18) 383 (14) 435
(14) 224 (5)

23 9.49 542.4451 C26H22O13 257-317-365 Mangiferin
parahydroxybenzoate 541.1017 301 (100) 331 (79) 541 (53) 259

(6) 385 (6) 543.1118 303 (100) 121 (96) 405 (24) 327
(23) 543 (21)
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Peaks 15 and 19 only fragmented in positive mode because of their low abundance and/or lesser
stability of their deprotonated forms. They shared the same UV spectrum (λmax at 265 and 346 nm)
and MS2 fragmentation as a base peak at m/z 287, indicative of 3-O-substituted kaempferol derivatives.
Compound 15 showed fragment ions at m/z 612 (loss of deoxyhexose), 449 (loss of deoxyhexose + hexose)
and 287 (loss of deoxyhexose + 2 hexoses) and was annotated as kaempferol-3-O-dihexose-deoxyhexose
(K-dihex-dhex). Similarly, compound 19 was annotated as kaempferol-3-O-hexose-deoxyhexose
(K-hex-dhex).

Peak 17 showed pseudomolecular ions at m/z 579.1472 and 577.1386 (molecular formula of
C30H26O12) and exhibited a weak intensity λmax at 276 nm, characteristic of catechin derivatives.
Based on its MS2 fragmentation, it was annotated as catechin dimer (procyanidin). Peaks 20, 21 and 22
had similar UV spectra (λmax at 324–327 nm and a shoulder at 297–300 nm) and the same molecular
formula of C25H24O12. Compound 21 was identified as 3,5-O-dicaffeoylquinic acid by comparison
with a standard (3,5-diCQA) and, following [40], 20 and 22 were identified as 3,4-O-dicaffeoylquinic
acid (3,4-diCQA) and 4,5-O-dicaffeoylquinic acid (4,5-diCQA), respectively.

To sum up, the LC-MS2 analysis identified two metabolites belonging to the purine alkaloids,
theobromine (1) and caffeine (7), eight being CGA derivatives (N◦2,5,6,9,11,20,21,22), three being
benzophenones and related xanthones (N◦3,10,23) and ten being flavonoids (N◦4,8,12–19).

2.2. Influence of Light Intensity on Leaf Phenolic Content in One C. arabica Cultivar at Low or High Elevation

Regardless of the elevation (650 or 1250 m asl) or light intensity (full sun or 50% shade), HPLC-DAD
analyses of mature leaves from C. arabica cv. Marsellesa enabled quantification of 16 major phenolic
compounds among the 21 identified by LC-MS2 in positive mode: seven CGAs, one xanthone and
eight flavonoids (Figure 1). Among them, leaf concentrations of 5-CQA were the highest regardless
of elevation and light conditions. Values ranged from 3.0 to 4.8 mg.100 mg−1 dry weight (DW) in
leaves grown in full sun at high and low elevation, respectively (Table S1). Catechin, epicatechin and
mangiferin had intermediate leaf contents, with the corresponding ranges (1.48–2.27), (0.79–1.52) and
(1.01–1.69) mg.100 mg−1 DW, respectively. All other phenolic compounds were quantified at less than
1 mg.100 mg−1 DW regardless of elevation and light conditions.
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4, 5-CQA; 5, 4-CQA; 6, caffeine; 7, (-)-epicatechin; 8, mangiferin; 9, FQA; 10, flavone-di-C-hexose
(F-dihex); 11, quercetin-dihexose-deoxyhexose (Q-dihex-dhex); 12, quercetin-diglucoside (Q-diglu); 13,
kaempferol-dihexose-deoxyhexose (K-dihex-dhex); 14, kaempferol-hexose-deoxyhexose; 15, 3,4-diCQA;
16, 3,5-diCQA; 17, quercetin-rutinoside (rutin); 18, 4,5-diCQA.

Among CGAs, only 5-CQA, 3,5-diCQA and 4,5-diCQA presented significant differences in leaf
content (p < 0.05) depending on light intensity (Table 2). Like all other CGAs, except FQA, they also
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presented significant differences in leaf content depending on the elevation, and significant interactions
were observed between two factors, light and elevation. 5-CQA had the most discriminating CGA leaf
contents by far not only for light conditions but also for elevation, suggesting that other abiotic factors
linked to elevation also significantly influence 5-CQA leaf content. Indeed, a significant difference in
5-CQA content depending on light was observed at low elevation, as in full sun, concentrations were
40% higher than those in the shade (Figure 2).

With the exception of catechin, the concentration of each of the flavonoids in leaves varied
significantly (p < 0.05) depending on the light conditions. The concentration of the eight compounds
quantified also differed significantly depending on elevation, with no significant interaction between
light and elevation, with the exception of the three glycosylated quercetins (Table 2).

A significant effect of light was only observed in concentrations of epicatechin, with a low F value
of 6.0 (Table 2), and a significant difference in concentration in leaves growing in the sun and in the
shade was only seen at high elevation, the concentrations being the highest in the shade (Table S1).
There were always significant differences in leaf catechin content between plants grown in the sun
and in the shade at both elevations, but inversed: full-sun leaf catechin content was highest at low
elevation and lowest at high elevation (Table S1; Figure 2).

Of the two glycosylated kaempferols quantified, K-hex-dhex presented by far the most variable
leaf contents depending on light (Table 2). The leaf contents were significantly higher in full sun than
in the shade at both elevations: 10-fold higher at low elevation and 3-fold higher at high elevation
(Figure 2).

Table 2. Factorial ANOVA of the concentrations of phenolic compounds in the leaves of C. arabica cv.
Marsellesa according to elevation (650 m asl vs. 1250 m asl) and light conditions (full sun vs. 50%
shade). For each chemical family, the compound(s) with the most significant difference in leaf contents
for one or both environmental factors and the corresponding F score are underlined.

Phenolic Compounds Light Elevation Elevation x Light

F p F p F p

Chlorogenic Acids
3-CQA 1.72 0.198936 7.72 0.008836 0.00 0.954559
4-CQA 0.05 0.823017 29.29 0.000005 5.81 0.021526
5-CQA 18.69 0.000127 56.51 0.000000 28.72 0.000006
3,4-diCQA 1.97 0.169890 35.48 0.000001 11.11 0.002085
3,5-diCQA 6.88 0.012958 4.77 0.035947 11.71 0.001633
4,5-diCQA 8.20 0.007112 49.98 0.000000 35.19 0.000001
FQA 0.03 0.865203 0.23 0.633213 4.21 0.048007

Flavonoids
Flavanols
Epicatechin 6.00 0.019604 63.86 0.000000 10.29 0.002912
Catechin 0.13 0.717829 100.22 0.000000 23.80 0.000025

Glycosylated flavonoids
K-dihex-dhex 26.33 0.000012 29.04 0.000005 15.76 0.000353
K-hex-dhex 117.43 0.000000 23.92 0.000024 29.81 0.000004
F-dihex 16.15 0.000307 13.02 0.000980 8.79 0.005506
Q-dihex-dhex 54.52 0.000000 11.64 0.001685 0.30 0.589041
Q-diGlu 100.65 0.000000 23.18 0.000030 0.01 0.903435
Rutin 142.72 0.000000 31.26 0.000003 0.02 0.881375

Xanthones
Mangiferin 31.19 0.000003 12.69 0.001112 2.39 0.131611
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Figure 2. Effect of shade and elevation on the leaf content, expressed in mg.100 mg−1 leaf dry weight,
of the more discriminant phenolic compounds in C. arabica cv. Marsellesa. Error bars represent ±
standard deviation of mean (n = 10 for full-sun plants, n = 9 for shaded plants). Different letters indicate
significant differences at p < 0.05 (Newman–Keuls test) among means.

Like K-hex-dhex, rutin leaf contents were largely and significantly higher in full sun than in the
shade at both elevations: 4-fold higher at the low elevation and 2.3-fold higher at the high elevation
(Figure 2). It should be noted that there were major significant effects of light and elevation on the
rutin content in leaves, but without any significant interaction between the two abiotic factors.

At low elevation, F-dihex leaf content was 1.81-fold higher in full sun than in the shade, while no
significant difference was observed at high elevation (Table S1; Figure 2). Among the glycosylated
flavonoids, this compound was therefore less discriminating of light conditions than K-hex-dhex and
rutin. However, the concentrations of all three glycosylated quercetins were highly variable for light
conditions, rutin content being by far the most variable (Table 2).

Concentrations of mangiferin, the only xanthone derivative quantified in this study, differed
significantly in leaves depending on both light conditions and elevation, but no significant interaction
was found between the two (Table 2). Significant differences were observed at both elevations with
higher concentrations in the sun than in the shade: 1.45-fold higher in full sun than in the shade at the
low elevation, and 1.30-fold higher at the high elevation (Figure 2; Table S1).

A heatmap was drawn using the correlation coefficients among leaf contents of these 16 phenolic
compounds (Figure 3). A strong correlation was noticed between the three flavonoids belonging
to glycosylated quercetins: Q-dihex-dhex, Q-diGlu and rutin. These clustered away from all other
phenolic compounds, including 5-CQA and the three other glycosylated flavonols. The other large
cluster was subdivided into substances whose contents negatively correlated with those of the quercetin
analog/rutin cluster and the substances whose contents displayed no correlation with this cluster.
Within this large cluster, it can be noticed that the contents of the flavanols, epicatechin and catechin



Metabolites 2020, 10, 383 9 of 22

are highly correlated (R = 0.80; p < 0.05) as well as those of 5-CQA and 4,5-diCQA (R = 0.87) and the
two glycosylated kaempferols (R = 0.85) that sub-clustered with mangiferin.
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Figure 3. Heatmap of the Pearson’s correlation coefficients among leaf phenolic compound contents in
C. arabica cv. Marsellesa. Samples of all elevations and light conditions at the two experimental plots
in Mexico (n = 38) were used to conduct the analysis. A symmetrical heatmap was computed and a
dendrogram computed by linkage clustering using the Euclidian distance measures and reordering
using row (equal to column) means. Q: quercetin; FQA: feruloyl quinic acid; CQA: caffeoyl quinic acid;
F: flavone; K: kaempferol; hex: hexose; dihex: dihexose; dhex: deoxyhexose.

Together, based on ANOVA and correlation analysis of the leaf phenolic contents of the Marsellesa
cultivar, we retained six major compounds with significant differences according to light conditions at
one or both elevations: 5-CQA, catechin, K-hex-dhex, rutin, F-dihex and mangiferin.

2.3. Influence of Light Intensity on the Leaf Phenolic Content of Numerous C. arabica Genotypes Grown in
Different Environments

The same 16 phenolic compounds analyzed in the mature leaves of cv. Marsellesa in the Mexican
field trials were identified in all C. arabica genotype samples (7 American pure lines, 8 Ethiopian
wild accessions and 19 of their F1 hybrid clones) in trials in both Nicaragua and Colombia (data not
shown). Correlation and linear regression analyses were conducted on the concentration (Table S2) of
the six previously selected phenolic compounds discriminating full-sun and 50% shade conditions.
These analyses concerned all the genotypes, those studied in the Nicaragua and Colombia trials and cv.
Marsellesa grown in the two Mexican field trials (Figure 4).

Except for catechin and K-hex-dhex, leaf phenolic contents in the sun and in the shade were
significantly correlated (r2 > 0.5; p < 0.05). The r2 of mangiferin was particularly high (r2 = 0.812), as well
as that of F-dihex (r2 = 0.747) and 5-CQA (r2 = 0.738) and to a lesser extent that of rutin (r2 = 0.634).
The high correlations between these four compounds indicated that, whatever the environmental
conditions linked to the geographical location of the trial, there was a strong and stable relation
between the leaf contents evaluated in full sun and in the shade (50% light exclusion in all the trials).
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However, marked variability in leaf content was observed among the genotypes. In the shade, 5-CQA
and mangiferin leaf contents varied from 0.41 to 2.86 mg.100 mg−1 DW and 0.17 to 1.62 mg.100 mg−1

DW, respectively (Table S2). For 5-CQA, mangiferin and F-dihex, the slope of the regression line was
similar: 0.64, 0.62 and 0.62, respectively. For rutin, the ratio of leaf content in the sun to that in the
shade was much higher and the slope of the regression line was much lower: 0.36 (Figure 4).
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2.4. Influence of C. arabica Genetic Groups on Leaf Phenolic Contents in Two Different Environments

Next, we compared the leaf phenolic contents of the four compounds (5-CQA, mangiferin, F-dihex
and rutin) that showed a significant correlation in the sun and in the shade, taking into account the
averages calculated for each C. arabica genetic group, Ethiopian wild accessions, American pure lines
and F1 hybrid clones, in Nicaragua and Colombia, in full sun and in the shade. As can be seen in
Figure 5, whatever the compound and the location, the highest contents were observed in full sun.
The difference between rutin contents in the sun and in the shade were particularly clear.
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Figure 5. 5-CQA, mangiferin, F-dihex and rutin averages of mature leaf content of trees grown in full
sun (light gray) and under shade (dark gray) for Ethiopian wild accessions, American pure lines and F1
hybrid clones in Colombia and Nicaragua field trials. Different letters indicate significant differences at
p < 0.05 (Newman–Keuls test) among means.

The concentration of 5-CQA in the leaves of the Ethiopian wild accessions was the highest under
full sun regardless of the location of the trial, indicating that genotype dependence prevailed over
location dependence. In the shade, concentrations of 5-CQA in the leaves of the Ethiopian wild
accessions in Nicaragua were lower than those of all genetic groups in Colombia. Leaf contents in the
shade were thus distributed according to the location and the relationship between genetic groups
(Ethiopian wild accessions > F1 hybrid clones > American pure lines) was conserved.

The dependence on location of mangiferin and rutin contents in the leaves was clear, the samples
from Colombia being separated from those from Nicaragua. The relationship between the concentration
of mangiferin and the genetic group was conserved at the two locations regardless of the light condition
(Ethiopian wild accessions > F1 hybrid clones > American pure lines) and the highest values were
observed in Colombia. The same distribution was observed for rutin content, except for in the shade in
Nicaragua, where the relationship between genetic groups was inversed, and the American pure lines
had the highest rutin content (American pure lines > F1 hybrid clones > Ethiopian wild accessions).

Under each light condition, slight differences were observed between the concentration of F-dihex
in all genetic groups in Nicaragua and the Ethiopian wild accession group in Colombia (Figure 5).
It was thus impossible to identify a clear relationship between the F-dihex content and genetic group
or location.

Interestingly, we observed that concentrations of 5-CQA, mangiferin and rutin in F1 hybrid clones
grown in the sun were intermediate between those of their Ethiopian wild accession father and their
American pure line mother, but closer to the latter. The same observation was made concerning
concentrations of mangiferin and rutin in coffee trees grown in the shade.

3. Discussion

3.1. LC-MS2 Analysis Enabled Identification of Two Novel Mangiferin Derivatives in C. arabica

LC-DAD-MS2 was used for an exhaustive characterization of the alkaloids and phenolic
compounds present in mature leaves of C. arabica. Two metabolites from the benzophenone group,
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an iriflophenone-C-glucoside and a xanthone derivative, mangiferin parahydroxybenzoate, were
tentatively identified in coffee plants for the first time. Their presence in C. arabica leaves, along with
confirmation of the presence of mangiferin previously described [31], points to the existence of a
biosynthetic pathway for mangiferin via benzophenone synthase, as already reported in Hypericum
and Anemarrhena [41,42] and reviewed in Joubert et al. [43].

The nature of the main accumulated flavanols was also clarified. They consist of catechin, epicatechin
and a procyanidin. In contrast to the work of Ratanamarno and Surbkar [44], we detected no gallocatechin
derivatives. Lastly, LC-MS2 analysis enabled annotation of some glycosylated derivatives of quercetin
and kaempferol previously observed by Martins et al. [30]. These authors analyzed the phenolic content
of the “Catuai Vermelho IAC 44” variety, an American pure line of C. arabica. Interestingly, the same
21 metabolites were identified in the mature leaves of the 34 genotypes analyzed in the present study,
whether they were American pure lines, Ethiopian wild accessions or F1 hybrid clones, and irrespective
of the light condition, elevation and latitude. However, some accumulated at concentrations that were
too low to be quantified on HPLC-DAD chromatograms and only 16 could be used to compare the
coffee leaf samples. In a quest for biochemical markers for use in cultivar development programs,
it is preferable to target compounds that are relatively abundant and easy to quantify with simple
instrumentation, ideally usable in field experiments.

3.2. Identification of Leaf Phenolic Contents as Biomarkers of Adaptation of C. arabica to Full-Sun or Shade Conditions

In agreement with the widely accredited role of phenolic compounds in the adaptive response
of plants, particularly to abiotic environments [45–47], we were able to identify phenolics whose
concentrations in C. arabica leaves changed with environmental conditions, especially with changes in
light intensity, i.e., in our study, full sun vs. 50% shade.

3.2.1. Preselection of Candidate Biomarkers of Adaptation of C. arabica to Full-Sun Conditions

Among the 16 phenolic compounds quantified by HPLC-DAD in the two field trails at two contrasting
elevations in Mexico and in the study of a single American pure line (C. arabica cv. Marsellesa), we were
able to identify compounds that could be used as markers of adaptation to full sun: 5-CQA, catechin,
K-hex-dhex, F-dihex, rutin and mangiferin. These compounds were retained because their leaf contents
were higher and/or displayed the highest significant difference between leaf contents in the sun and in
the shade at at least one of the two elevations. Indeed, with the exception of K-hex-dhex, the compounds
were present at medium to high concentrations in the leaves at least in full sunlight. K-hex-dhex was
retained because of its highly significant differences in leaf contents in the sun and in the shade at both
elevations. Additionally, the leaf contents of the six compounds were significantly correlated with
those of the other compounds of the same chemical subgroup, thus reinforcing the results obtained,
meaning they are good representatives of the response to light stress by these chemical subgroups.

3.2.2. Selection of Biomarkers for Adaptation of C. arabica to Full Sunlight Using Genetic Diversity and
Contrasting Environments

The six preselected candidate biomarkers for the adaptation of C. arabica to full sun were evaluated
in seven other American pure lines, eight Ethiopian wild accessions and 19 of their F1 hybrids, in two
contrasting geographical trials in Colombia and Nicaragua.

Combining the data on the concentration of each of the six preselected phenolics in the leaves of all
34 genotypes studied in the four field trials in Mexico, Colombia and Nicaragua, we finally retained four,
5-CQA, mangiferin, F-dihex and rutin, because the ratio of their concentration in the sun to that in the
shade remained stable in the leaves of all the genetic material and in all four contrasting environments,
as measured by r2 (0.74; 0.81; 0.75 and 0.63, respectively). All the slopes of the regression lines were
below 1, indicating that, just like in cv. Marsellesa at two elevations in Mexico, the concentrations of
these compounds in leaves of the 34 other genotypes were always higher in the sun than in the shade.
The strong linear correlation between the concentrations of these four phenolics in the leaves suggests
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that C. arabica germplasm could be phenotyped in only one of the light conditions (full sun or 50%
shade) but could still predict the degree of adaptation to full sunlight or shade, mimicking agroforestry
systems. This also suggests that these four candidate biomarkers of adaptation could be used in very
different environments and with contrasting genotypes like Ethiopian wild accessions and American
pure lines.

3.2.3. Influence of C. arabica Genotype on the Phenolic Leaf Contents and Selection of Biomarkers of
Adaptation to Full Sunlight or Shade in Breeding Programs

By comparing the influence of the genotype on the four previously selected leaf phenolic contents
at the two field trials in Colombia and Nicaragua, 5-CQA and mangiferin were shown to be the best
candidate biomarkers of adaptation to full sunlight in C. arabica because both compounds globally
reflected the genetic structure at the two locations and made it possible to differentiate Ethiopian wild
accessions from American pure lines at the same location. Moreover, in the case of 5-CQA, the influence
of genotype even prevailed over the influence of location, making it possible to differentiate Ethiopian
wild accessions from American pure lines regardless of the location. All Ethiopian wild accessions
consistently presented higher concentrations of 5-CQA in their leaves in the sun regardless of the
location and of mangiferin at a same location compared to the American pure lines. This may be
linked to the origin of the Ethiopian wild accessions, i.e., understory bushes in mesophilous forests [1]
and that of American pure lines derived from the C. arabica “Yemen-Harare” group domesticated for
cultivation in full sunlight [3–9].

The higher concentrations of both 5-CQA and mangiferin in leaves in full sun than in the shade
observed in this study are in accordance with observations made in C. arabica cv. Catuai Vermelho
IAC 44 in Brazil with two-fold higher accumulation of both compounds in leaves in full sun than in
the shade [30]. Very little information is available on the likely role of 5-CQA in plant response to light
stress, and mangiferin has been more widely studied in humans than in plants for its multipotent
anti-inflammatory potential, anti-lipid peroxidation and antibacterial activities [48–50]. However, since
this compound is considered to be a strongly antioxidant molecule, higher mangiferin contents in
leaves exposed to full sunlight point to a likely role for mangiferin in protecting leaves from oxidative
damage linked to more intense photosynthesis. A protective role of mangiferin against UV radiation in
Aphloia theiformis has also been suggested [51]. A previous study on wild coffee species indicated higher
accumulation of mangiferin in leaves of species originating from high altitudes where UV irradiance is
higher [31]. It is interesting to note that, when we compared the average concentrations of 5-CQA
and mangiferin in each genetic group (Ethiopian wild accessions, American pure lines and F1 hybrid
clones), in the two trials, Colombia values were higher than Nicaragua values. This is consistent with
the higher global horizontal irradiance observed during the trial in Colombia compared to the trial in
Nicaragua (Table 3) and reinforces the capacity of these candidate biomarkers. However, the influence
of other factors cannot be ruled out, e.g., that of UV-B irradiance, which increases as one approaches
the Equator, or of temperature which, in our case, was higher in Colombia.

An interesting result concerning 5-CQA was that, in the two field trials in Mexico, we found a
significant correlation between the concentration of 5-CQA in leaves and the concentrations of all the
other phenolic compounds analyzed, except quercetin derivatives. This suggests that 5-CQA plays a
key role in the response of phenolic metabolism to light stress, as suggested by Grace and Logan [17].
Phenylpropanoid biosynthesis may offer an alternative pathway for photochemical energy dissipation.
In this energy overflow mechanism, which transforms photosynthesis products into stable compounds,
5-CQA may be the main sink.

Another important observation is that in both the Nicaragua and Colombia trials, the F1 hybrid
clones had very similar concentrations of 5-CQA and mangiferin in the leaves of shaded and unshaded
plants to those measured in their mother American pure lines, suggesting a significant maternal effect in
adaptation to light growing conditions. This should be taken into account in future breeding programs.
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Table 3. Location, main climate data and cropping conditions in the four experimental field trials in
Mexico, Nicaragua and Colombia.

Country Geographic
Coordinates

Elevation
(m asl)

Plant Density
(m)

Plants for Each
Half Plot: Full
Sun or under

Shade (N)

Annual Average
Temperature

Min/Max
(◦C)

Average
Surface

Temperature
(◦C)

Rain
(mm by

Year)

Global
Horizontal
Irradiation
(kWh.m−2)

Mexico 18◦51′46” N
96◦51′35” W 650 2 × 1.5 192 18.6/31.4 19.1 2650 1890

Mexico 19◦23′43” N
96◦59′60” W 1250 2 × 1.5 192 14.2/28.2 17.0 2100 1848

Nicaragua 13◦2′45” N
85◦53′30” W 1200 2 × 1 950 14.1/24.0 18.7 1760 1706

Colombia 4◦58′17” N
75◦39′09” W 1380 1.3 × 1.5 for APL

1.5 × 1.5 for WEA 490 17.4/26.8 22.1 3570 1851

APL: American pure lines; EWA: Ethiopian wild accession.

The concentrations of 5-CQA and mangiferin in leaves in full sun and in the shade are among
the highest observed for the phenolic compounds, irrespective of the light conditions and the field
trial, particularly the concentration of 5-CQA. Thus, their detection and quantification are quite easy,
accurate and reproducible.

5-CQA is the most common chlorogenic acid in plants. As an esterified form of caffeic acid
with quinic acid, this compound possesses a phenol ring produced by hydroxycinnamic acid and
a specific absorption spectrum. Near-infrared (NIR) spectroscopy has been successfully used to
characterize coffee beans and to study environmental effects on coffee bean quality [52,53]. An NIR
calibration was obtained, based on partial least squares regression with quantitative values of different
concentrations of CQA [54]. The NIR technique thus enables rapid evaluation of CQA content in coffee
beans. More recently, a study was conducted on coffee leaves using Fourier transform near infrared
spectroscopy (FT-NIR) combined with a statistical method for classification (SIMCA) [55]. Mangiferin
also possesses a phenol ring and a specific absorption spectrum. Thus, CQA and mangiferin evaluation
by NIR could be considered for high-throughput phenotyping of C. arabica germplasm. This approach
would help identify candidate progenitors with good adaptation to full-sun conditions, i.e., likely
those with low leaf 5-CQA and mangiferin contents, or to shaded agroforestry conditions, i.e., those
with high leaf 5-CQA and mangiferin contents. It would facilitate high-throughput phenotyping of
large F1 offspring and the creation of new F1 hybrids.

Like 5-CQA and mangiferin, the concentration of F-dihex in full sun was higher than in the shade
in all the genotypes studied. However, although the concentration of F-dihex in leaves in full sun was
well correlated with the concentration in the shaded leaves across the different genotypes and the four
field trials, this compound did not reflect genetic structure (Ethiopian wild accessions vs. American
pure lines) when its leaf contents were compared in different genetic groups, meaning F-dihex cannot
be used as a stable biomarker of the adaptation of C. arabica to full sunlight.

Rutin leaf contents were considerably higher in plants grown in full sun than in plants grown
under shade in all the genotypes studied and at all four study locations. This is in agreement with the
results of previous studies showing that quercetin derivatives [56] and, more globally, flavonols [57]
are involved in plant response to light, particularly to UV-B radiation. This could explain why
concentrations of rutin in the leaves of C. arabica cv. Marsellesa in Mexico in both the sun and shade
were much higher at the high elevation (1250 m asl) than at the low elevation (650 m asl), as global
horizontal irradiance was very similar at the two trial sites but UV-B radiation increases with elevation.
The marked variations in rutin contents in the same variety grown at two contrasting elevations points
to high dependence of the compound biosynthesis on environmental conditions. Moreover, when
comparing rutin content between genetic groups, the relationship between concentrations in leaves
grown in the sun and in the shade did not reflect the genetic structure of the genotypes studied, i.e.,
Ethiopian wild accessions vs. American pure lines. Thus, rutin appears to be of no interest as a selection
biomarker for adaptation to growth in full sun, but could be useful to assess light stress, particularly UV
stress, in a given coffee genotype at a given time and in different environmental conditions. This is in
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accordance with the stimulation of quercetin derivative biosynthesis by light intensity observed in
coffee leaves under natural [30] or controlled conditions [58] and in line with the reaction of numerous
plants to UV-B irradiance [56]. Recent studies indicated that quercetin derivatives, and more specifically
ortho-dihydroxylated B-ring flavonoids, play an important role in photoprotection as ROS-detoxifying
agents and, to a lesser extent, as UV screens [59–61].

4. Materials and Methods

4.1. Locations and Plant Material

This study was conducted at four locations in three countries, two in Mexico, one in Nicaragua
and one in Colombia, from latitude 4◦ N to 19◦ N, which covers most of the Latin American C. arabica
growing area in the Northern Hemisphere (Figure 6). Table 3 lists the location and main climatic and
agronomic factors at each location. Each field trial was made up of two adjacent twin plots, each
including all the genotypes studied, one in full sunshine and the other one under a black polyethylene
shading net that excluded 50% of the light. When the leaf samples were collected, the coffee trees were
three years old in Mexico and Colombia. In Nicaragua, they were also 3 years old after the coppicing of
the original 24-year-old trees. The coffee trees were considered to be adults with full fruit production
at all the elevations of the four experimental field trails. In Mexico, the study was carried out in two
similar field trials located at two contrasting elevations (650 m vs. 1250 m asl) to generate a proxy of
temperatures in order to mimic global warming associated with climate change.Metabolites 2020, 10, x FOR PEER REVIEW 17 of 24 
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Figure 6. Geographical distribution of the four experimental sites in America: Mexico (two sites at
different elevations), Nicaragua and Colombia. In each site, half of the C. arabica trees are under shade.

In the two experimental plots in Mexico, a single American pure line of C. arabica was studied:
cv. Marsellesa, belonging to the Sarchimor group (a cross between the Timor hybrid CIFC 832/2,
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a natural interspecific hybrid of C. arabica and C. canephora) and the Costa Rican compact line Villa Sarchi).
The 22 genotypes studied in Nicaragua and the 11 studied in Colombia were C. arabica American pure lines,
Ethiopian wild accessions of C. arabica and cloned F1 hybrids propagated by somatic embryogenesis,
and from crosses between American pure lines as mothers and Ethiopian wild accessions as fathers,
except for two F1 hybrid clones in the Nicaraguan trial that were crosses between two American pure
lines. Table 4 lists the details of all the plant material studied in the three countries.

Table 4. Plant material used in the experimental plots in Mexico, Nicaragua and Colombia. APL,
American pure lines; EWA, Ethiopian wild accessions.

Genotype Genealogy Origin Genetic Group

Mexican experimental plot

Marsellesa®
Timor hybrid CIFC 832/2 x cv. Villa

Sarchi (Costa Rica) CIRAD Nicaragua APL of Sarchimor group

Nicaraguan experimental plot

ET08 A8

EWA

Kaffa province, Ethiopia
(ORSTOM prospecting, 1966) “Jimma Bonga” (G1A) *

ET47 A4

Kaffa province, Ethiopia
(FAO prospecting, 1964–1965)

ET26 A1 “Sheka” (G1B) *

ET25 A4 G1G2 *

ET06 Not yet characterized

T5175 Timor hybrid CIFC 832/1 x cv. Caturra Instituto del Café of Costa Rica
(ICAFE) APL of Catimor group

T8667 Timor hybrid CIFC 832/1 x cv. Caturra

CATIE, Turrialba, Costa Rica
T5296 Timor hybrid CIFC 832/2 x cv.

Villa Sarchi APL of Sarchimor group

T17931 Timor hybrid CIFC1343
x cv. Caturra

APL Catimor line of the
multiline var. Colombia

Catuaí cv. Mundo Novo
x cv. Caturra

Instituto Agronômico de Campinas
(IAC), Brazil

APL non-introgressed
dwarf cultivar

T5175 x ET08 A8
APL mother x EWA father F1 hybrid

CIRAD, Nicaragua F1 hybrid clone

T5175 x ET26 A1

T5175 x ET25 A4

T5175 x T17931 APL mother x APL father F1 hybrid

T8667 x ET47 A4 APL mother x EWA father F1 hybrid
T8667 x ET26 A1

T8667 x T5296 APL mother x APL father F1 hybrid
T5296 x T17931

T17931 x ET47 A4

APL mother x EWA father F1 hybridT17931 x ET26 A1

T17931 x ET25 A4

Catuaí x ET47 A4

Catuaí x ET26 A1

Colombian experimental plot

E554

EWA

Kaffa province, Ethiopia
(FAO 1964-1965) “Jimma Bonga” (G1A) *

E286 Kaffa province, Ethiopia
(FAO 1964-1965) “Jimma Bonga” (G1A) *

E057 Kaffa province, Ethiopia
(FAO 1964-1965) “Jimma Bonga” (G1A) *

CX2385 Timor hybrid CIFC1343
x cv. Caturra

CENICAFE, Colombia

APL of Catimor group
CU1842

CX2385 x E554

APL mother x EWA father F1 hybrid F1 hybrid clone

CX2385 x E286

CX2385 x E057

CU 1842 x E554

CU 1842 x E286

CU 1842 x E057

* Genetic groups of Ethiopian wild accessions (EWA) according to Scalabrin et al. [3].
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4.2. Leaf Sampling for Secondary Metabolite Analysis

For each growth condition (full sun or shade), at between 5 and 6 h after sunrise, ten mature
leaves were collected from the same tree at the third node (from the branch apex) of the 6th to 8th pairs
of plagiotropic branches (counting from the orthotropic apex). For samples of plants growing in full
sun, care was taken to ensure that the leaves collected were fully exposed to the sun (by avoiding
shaded leaves) and faced eastward. Leaves from the same tree grown in the same conditions were
packed together and immediately plunged into liquid nitrogen and conserved at −80 ◦C until freeze
dried. For each growth condition, 9 to 10 trees were sampled in June 2015 in Mexico, three to five
trees in April 2019 in Nicaragua, and two to six trees (two American pure lines, three Ethiopian wild
accessions and six F1 hybrid clones) in June 2014 in Colombia.

4.3. Secondary Metabolite Analysis

The freeze-dried leaf samples were vacuum packed and sent to the IRD laboratory, Montpellier,
France, where they were ground into a fine powder in an A10 IKA model electric blender (IKA®-Werke
GmbH & Co. KG, Staufen, Germany) and stored until extraction. Each sample was extracted by stirring
25 mg of plant material in 6 mL of MeOH/H2O (80:20, v/v) in a Rotamax 120 (Heidolph Instruments
GmbH & CO. KG, Schwabach, Germany) at 250 rpm and at 4 ◦C for 3 h, supplemented with 10 µL
of 5-methoxyflavone (4 mM) as an internal standard. After centrifugation at 3500 rpm at 8 ◦C for
10 min, the organic extract was collected and filtered (Millipore, 0.25 µm porosity) before analysis.
Each extraction was carried out in triplicate.

Quantitative analyses were carried out on a Shimadzu LC 20 HPLC-DAD system (Shimadzu
Corporation, Kyoto, Japan) as described by Campa et al. [58]. Parallel analyses were performed in
triplicate on pure standard solutions of trigonelline, theobromine, caffeine, mangiferin, 5-CQA and
caffeic acid purchased from Sigma-Aldrich Chimie (St Quentin Fallavier, France), while glycosylated
kaempferols (kaempferol and kaempferol-3-O-glucoside), quercetin, rutin, (+)-catechin, (-)-epicatechin
and epigallocatechin came from Extrasynthese (Lyon, France) and 3,4-, 3,5- and 4,5-O-dicaffeoylquinic
acid (diCQA) came from Biopurify Phytochemicals (Chengdu, China) at 25, 50, 75 and 100 µg.mL−1.
Quantification of 3-, 4- and 5-CQA, FQAs and 3,4-, 3,5- and 4,5-diCQA was undertaken at 320 nm,
caffeine and catechin derivatives at 280 nm and mangiferin, kaempferol and quercetin derivatives
at 360 nm. Concentrations are expressed in mg.100 mg−1 dry weight (DW) by comparison with
standard curves. 3-CQA, 4-CQA and FQA contents were calculated relative to the 5-CQA standard
curve. Concentrations of flavonol derivatives except rutin were calculated based on the standard
quercetin curve, and are expressed as quercetin equivalent. Each sample of coffee leaf powder was
extracted and analyzed three times. The mean concentrations of phenolic compounds are expressed in
mg.100 mg−1 DW.

To confirm the standard-based identifications and to provide some basic structural information
on the other substances, LC-DAD-MS2 analyses were performed on an Agilent Infinity® 1290 system
(Agilent Technologies, Santa Clara, USA) coupled to a UV/vis DAD detector and equipped with a
QTOF 6530 detector (Agilent) controlled by MassHunter® software (Agilent). Analytical separation
was carried out on a Poroshell® 120 EC-C18 column (100 mm × 3.0 mm, 2.7 µm) equipped with a
pre-column (Poroshell® 20 EC-C18, 5 mm × 3.0 mm, 2.7 µm). A gradient of 0.4% formic acid in water
(A) and acetonitrile (B) was used as follows: 0 min, 1% B; 1.5 min, 1% B; 6 min, 10% B; 12 min, 35% B;
14 min, 100% B; 16 min, 100% B. The flow rate and column temperature were 1.0 Ml.min−1 and 60 ◦C,
respectively. A 2.0 µL aliquot of sample extract was injected into the column. The ESI source was
optimized for positive and negative ionization modes (in “Auto MSMS” acquisition mode) as follows:
scan spectra from m/z 50 to 2000, capillary voltage 3.5 kV, nozzle voltage 2000 V, fragmentor 110 V,
fixed collision-induced dissociation (CID) energy at 20 eV. Nitrogen was used as the nebulizing gas at
a flow rate of 12 L.min−1 and a temperature of 310 ◦C at 40 psi.
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4.4. Statistical Analysis

All statistical analyses were performed in Statistica® 7.1. Biochemical data were checked for
homogeneity of variance using Levene’s test. A factorial analysis of variance (ANOVA) with a
Newman–Keuls test (p < 0.05) for comparing averages was performed on the 16 quantified phenolic
contents for samples from Mexico (elevation × growing light condition). A Pearson’s correlation matrix
was also performed for leaf contents of these same 16 phenolic compounds by pooling sun and shade
data. A heatmap was constructed with R software using the gplots package with default parameters
for symmetrical dendrogram computation (linkage clustering using the Euclidian distance measures)
and reordering using row (equal to column) means and a linear set of 50 shades of color (no color break)
as correlation coefficient bins [62]. A linear regression analysis was performed on six phenolic leaf
contents (5-CQA, catechin, mangiferin, K-hex-dhex, F-dihex and rutin), pooling all studied genotype
samples from Colombia and Nicaragua. A Newman–Keuls test (p < 0.05) was performed for 5-CQA,
mangiferin, F-dihex and rutin leaf contents on averages of combinations of genetic groups (Ethiopian
wild accessions vs. American pure lines vs. F1 hybrid clones) × country (Colombia vs. Nicaragua).

5. Conclusions

This study allowed us to identify two phenolic compounds, chlorogenic acid 5-CQA and xanthone
mangiferin, as good candidate biomarkers of C. arabica adaptation to variations in light intensity.
Analysis of concentrations of the two compounds in the leaves of 34 C. arabica genotypes belonging to
three different genetic groups grown in full sun or under 50% shade showed that the best adapted
genotypes to high light intensity had the lowest 5-CQA and mangiferin contents, a trait that was
preserved when grown in the shade. The predictive accuracy of these two biomarkers should now be
confirmed on a wider range of C. arabica genotypes among the recently identified genetic groups of wild
C. arabica germplasm. The aim would be to confirm our hypothesis that high 5-CQA and/or mangiferin
leaf contents are a signature of greater adaptation to shade, i.e., to agroforestry systems, and conversely,
that low concentrations of the compounds in leaves indicate good adaptation to full-sun cropping
systems. Although the two compounds are good biomarkers for the degree of C. arabica adaptation to
light, under no circumstances do they explain the mechanisms of C. arabica genotype adaptation to full
sunlight. Questions concerning the molecular basis of the adaptation of arabica trees to full-sunlight
conditions remain unanswered. In addition, proven analytical techniques that allow fast, accurate and
reliable dosages of these two compounds, such as NIR spectroscopy techniques, make it possible to
envisage opportunities for high-throughput phenotyping of C. arabica genotypes.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-1989/10/10/383/s1,
Table S1: Concentrations of phenolic compounds in mature leaves of C. arabica cv. Marsellesa grown at two different
elevations (650 and 1250 m asl) in full sun vs. under 50% shade, Table S2: Concentrations of six major phenolic
compounds in mature leaves of C. arabica grown in Nicaragua and Colombia in full sun or under 50% shade.
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Abbreviations

Amu atomic mass unit
APL American pure lines
CGAs chlorogenic acid group (CQA, diCQA, Coum-QA and FQA)
Coum-QA coumaroyl quinic acid
3-CQA 3-O-caffeoylquinic acid
4-CQA 4-O-caffeoylquinic acid
5-CQA 5-O-caffeoylquinic acid
3,4-diCQA 3,4-O-dicaffeoylquinic acid
3,5-diCQA 3,5-O-dicaffeoylquinic acid
4,5-diCQA 4,5-O-dicaffeoylquinic acid
EWA Ethiopian wild accessions
F-dihex flavone-di-C-hexose
FQA feruloylquinic acid
HF1 hybrid F1 clone
HPLC-DAD High performance liquid chromatograph/ photodiode array detection
K-dihex-dhex kaempferol-3-O-di-hexose-deoxyhexose
K-hex-dhex kaempferol-3-O-hexose-deoxyhexose

LC-DAD-MS2 High performance liquid chromatograph/ photodiode array detection /mass
spectrometry2

pOH Mang mangiferin parahydroxybenzoate
Q-dihex-dhex quercetin-3-O-dihexose-deoxyhexose
Q-diGlu quercetin-3-O-diglucoside
SNP single-nucleotide polymorphism
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