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ON THE STATIONARY DISTRIBUTION OF REFLECTED BROWNIAN

MOTION IN A NON-CONVEX WEDGE

GUY FAYOLLE, SANDRO FRANCESCHI, AND KILIAN RASCHEL

Abstract. We study the stationary reflected Brownian motion in a non-convex wedge,

which, compared to its convex analogue model, has been much rarely analyzed in the

probabilistic literature. We prove that its stationary distribution can be found by

solving a two dimensional vector boundary value problem (BVP) on a single curve for

the associated Laplace transforms. The reduction to this kind of vector BVP seems to

be new in the literature. As a matter of comparison, one single boundary condition is

sufficient in the convex case. When the parameters of the model (drift, reflection angles

and covariance matrix) are symmetric with respect to the bisector line of the cone, the

model is reducible to a standard reflected Brownian motion in a convex cone. Finally,

we construct a one-parameter family of distributions, which surprisingly provides, for

any wedge (convex or not), one particular example of stationary distribution of a

reflected Brownian motion.

To the memory of Vadim Malyshev

On September 30, 2022, at the age of 85, Vadim Aleksandrovich Malyshev, Editor-in-

Chief of the journal MPRF, died suddenly. Vadim was an outstanding Russian scientist

in the field of probability and mathematical physics. His memory will always remain in

the hearts and minds of his colleagues. I [Guy Fayolle] mourn the loss of the one who

was my friend for 37 years.

1. Introduction

1.1. Context and motivations. Since the introduction of the reflected Brownian motion

in the eighties [20, 19, 36, 39], the mathematical community has shown a constant interest

in this topic. Typical questions deal with the recurrence of the process, the absorption

at the corner of the wedge, the existence and computation of stationary distributions...

We refer for more details to the introduction of [17].
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Generally speaking, an obliquely reflected Brownian motion in a two-dimensional

wedge of opening angle β ∈ (0, 2π) is defined by its drift µ ∈ R2 and two reflection

angles (δ, ε) ∈ (0, π)2, see Figures 1.4, 2.1 and 5.1 for a few examples. The covariance

matrix is taken to be the identity. A suitable linear transform allows to reduce the

whole range of parameter angles β ∈ (0, 2π) to only three cases: the quarter plane

(when β ∈ (0, π)), the three-quarter plane (when β ∈ (π, 2π)) and the limiting half-

plane case β = π. Doing so, the covariance matrix is nolonger the identity but instead

has the general form (2.1). However, by a clear convexity argument, a linear transform

cannot be used to transform, for instance, the three-quarter plane into a quarter plane.

While the early articles [36, 39] most dealt with the general case β ∈ (0, 2π) (see also

the more recent article [24]), the subcase of convex cones β ∈ (0, π] has attracted much

more attention [20, 19, 14, 13, 1, 7, 5, 6, 16, 17, 3]; we have identified at least three

reasons for that. First, one initial motivation was to approximate queueing systems

in a dense traffic regime [18], which are typically obtained from random walks in the

(convex) quarter plane. Second, the Laplace transform turns out to be a very useful tool

in these problems; to make this function converge we need to have a convex cone. Finally,

because there are already several parameters defining reflected Brownian motion (drift,

reflection angles and opening angle), we feel that non-convex cones have sometimes been

taken away, in order to reduce the number of cases to consider: for instance, regarding

transience and recurrence criteria, only the convex case has been established in [23],

while close arguments should also cover the non-convex case.

In this article, our main objective is the study of recurrent reflected

Brownian motion in the non-convex case β ∈ (π, 2π): we shall introduce

complex analysis techniques to characterize the Laplace transform of the

stationary distribution.

Let us present five motivations to the present work. Our first goal is to complete the

literature and to show how, in this more complicated non-convex setting, one can solve

the problem of finding the stationary distribution. Our techniques could also be applied

to the transient case, for example to analyse Green functions or absorption probabilities

(see [15, 9] for the convex case); however, we do not tackle these problems here.

Our second motivation is provided by the discrete framework of random walks (or

queueing networks). Indeed, in the same way as in the quarter plane, reflected Brownian

motion has been introduced to study scaling limits of large queueing networks (see

Figure 1.1), a Brownian model in a non-convex cone could approximate discrete random

walks on a wedge having obtuse angle (see Figure 1.2 for a concrete example). Such

random walks have an independent interest and have already been studied in a number

of cases: see [2, 31, 8] in the combinatorial literature and [35, 28] for more probability

inclined works.

Our third motivation is to develop an analytic method, which turns out to be

particularly useful in a number of contexts. This method was invented by Fayolle,

Iasnogorodski and Malyshev in the seventies, see [26, 10, 11]; at that time, the principal
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Figure 1.1. Scaling limit of some queueing systems towards reflected

Brownian motion. Left picture: transition rates of a random walk (two

coupled processors). Taking λi(n), νi(n) → 1
2 ,

√
n(λi − νi) → µi and

ν∗i (n) → ri+1
2 , the discrete process converges to the reflected Brownian

motion with parameters described as on the right picture (with identity

covariance matrix). See [32] for the original proof.

Figure 1.2. For the exact same reasons as for Figure 1.1, in the three-

quarter plane, the discrete model on the left picture converges to the

reflected Brownian motion on the right display.

motivation was to study the stationary distribution of ergodic reflected random walks in

a quadrant. The main idea is to state a functional equation satisfied by the associated

generating functions and to reduce it to certain boundary value problems, which after

analysis happen to be solvable in closed form. This approach has been applied to the

framework of Brownian diffusions in a quadrant [14, 13, 1], to symmetric random walks in

a three-quarter plane [31, 35], but never to the present setting of diffusions in non-convex

wedges. From this technical point of view, the present work will bring the following
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novelty: we will prove that our problem is generically reducible to a system of two

boundary value problems (as a matter of comparison, only one single boundary value

problem is needed in the convex case [17]). This formally leads to a matrix power series

for the Laplace transform, as a solution of a Fredholm integral equation, see (4.25).

Figure 1.3. Different models of (non-)reflected inhomogeneous Brown-

ian motions in various cones of R2. Blue arrows represent drift vectors

and red arrows stand for the reflection vectors on the boundary axes. In

the second picture, when the two drifts are opposite, the vertical compo-

nent is called a bang-bang Brownian motion.

Next, we aim at initiating the study of piecewise inhomogeneous Brownian models

in cones of Rd. To take a concrete example, consider a half-plane and view it as the

union of two quarter planes glued along one half-axis (see Figure 1.3, leftmost picture).

Then the process behaves as follows: in each quarter plane, its evolution is governed by a

Brownian motion (with possible different drifts and covariance matrices); the process can

pass from one quadrant to the other one through the porous interface; on the remaining

boundaries, it is reflected in a standard way. Another example would consist in dividing

the plane into two half-planes, as on Figure 1.3, left. This model may be viewed as a

two-dimensional generalization of the so-called bang-bang process on R, as studied in

[34].

Piecewise inhomogeneous Brownian motions are related to our obtuse angle model as

follows: splitting the three-quarter plane into two convex wedges (see the right display

on Figure 1.3, or Figure 3.1) and performing simple linear transformations, our model

turns out to be equivalent to the inhomogeneous domain described above.

These inhomogeneous models are reminiscent from a well-known model in queuing

theory, known as the JSQ (for “join the shortest queue”) model, see [11, Chap. 10] or

[25]. In this model, the quarter plane is divided into two octants (π/8-wedges) and

the random walk obeys to different (very specific rules) according to the octant. See the

rightmost picture on Figure 1.3. The techniques developed in this paper offer a potential

approach to solve this (asymmetric) Brownian JSQ model.

Our fifth and final motivation is to provide tools leading to a comparative study of

reflected Brownian motion in convex and non-convex cones. Does this model admit a

kind of phase transition around the critical angle β = π? Some results in our paper tend

to show that this is the case: while reflected Brownian motion in a convex cone may be
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studied with one single boundary value problem, two analogue problems are needed in

the non-convex case. On the other hand, we also bring some evidence that the model

has a smooth behavior at β = π: we are able to construct a one-parameter family of

stationary distributions, whose formula is valid for any β ∈ (0, 2π) and, surprisingly,

is independent of β! While we will leave the question of phase transition as an open

problem, let us conclude with the expression of the density (written in polar coordinates)

of this remarkable family:

(1.1) π(r, t) =
C√
r
cos
( t
2

)
e−2r|µ| cos

2( t
2), |t| ⩽ β

2
< π,

where |µ| stands for the norm of the drift and C is a normalization constant; see

Figure 1.4. The example (1.1) is obtained [3] in the convex case, it immediately extends

to the non-convex case.

Figure 1.4. Parameters of the model leading to the remarkable station-

ary distribution (1.1). A priori, no symmetry assumption is done on the

parameters (the model on the left is symmetric, contrary to the one on

the right). Similarly, no convex hypothesis is done on the cone. The for-

mula (1.1) has been obtained in [3] in the convex case and in [18, §9] in
a more restrictive case, and we observe here that the same formula holds

for any value of the opening angle β. Up to our knowledge, (1.1) is the

unique example for which the stationary distribution density is known in

closed form for a non-convex cone.

1.2. Main results. To conclude this introduction, we present the structure of the paper

and our main results.

• Section 2: definition of the model, statement of the recurrence conditions and

introduction of the stationary distribution, Proposition 2.1 on the classical basic

adjoint relationship (characterizing the stationary distribution)

• Section 3: Proposition 3.1 on a system of two functional equations (the 3/4 plane

is split into two convex cones of angle 3π/8, and one equation is stated for each

domain)
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• Section 4: general study of the asymmetric case. Various statements on the

kernel, meromorphic continuation of the unknown Laplace transforms, reduction

to a Riemann-Hilbert vector boundary value problem (Theorem 4.4), relation

with a Fredholm integral equation

• Section 5: general study of the symmetric case. Equivalence with a standard

Brownian motion in a quarter plane, resolution and examples

Acknowledgments. We thank Andrew Elvey Price and Kavita Ramanan for interesting

discussions.

2. Semimartingale reflected Brownian motion avoiding a quarter plane

2.1. Definition of the process. We denote the three-quarter plane as

S
def
= {(z1, z2) ∈ R2 : z1 ⩾ 0 or z2 ⩾ 0}.

The parameters of the model are the drift µ = (µ1, µ2), the reflection vectors R1 = (r1, 1)

and R2 = (1, r2), and the covariance matrix

(2.1) Σ =

(
σ1 ρ

ρ σ2

)
,

see Figure 2.1. Throughout this study, Σ will be assumed to be elliptic, i.e., σ1σ2−ρ2 > 0,

thus discarding the degenerated case σ1σ2 − ρ2 = 0.

Figure 2.1. In green color, the three-quarter plane S, in blue the drift

µ and in red the reflection vectors R1 and R2.

More specifically, we define the obliquely reflected Brownian motion Zt = (Z1
t , Z

2
t ) in

the three-quarter plane S as follows:

(2.2)

{
Z1
t

def
= Z1

0 +W 1
t + µ1t+ r1L

1
t + L2

t ,

Z2
t

def
= Z2

0 +W 2
t + µ2t+ L1

t + r2L
2
t ,

where Wt is a planar Brownian motion of covariance Σ, L1
t is (up to a constant) the

local time on the negative part of the abscissa (z1 ⩽ 0) and L2
t is the local time on the

negative part of the ordinate axis (z2 ⩽ 0). In case of a zero drift, such a semimartingale
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definition of reflected Brownian motion is proposed in the reference paper [39] (including

the non-convex wedges); it readily extends to our drifted case.

Throughout this paper, we assume that the process is positive recurrent and has a

unique stationary distribution (or invariant measure). As it turns out, this is equivalent

to

(2.3) µ1 < 0 and µ2 < 0,

together with

(2.4) µ1 − r1µ2 > 0 and µ2 − r2µ1 > 0.

(In particular, one has r1 > 0 and r2 > 0.) We couldn’t find any reference proving

this statement; however, the same techniques as in [23] by Hobson and Rogers or [21,

Sec. 6] (proving necessary and sufficient conditions in the quadrant similar as (2.3) and

(2.4)) could be used here. Figure 2.1 represents a case where the parameters satisfy both

conditions (2.3) and (2.4). The heuristic of these conditions is the following. The process

is either recurrent or transient, and if the process is transient, then it tends to infinity.

By (2.3), the drift vector is negative and there are only two possible behaviours for the

process to tend to infinity: either, as t → ∞, Z1
t tends to −∞ and Z2

t ⩾ 0, or Z2
t tends

to −∞ and Z1
t ⩾ 0. So, we come down to a couple of problems in half-planes, which

are easy to understand, since reflected Brownian motion in a half-plane is a well-studied

process. For example, in the upper half-plane, the conditions for the process Z1
t not to

tend to −∞ is µ1 − r1µ2 ⩾ 0 (µ1 − r1µ2 = 0 is a null recurrent case). Combining the

two conditions leads heuristically to (2.4). Indeed, coupling arguments associated with

a pathwise construction could make the above reasoning more rigourous, but we shall

omit them.

Under conditions (2.3) and (2.4), we denote by Π the unique stationary distribution.

In the case of a quarter plane, it is proved in [21] that Π admits a density with respect to

the Lebesgue measure, see Lemma 12 in [21, Sec. 7]. Using exactly the same argument

(in particular Lemma 9 in [21, Sec. 7]), we deduce that in the three-quarter plane, Π

admits a density, which we will denote by π. We also define the boundary invariant

measures by

ν1(A) = EΠ

∫ 1

0
1A×{0}(Zs)dL

1
s and ν2(A) = EΠ

∫ 1

0
1{0}×A(Zs)dL

2
s.

The measure ν1 has its support on {z1 ⩽ 0} and ν2 has its support on {z2 ⩽ 0}. We will

also denote by ν1(z1) and ν2(z2) their respective densities.

Remark that a reflected Brownian motion in the three-quarter plane could be defined

as well in the non-semimartingale case; motivations to consider these cases are proposed

in [30].

2.2. Basic adjoint relationship. Our approach is based on the following identity, called

basic adjoint relationship, which in the orthant case is proved in [4, 21].
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Proposition 2.1. If f is the difference of two convex functions in S, and if∫
S f(z1, z2)π(z1, z2)dz1dz2 and all the integrals below converge, then∫

S
Gf(z1, z2)π(z1, z2)dz1dz2+∫ 0

−∞
R1 · ∇f(z1, 0)ν1(z1)dz1 +

∫ 0

−∞
R2 · ∇f(0, z2)ν2(z2)dz2 = 0,

where the generator is equal to

Gf =
1

2

(
σ1

∂2f

∂z21
+ 2ρ

∂2f

∂z1∂z2
+ σ2

∂2f

∂z22

)
+ µ1

∂f

∂z1
+ µ2

∂f

∂z2
.

Proof. We apply the Itô-Tanaka formula to the semimartingale Zt, see Theorem 1.5 in

[33, Chap. VI §1]. Note that, in the formula of the previous reference, there is no need

to assume that f is C2 since, when f is convex, its second derivative in the sense of

distibution is a positive measure. We obtain

f(Zt) = f(Z0) +

∫ t

0
Gf(Zs)ds+

∫ t

0
∇f(Zs) · dWs +

∑
i∈{1,2}

∫ t

0
Ri · ∇f(Zs)dL

i
s.

To conclude, we take the expectation over Π in the above equality. ■

Since we take f to be the difference of two convex functions, the first derivatives of f

are defined as the left derivatives, and the second derivatives of f are understood in the

sense of distributions.

Remark 2.2. Continuity and differentiability of the measure π(z1, z2) directly follow from

the properties of weak solutions to the partial differential equation satisfied by π and

stated in Proposition 2.1. Indeed, a famous result known as Weyl’s lemma [38, Lem. 2]

asserts that a weakly harmonic function coincides almost everywhere with a strongly

harmonic function, and is in particular smooth. This result generalizes to distributions

associated to hypoelliptic operators. Here,
∫
S Gf(z1, z2)π(z1, z2)dz1dz2 = 0, for all f

which are smooth in S and which cancel near the boundary of S, and we deduce that π

is smooth inside of S.

3. The main functional equations

Our goal is to use the basic adjoint relationship of Proposition 2.1 to obtain a kernel

equation for the Laplace transform of the stationary distribution. In the case of a

convex cone, it is enough to take f(z1, z2) = exz1+yz2 to obtain the functional equation,

see [5, 16, 17]. However, if the cone is not convex, the associated integrals will not

converge. So we need to divide the three-quarter plane into two regions. We define the

two following 3
8 -planes:

S1
def
= {(z1, z2) ∈ R2 : z1 ⩽ z2 and z2 ⩾ 0}

and S2
def
= S \ S1, see Figure 3.1.
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Figure 3.1. Left: the three-quarter plane divided in two sets, S1 in

green and S2 in orange. Right: the three sets Sε
1 (in green color), Sε

2

(orange) and S̃ε (blue).

Let us define the Laplace transform of the invariant measure π in S1 by

(3.1) L1(x, y)
def
=

∫
S1

exz1+yz2π(z1, z2)dz1dz2,

the Laplace transform of π on the diagonal

m(x+ y)
def
=

∫ ∞
0

e(x+y)zπ(z, z)dz,

the Laplace transform of the normal derivative of π on the diagonal (which does exist

by Remark 2.2)

(3.2) n(x+ y)
def
=

∫ ∞
0

e(x+y)z

(
∂π

∂z1
(z, z)− ∂π

∂z2
(z, z)

)
dz,

and the Laplace transform of the boundary measure ν1 on the abscissa

ℓ1(x)
def
=

∫ 0

−∞
exz1ν1(z1)dz1.

Introduce finally the constant

θ
def
=

σ1 + σ2 − 2ρ

2
,

which is positive due to the ellipticity condition ρ2 − σ1σ2 < 0.

The remainder of Section 3 is devoted to proving the following result:

Proposition 3.1 (Functional equation in S1). For all (x, y) in {ℜ(x) ⩾ 0, ℜ(x+ y) ⩽ 0},
we have

−K(x, y)L1(x, y) =

k(x, y)m(x+ y) + θn(x+ y) + k1(x, y)ℓ1(x) + (1− r1)ν1(0) + (r2 − 1)ν2(0),
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where the kernel is defined by

(3.3) K(x, y)
def
=

1

2

(
σ1x

2 + 2ρxy + σ2y
2
)
+ µ1x+ µ2y,

while k and k1 are polynomials of degree one in two variables given by

k(x, y)
def
=

θ(y − x)

2
+

1

2
(σ2 − σ1)(x+ y) + µ2 − µ1,

k1(x, y)
def
= r1x+ y.

A symmetric functional equation holds on the domain S2; it involves the functions m

and n above, as well as

L2(x, y)
def
=

∫
S2

exz1+yz2π(z1, z2)dz1dz2 and ℓ2(y)
def
=

∫ 0

−∞
eyz2ν2(z2)dz2.

See (4.2) for the exact statement. The proof of Proposition 3.1 is rather lengthy and

postponed to Appendix A.

4. The general asymmetric case

4.1. Sketch of the approach. For the sake of brevity, we shall put

E
def
= (1− r1)ν1(0)− (1− r2)ν2(0).

Then the two functional equations obtained in Section 3 (see in particular Proposi-

tion 3.1), corresponding to the regions S1 and S2 in the (z1, z2)-plane, see Figure 3.1,

are simply rewritten as follows:

(4.1) K(x, y)L1(x, y) + k(x, y)m(x+ y) + θn(x+ y) + k1(x, y)ℓ1(x) + E = 0,

in the region {ℜ(x) ⩾ 0, ℜ(x+ y) ⩽ 0};

(4.2) K(x, y)L2(x, y)− k(x, y)m(x+ y)− θn(x+ y) + k2(x, y)ℓ2(y)− E = 0,

in the region {ℜ(y) ⩾ 0, ℜ(x+ y) ⩽ 0}.

The main idea is to build a system, where the new variables are defined in one and

the same region, by means of a simple change of variables. Clearly, this operation has

a cost, since there will be two different kernels, the positive side being they can be

simultaneously analyzed starting from a common domain. The key milestones of the

study are listed hereunder:

• Make the meromorphic continuation of all functions in their respective (cut)

complex planes (see Theorem 4.3).

• Construct a vectorial Riemann boundary value problem for the pair (ℓ1, ℓ2) (see

Theorem 4.4).

• Derive a Fredholm integral equation for m (see Equation (4.25)).
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4.2. Functional equations and kernels. Setting respectively

p = −x, q = x+ y, in Equation (4.1),

and

p = −y, q = x+ y, in Equation (4.2),

leads to the system

U(p, q)L1(p, q) +A(p, q)m(q) + θn(q) + C(p, q)ℓ1(p) + E = 0,(4.3)

V (p, q)L2(p, q) +B(p, q)m(q)− θn(q) +D(p, q)ℓ2(p)− E = 0,(4.4)

where both equations are a priori defined in the domain {ℜ(p) ⩽ 0, ℜ(q) ⩽ 0}, and

(4.5)



U(p, q)
def
= θp2 +

σ2
2
q2 + (σ2 − ρ)pq + (µ2 − µ1)p+ µ2q,

V (p, q)
def
= θp2 +

σ1
2
q2 + (σ1 − ρ)pq + (µ1 − µ2)p+ µ1q,

A(p, q)
def
=

θ(2p+ q)

2
+

(σ2 − σ1)q

2
+ µ2 − µ1,

B(p, q)
def
=

θ(2p+ q)

2
+

(σ1 − σ2)q

2
+ µ1 − µ2,

C(p, q)
def
= (1− r1)p+ q,

D(p, q)
def
= (1− r2)p+ q.

Notation. For convenience and to distinguish between the two kernels, we shall add in

a superscript position the letter u (resp. v) to any quantity related to the kernel U(x, y)

(resp. V (x, y)). Moreover, if a property holds both for u and v, the superscript letter is

omitted ad libitum.

Accordingly, the branches of the algebraic curve U = 0 (resp. V = 0) over the q-plane

will be denoted by P u
i (q) (resp. P

v
i (q)), i = 1, 2. By definition, they are solutions to

(4.6) U(P u
i (q), q) = 0 and V (P v

i (q), q) = 0.

In particular, they are simple algebraic functions of order 2. Similarly, Qu
i (p) (resp.

Qv
i (p)) will stand for the branches over the p-plane, i = 1, 2.

Although we are mostly working under the stationary hypotheses (2.3) and (2.4),

notice that Lemmas 4.1 and 4.2 below hold true for any value of the drift vector (µ1, µ2).

Lemma 4.1. The functions P u
i (q) and P v

i (q), i = 1, 2, are analytic in the whole complex

plane cut along (−∞, q1] ∪ [q2,∞), where the branch points q1 < 0 and q2 > 0 are the

two real roots of the equation

(4.7) (ρ2 − σ1σ2)q
2 + 2[µ1(ρ− σ2) + µ2(ρ− σ1)]q + (µ1 − µ2)

2 = 0.

Remarkably, q1 and q2 are the same for the two kernels U and V . Moreover:
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• The branches P u
1 and P u

2 are separated and satisfy

(4.8)


ℜ(P u

1 (ix)) ⩽ 0 ⩽ ℜ(P u
2 (ix)), ∀x ∈ R,

ℜ(P u
1 (q)) ⩽ ℜ(P u

2 (q)), ∀q ∈ C,

P u
1 (0) = min

{
0,

µ1 − µ2

2θ

}
, P u

2 (0) = max

{
0,

µ1 − µ2

2θ

}
.

They map the cut (−∞, q1] (resp. [q2,∞)) onto the right branch Hu
+ (resp. left

branch Hu
−) of the hyperbola Hu with equation

(4.9) (ρ2−σ1σ2)x
2+(σ2−ρ)2y2+2(σ2µ1−ρµ2)x+

(µ2 − µ1)(σ2(µ1 + µ2)− 2ρµ2)

2θ
= 0.

• The branches P v
1 and P v

2 are separated and satisfy

(4.10)


ℜ(P v

1 (ix)) ⩽ 0 ⩽ ℜ(P v
2 (ix)), ∀x ∈ R,

ℜ(P v
1 (q)) ⩽ ℜ(P v

2 (q)), ∀p ∈ C,

P v
1 (0) = min

{
0,

µ2 − µ1

2θ

}
, P v

2 (0) = max

{
0,

µ2 − µ1

2θ

}
.

They map the cut (−∞, q1] (resp. [q2,∞)) onto the right branch Hv
+ (resp. left

branch Hv
−) of the hyperbola Hv with equation

(4.11) (ρ2−σ1σ2)x
2+(σ1−ρ)2y2+2(σ1µ2−ρµ1)x+

(µ1 − µ2)(σ1(µ1 + µ2)− 2ρµ1)

2θ
= 0.

Proof. The branch points of P (q) are the zeros of the discriminant of U(p, q) = 0 viewed

as a polynomial in p, and equation (4.7) follows directly.

In order to prove (4.8), let P (q) denote the multivalued algebraic function satisfying

(4.6). Letting q = ix with x ∈ R and P (q)
def
= α+ iβ with real α, β, then separating real

and imaginary parts, we obtain

(4.12)

 θα2 + (µ2 − µ1)α−
(
θβ2 + (σ2 − ρ)xβ +

σ2
2
x2
)
= 0,

β(2θα+ µ2 − µ1) + x
(
α(σ2 − ρ) + µ2

)
= 0.

Then one checks that the first equation of (4.12), viewed as a polynomial in α, has two

real roots with opposite sign. Indeed, the quadratic polynomial in β

θβ2 + (σ2 − ρ)xβ +
σ2
2
x2

is always positive, due to the ellipticity condition.

The second property of (4.8) is a direct application of the maximum modulus principle

applied to the function expP (q). More precisely, we look at the function expP (q) on

the domain C \ ((−∞, q1] ∪ [q2,∞)). Using the first property of (4.8), we deduce that

for some values of q, one has

(4.13)
∣∣expP1(q)

∣∣ ⩽ ∣∣expP2(q)
∣∣.
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Figure 4.1. Illustration of Lemma 4.1 in the case where µ1 > µ2: curves

{P u
1 (ix) : x ∈ R} and {P u

2 (ix) : x ∈ R} in red; curves {P v
1 (ix) : x ∈ R}

and {P v
2 (ix) : x ∈ R} in blue; hyperbolas Hu and Hv in dark green and

light green respectively. Playing with the parameters is possible thanks

to the following GeoGebra animation www.geogebra.org/m/phvjk35w

On the other hand, on the cut q ∈ (−∞, q1] ∪ [q2,∞), the branches P1(q) and P2(q) are

complex conjugate and thus
∣∣expP1(q)

∣∣ = ∣∣expP2(q)
∣∣. Since the cut is the boundary of

the cut plane, the maximum modulus principle entails that the inequality (4.13) holds

true globally on C.
The analytic expression (4.9) of the hyperbola follows from direct computations, see

Lemma 5.8 and its proof for similar computations.

We note the pleasant symmetry of (4.7) with respect to the parameters. This is

mainly due to the change of parameters from (x, y) to (p, q). As it will emerge later,

that symmetry plays an important role in our analysis. The proof of the lemma is

complete. ■

Quite analogous properties hold for Qu
i (p) and Qv

i (p), but now the branch points

depend on the kernel. They are partially listed in the next lemma, where the equations

of the hyperbolas are omitted.

Lemma 4.2. The functions Qu
1(p) and Qu

2(p) are analytic in the complex plane cut along

(−∞, pu1 ] ∪ [pu2 ,∞), where the branch points pu1 < 0 and pu2 > 0 are the real roots of the

https://www.geogebra.org/m/phvjk35w
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equation

(4.14) (ρ2 − σ1σ2)p
2 + 2(σ2µ1 − ρµ2)p+ µ2

2 = 0.

The branches Qu
1 and Qu

2 are separated and satisfy

(4.15)


ℜ(Qu

1(ix)) ⩽ 0 ⩽ ℜ(Qu
2(ix)), ∀x ∈ R,

ℜ(Qu
1(p)) ⩽ ℜ(Qu

2(p)), ∀p ∈ C,

Qu
1(0) = min

{
0,

−2µ2

σ2

}
, Qu

2(0) = max

{
0,

−2µ2

σ2

}
.

They map the cut (−∞, pu1 ] (resp. [p
u
2 ,∞)) onto the right branch Ku

+ (resp. the left branch

Ku
−) of the hyperbola Ku.

Similarly, the functions Qv
1(p) and Qv

2(p) are analytic in the complex plane cut along

(−∞, pv1] ∪ [pv2,∞), where the branch points pv1 < 0 and pv2 > 0 are the real roots of the

equation

(4.16) (ρ2 − σ1σ2)p
2 + 2(σ1µ2 − ρµ1)p+ µ2

1 = 0.

The branches Qv
1 and Qv

2 are separated and satisfy

(4.17)


ℜ(Qv

1(ix)) ⩽ 0 ⩽ ℜ(Qv
2(ix)), ∀x ∈ R,

ℜ(Qv
1(p)) ⩽ ℜ(Qv

2(p)), ∀p ∈ C,

Qv
1(0) = min

{
0,

−2µ1

σ1

}
, Qv

2(0) = max

{
0,

−2µ1

σ1

}
.

They map the cut (−∞, pv1] (resp. [p
v
2,∞)) onto the right branch Kv

+ (resp. the left branch

Kv
−) of the hyperbola Kv.

It is worth remarking at once that, by using (4.3), (4.4) and Lemma 4.1, one can set

two boundary value problems for the couple of functions [ℓ1(p), ℓ2(p)] on the respective

hyperbolas Hu
+ and Hv

+.

4.3. Meromorphic continuation to the complex plane. The method relies on an iterative

algorithm, as in [11, Chap. 10], and the following theorem holds. Below and throughout,

if H± denotes a branch of hyperbola as on Figure 4.1, H±,int will represent the left

connected component of C \ H±.
Theorem 4.3. The functions m, n, ℓ1 and ℓ2 can be continued as meromorphic functions

to the whole complex plane cut along proper positive real half-lines in their respective

planes. The number of poles is finite, and the possible poles of m and n inside the

domain Ku
−,int

⋃
Hv
−,int coincide.
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4.4. Reduction to a vectorial Hilbert boundary value problem. For all q ∈ (−∞, q1],

Equations (4.3) and (4.4) yield the linear systemA(P u
1 (q), q)m(q) + θn(q) + C(P u

1 (q), q)ℓ1(P
u
1 (q)) + E = 0,

B(P v
1 (q), q)m(q)− θn(q) +D(P v

1 (q), q)ℓ2(P
v
1 (q))− E = 0,

which in turn gives

(4.18)
m(q) =

C(P u
1 (q), q)ℓ1(P

u
1 (q)) +D(P v

1 (q), q)ℓ2(P
v
1 (q))

∆(q)
,

n(q) =
B(P v

1 (q), q)C(P u
1 (q), q)ℓ1(P

u
1 (q))−A(P u

1 (q), q)D(P v
1 (q), q)ℓ2(P

v
1 (q))

θ∆(q)
− E

θ
,

where

(4.19) ∆(q)
def
= −

(
A(P u

1 (q), q) +B(P v
1 (q), q)

)
= −θ

(
q + P u

1 (q) + P v
1 (q)

)
.

Now, by using the continuity of the left-hand side of the system (4.18) when q traverses

the cut (−∞, q1], we can set a two-dimensional homogeneous Hilbert boundary value

problem for the vector [ℓ1, ℓ2]. More precisely, we first deduce from (4.18) the two

following relations, which hold for all q ∈ (−∞, q1]:

(4.20)
C(P u

1 (q), q)ℓ1(P
u
1 (q)) +D(P v

1 (q), q)ℓ2(P
v
1 (q))

∆(q)
=

C(P u
1 (q), q)ℓ1(P

u
1 (q)) +D(P v

1 (q), q)ℓ2(P
v
1 (q))

∆(q)
,

and

(4.21)
C(P u

1 (q), q)B(P v
1 (q), q)ℓ1(P

u
1 (q))−A(P u

1 (q), q)D(P v
1 (q), q)ℓ2(P

v
1 (q))

∆(q)

=
B(P v

1 (q), q)C(P u
1 (q), q)ℓ1(P

u
1 (q))−A(P u

1 (q), q)D(P v
1 (q), q)ℓ2(P

v
1 (q))

∆(q)
.

Introducing the vector L(q)
def
= [ℓ1(P

u
1 (q)), ℓ2(P

v
1 (q))] and the 2× 2-matrix

(4.22) G(q)
def
=

1

∆(q)


−γ̄(α+ β̄)

γ

δ̄(ᾱ− α)

γ
γ̄(β̄ − β)

δ

−δ̄(β + ᾱ)

δ

 ,

with

(4.23) α = A(P u
1 (q), q), β = B(P v

1 (q), q), γ = C(P u
1 (q), q), δ = D(P v

1 (q), q),

the system (4.20)–(4.21) immediately yields the following result:



REFLECTED BROWNIAN MOTION IN A NON-CONVEX WEDGE 16

Theorem 4.4. We have

L+(q) = G(q)L−(q), ∀q ∈ (−∞, q1],

where L+(q) (resp. L−(q)) is the limit of L(q) when q reaches the cut from below (resp.

from above) in the complex plane.

Remark 4.5. With the notation (4.23), the determinant of the matrix in (4.22) can be

rewritten as
γδ

γδ

α+ β

α+ β
.

Its modulus is one, and it is interesting to ask whether this fact could be anticipated.

Let us denote by ωu the conformal mapping of Hu
+,int onto the unit disk D. Then ωu

is analytic in Hu
+,int, its inverse function ω−1u is analytic in D, and we have

|ωu(p)| = 1, ∀p ∈ Hu
+.

Actually, ωu has a known explicit form (see, e.g., Chapter 6 in [29]). Moreover, by

symmetry, one can choose ωu(p) = ωu(p), ∀p ∈ Hu
+, so that

ωu(p) =
1

ωu(p)
.

In other words, for |z| = 1, we have z = 1/z and p = ω−1u (1/z). Similar definitions hold

by exchanging the roles of u and v.

Then, setting

Φ+(z)
def
= [ℓ1(ω

−1
u (z)), ℓ2(ω

−1
v (z))], ∀z ∈ D,

and

Φ−(z)
def
= Φ+(1/z), ∀|z| > 1,

we obtain the boundary condition

(4.24) Φ+(z) = H(z)Φ−(z), ∀|z| = 1,

where H(z) is the 2× 2 matrix directly derived from G(q), given in (4.22), by using the

functions ωu(p) and ωv(p). The problem can now be formulated as follows:

Find a sectionally meromorphic vector Φ(z), constant at infinity, equal

to Φ+(z) (resp. Φ−(z)) for z ∈ D (resp. for z /∈ D), and which satisfies

the boundary condition (4.24).

4.5. On the solvability of the vectorial boundary value problem (4.24). It is natural to

ask whether the boundary value problem (4.24) may be solved in closed form. As a

matter of comparison, scalar (i.e., one-dimensional) boundary value problems may be

solved in terms of contour integrals, involving conformal mappings or uniformization

techniques. This is the situation encountered in the convex case [1, 17] as well as in

the non-convex symmetric case, as shown in the following Section 5. However, vectorial

boundary value problems are in general hardly solvable in closed form [27, 37, 12].
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Here, after eliminating the possible poles of Φ inside the unit disk, the solution to

(4.24) is shown to be directly connected with the Fredholm integral equation (see, e.g.,

[27, 37])

(4.25) Φ−(z0)−
1

2π

∫
|z|=1

H−1(z0)H(z)− I
z − z0

Φ−(z)dz = Φ−(∞),

where I stands for the identity matrix. Since all elements of the matrix H(z) are

explicitly known, we can express the formal solution of the BVP (4.24) as a convergent

matrix power series from (4.25).

Let us do three additional remarks.

• To the best of our knowledge, the only asymmetric case which admits a density

in closed form is the one mentioned at the end of the introduction, with explicit

formula (1.1), see Figure 1.4. This example, which works for any opening angle

β ∈ (0, 2π), is not obtained as a consequence of the vectorial problem (4.24), but

rather from an analogy with the convex case studied in [3]. However, by a direct

(but tedious) algebra, it can be checked a posteriori that the vectorial boundary

value problem (4.24) is satisfied by the solution (1.1).

• The solvability of (4.24) should be strongly related to potential nice factorizations

of the matrix H(z). For example, in case the matrix H(z) could be written as

the product of matrices Ψ+(z)−1Ψ−(z), with Ψ sectionally meromorphic on the

complex plane cut along the unit circle, then (4.24) could be rewritten as the

homogeneous problem (ΨΦ)+(z) = (ΨΦ)−(z), which is solvable. Finding such

factorizations appears as a kind of vectorial Tutte’s invariant method, in the

terminology of [16, 3].

• In the symmetric case, the vectorial problem becomes solvable, as we will see

in the next Section 5. On the other hand, in the non-symmetric case, our work

appeals further developments. In this respect, an interesting intermediate semi-

symmetrical situation takes place when µ1 = µ2, σ1 = σ2, but r1 ̸= r2, which

should lead to some reasonably explicit results.

5. The symmetric case

When the model is symmetric, we shall put

µ
def
= µ1 = µ2, σ

def
= σ1 = σ2 and r

def
= r1 = r2.

The invariant measure is symmetric w.r.t. the diagonal z1 = z2. Consequently, we have

π(z1, z2) = π(z2, z1), which yields n(x+ y) = 0, see (3.2).

5.1. Reformulation as a reflected Brownian motion in a 3/8 plane. Let Ẑt be the reflected

process of Zt along the diagonal defined by

Ẑt
def
= (Ẑ1

t , Ẑ
2
t )

def
=

1

2
(Z1

t +Z2
t −|Z2

t −Z1
t |, Z1

t +Z2
t + |Z2

t −Z1
t |) =

{
(Z1

t , Z
2
t ) if Zt ∈ S1,

(Z2
t , Z

1
t ) if Zt ∈ S2.
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Figure 5.1. In the symmetric case, Brownian motion in a three-quarter

plane can be reduced to a more standard reflected Brownian motion in

a convex cone. More precisely, its projection in S1 defines a Brownian

motion Ẑ in a wedge of opening 3π/8. The left picture above represents

the drift and reflection vectors of Z̃, to be studied in Section 5.1. After a

first change of variables, it becomes a Brownian motion Z̃ in the quarter

plane, as studied in Section 5.2, see the middle picture. On the right,

the model is mapped to a β/2-cone through a linear transform, so as to

admit an identity covariance matrix: this last model will be denoted by

TZ̃, see Section 5.7.

As the following result will establish, the process Ẑt is a standard reflected Brownian

motion in the convex cone S1, with reflection vector (r, 1) on the horizontal axis and

an orthogonal reflection on the diagonal, see Figure 5.1 (left). We also provide a

semimartingale decomposition of this reflected process.

Lemma 5.1. In the symmetrical case, we have{
Ẑ1
t = Ẑ1

0 + Ŵ 1
t + µt+ rL̂1

t − 1
2 L̂

2
t ,

Ẑ2
t = Ẑ2

0 + Ŵ 2
t + µt+ L̂1

t +
1
2 L̂

2
t ,

where Ŵt is a Brownian motion with the same covariance matrix as Wt, L̂
2
t is the local

time of Ẑt on the diagonal, and L̂1
t = L1

t + L2
t is the local time of Ẑt on the horizontal

axis. We deduce that Ẑ is a reflected Brownian motion in a 3/8-plane, with reflection

vector (r, 1) on the horizontal axis and an orthogonal reflection on the diagonal.

Proof. By (2.2), we have

Z2
t − Z1

t = Z2
0 − Z1

0 +W 2
t −W 1

t + (r − 1)(L2
t − L1

t ).

We apply Itô-Tanaka formula (see Theorem 1.5 in [33, Chap. VI §1]) to the continuous

semimartingale Z2
t − Z1

t and to the absolute value | · |. We obtain

|Z2
t − Z1

t | = Z2
0 − Z1

0 +

∫ t

0
sgn(Z2

t − Z1
t )(dW

2
t − dW 1

t )

+ (r − 1)

∫ t

0
sgn(Z2

t − Z1
t )(dL

2
t − dL1

t ) + L̂2
t
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= Z2
0 − Z1

0 +

∫ t

0
sgn(Z2

t − Z1
t )(dW

2
t − dW 1

t ) + (1− r)(L1
t + L2

t ) + L̂2
t ,

as L1
t increases only when (Z2

t < 0, Z1
t = 0) and L2

t increases only when (Z1
t < 0, Z2

t = 0).

Let us recall that, by definition, L̂1
t = L1

t + L2
t . By (2.2), we have

Z1
t + Z2

t = Z1
0 + Z2

0 +W 1
t +W 2

t + 2µt+ (r + 1)(L1
t + L2

t ).

Then, we directly obtain{
Ẑ1
t = 1

2(Z
1
t + Z2

t − |Z2
t − Z1

t |) = Ẑ1
0 + Ŵ 1

t + µt+ rL̂1
t − 1

2 L̂
2
t ,

Ẑ2
t = 1

2(Z
1
t + Z2

t + |Z2
t − Z1

t |) = Ẑ2
0 + Ŵ 2

t + µt+ L̂1
t +

1
2 L̂

2
t ,

where we defined
Ŵ 1

t
def
=

∫ t

0

1 + sgn(Z2
t − Z1

t )

2
dW 1

t +

∫ t

0

1− sgn(Z2
t − Z1

t )

2
dW 2

t ,

Ŵ 2
t

def
=

∫ t

0

1− sgn(Z2
t − Z1

t )

2
dW 1

t +

∫ t

0

1 + sgn(Z2
t − Z1

t )

2
dW 2

t .

We easily verify that the associated quadratic variations satisfy ⟨Ŵ 1⟩t = ⟨W 1⟩t = σ1t,

⟨Ŵ 2⟩t = ⟨W 2⟩t = σ2t and ⟨Ŵ 1, Ŵ 2⟩t = ⟨W 1,W 2⟩t = ρt and we conclude by Lévy’s

characterization theorem, see Theorem 3.6 in [33, Chap. IV §3 p150]. ■

The reflected process Ẑ is also recurrent and we denote π̂ its stationary distribution.

Proposition 5.2. For all measurable sets A ⊂ S1, we have π(A) = 1
2 π̂(A).

Proof. Let A ⊂ S1 and Â ∈ S2 be the symmetric set with respect to the first diagonal.

In the symmetric case, we have π(A) = π(Â). By the ergodic properties of an invariant

measure we have π(A) = limt→∞ P[Zt ∈ A]. Then

π(A) =
1

2
(π(A) + π(Â))

=
1

2
lim
t→∞

(
P[Zt ∈ A] + P[Zt ∈ Â]

)
=

1

2
lim
t→∞

P[Ẑt ∈ A]

=
1

2
π̂(A). ■

5.2. Reformulation as a reflected Brownian motion in a quarter plane. We now perform

a change of variables to obtain a new process Z̃t in the positive quarter plane, defined

by

Z̃t
def
= (−Ẑ1

t + Ẑ2
t , Ẑ

2
t ),

see Figure 5.1. This reformulation at hand, we will be able to use the numerous results

in the literature on reflected Brownian motion in a quadrant. Let us emphasize here that

our drift is vertical (as shown below), while most of the existing results actually assume

that the drift is either zero or oblique (with two non-zero coordinates). Accordingly,

some attention is needed when applying directly previous results.
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Proposition 5.3. The process Z̃t satisfies{
Z̃1
t = Z̃1

0 + W̃ 1
t + (1− r)L̂1

t + L̂2
t ,

Z̃2
t = Z̃2

0 + W̃ 2
t + µt+ L̂1

t +
1
2 L̂

2
t ,

where W̃ is a Brownian motion with covariance matrix

Σ̃
def
=

(
σ̃1 ρ̃

ρ̃ σ̃2

)
=

(
2(σ − ρ) (σ − ρ)

(σ − ρ) σ

)
,

while L̂1
t is the local time of the process on the horizontal axis and L̂2

t is the local time on

the vertical axis. Thus Z̃t is a reflected Brownian motion in the quadrant R2
+ with drift

(0, µ), covariance matrix Σ̃ and reflections (r̃1, 1)
def
= (1− r, 1) and (1, r̃2)

def
= (1, 1/2).

Proof. By Lemma 5.1, we have{
Ẑ1
t = Ẑ1

0 + Ŵ 1
t + µt+ rL̂1

t − 1
2 L̂

2
t ,

Ẑ2
t = Ẑ2

0 + Ŵ 2
t + µt+ L̂1

t +
1
2 L̂

2
t ,

where Ŵt is a Brownian motion with the same covariance matrix as Wt, L̂
2
t is the local

time of Ẑt on the diagonal and L̂1
t = L1

t + L2
t is the local time of Ẑt on the horizontal

axis. Then we have{
Z̃1
t = −Ẑ1

0 + Ẑ2
0 − Ŵ 1

t + Ŵ 2
t + (1− r)L̂1

t + L̂2
t ,

Z̃2
t = Ẑ2

0 + Ŵ 2
t + µt+ L̂1

t +
1
2 L̂

2
t .

The covariance matrix of the Brownian motion W̃t
def
= (−Ŵ 1

t + Ŵ 2
t , Ŵ

2
t ) is(

σ̃1 ρ̃

ρ̃ σ̃2

)
=

(
2(σ − ρ) (σ − ρ)

(σ − ρ) σ

)
. ■

Let L̂1(x, y) be the Laplace transform of 1
2 π̂ and L̃1(p, q) be the Laplace transform

of 1
2 π̃, where π̃ is the stationary distribution of Z̃. Let finally L1(x, y) be the Laplace

transform as in (3.1).

Lemma 5.4. For (p, q) = (−x, x+ y), the various Laplace transforms satisfy

L1(x, y) = L̂1(x, y) = L̃1(−x, x+ y) = L̃1(p, q).

Proof. Proposition 5.2 implies that L1(x, y) = L̂1(x, y). Using that Z̃t = (−Ẑ1
t +Ẑ2

t , Ẑ
2
t ),

a simple change of variables in the Laplace transform yields L̂1(x, y) = L̃1(−x, x+y). ■

5.3. Functional equations. We now state a functional equation, which characterizes the

Laplace transform L̃1(p, q).

Proposition 5.5. In the symmetrical case, the following functional equation holds:

(5.1) U(p, q)L̃1(p, q) + C(p, q)ℓ1(p) +A(p, q)m(q) = 0,
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where

(5.2)


U(p, q) = (σ − ρ)p2 + (σ − ρ)qp+

σq2

2
+ µq,

C(p, q) = (1− r)p+ q,

A(p, q) = (σ − ρ)(p+ 1
2q).

As a consequence of Proposition 5.5, the Laplace transform L̃1(p, q) may be computed

along the same way as in [17] (contour integral expressions) or [3] (hypergeometric

expressions). Interestingly, this functional equation may be obtained by two different

techniques:

1. We can use the functional equation (4.3) already obtained in the general (a priori

non-symmetric) case and apply it to the symmetric case, using Lemma 5.4.

2. We can also use Proposition 5.3, which says that Z̃ is a reflected Brownian motion

in a quadrant and use the functional equation already known in the bibliography

[5, Eq. (2.3)] and [17, Eq. (5)].

We present both proofs below.

Proof 1 (of Proposition 5.5). In the symmetric case, the main functional equation (see

Proposition 3.1) takes the simpler form

(5.3) K(x, y)L1(x, y) + k(x, y)m(x+ y) + k1(x, y)ℓ1(x) = 0,

where

K(x, y) =
1

2
(σx2 + 2ρxy + σy2) + µ(x+ y),

and

k(x, y) =
1

2
(σ − ρ)(−x+ y) and k1(x, y) = rx+ y.

As in Section 4.2, we introduce the new variables

p = −x and q = x+ y.

Keeping the same names for the unknown functions, we get from (5.3) and (4.3)

U(p, q)L1(p, q) + C(p, q)ℓ1(p) +A(p, q)m(q) = 0,

where, by using (4.5), we obtain the value of U , C and A given in (5.2). ■

Proof 2 (of Proposition 5.5). By Proposition 5.3, the process Z̃ is a reflected Brownian

motion in a quadrant. We denote by ν̃ the density of the boundary invariant measure

of Z̃ on the vertical axis, which is defined by

ν̃(x)dx = EΠ

∫ 1

0
1dx×{0}(Z̃s)dL̂

2
s.

Now recall from [3, §2.2] that we have

ν̃(x) = (σ − ρ)π̃(0, x) = 2(σ − ρ)π(x, x).
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It follows that the Laplace transform of ν̃ is equal to 2(σ − ρ)m(q). It remains to use

the well-known functional equation for a reflected Brownian motion in a quadrant, see,

e.g., [5, Eq. (2.3)] and [17, Eq. (5)]. Thus, we obtain the functional equation (5.3). ■

5.4. The roots of the kernel U(p, q). The formulas of Lemmas 4.1 and 4.2 are simplified

in a pleasant way.

Lemma 5.6. The function U(p, q) in (5.1), viewed as a polynomial in the variable q, has

two roots Q1(p) and Q2(p), which are the branches of a two-sheeted covering over the

p-plane. They are analytic in the whole complex plane cut along (−∞, p1]∪ [p2,∞), with

(5.4) p1 =
µ
(
σ − ρ+

√
2σ(σ − ρ)

)
σ2 − ρ2

< 0 < p2 =
µ
(
σ − ρ−

√
2σ(σ − ρ)

)
σ2 − ρ2

.

The branches Q1(p) and Q2(p) are separated (except on the cut) and they satisfy

(5.5)

ℜ(Q1(ix)) ⩽ 0 ⩽ ℜ(Q2(ix)), ∀x ∈ R,

ℜ(Q1(p)) ⩽ ℜ(Q2(p)), ∀p ∈ C.

Proof. The last property of (5.5) is a direct application of the maximum modulus

principle to the function expQ(p). The proof of the lemma is complete. ■

Mutatis mutandis, the following lemma holds, with the convenient notation.

Lemma 5.7. The function V (p, q), viewed as a polynomial in the variable p, has two

roots P1(q) and P2(q), which are the branches of a two-sheeted covering over the q-plane.

They are analytic in the whole complex plane cut along (−∞, q1] ∪ [q2,∞), with

(5.6) q1 = 0 < q2 = − 4µ

σ + ρ
.

They are separated and satisfy

(5.7)

ℜ(P1(ix)) ⩽ 0 ⩽ ℜ(P2(ix)), ∀x ∈ R,

ℜ(P1(p)) ⩽ ℜ(P2(p)), ∀p ∈ C.

With the above definitions, when µ < 0,

P1(0) = P2(0) = 0 and Q1(0) = 0.

Our goal is to set a boundary value problem (BVP) for either of the functions m(q) or

ℓ1(p) on an adequate hyperbola.

5.5. The hyperbolas. The following lemma is an immediate application of the results of

Lemma 4.1.

Lemma 5.8. The functions Q1 and Q2 map the cut (−∞, p1] (resp. [p2,∞)) onto the

right branch H+
q (resp. the left branch H−q ) of the hyperbola Hq

(5.8) (σ + ρ)x2 − (σ − ρ)y2 + 4µx+
2µ2

σ
= 0,
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rewritten in the canonical form (since σ > |ρ|) as

(5.9)

(
x+

2µ

σ + ρ

)2

−
(
σ − ρ

σ + ρ

)
y2 =

2µ2(σ − ρ)

σ(σ + ρ)2
.

Similarly, P1 and P2 map the cut (−∞, q1] (resp. [q2,∞)) onto the right branch H+
p

(resp. the left branch H−p ) of the hyperbola Hp

(5.10)

(
x− µ

σ + ρ

)2

−
(
σ − ρ

σ + ρ

)
y2 =

(
µ

σ + ρ

)2

,

which goes through the point (0, 0).

Proof. On the cuts [p1,∞) and (−∞, p2], the quantities Q1(p) and Q2(p) take complex

conjugate values of the form x± iy, where

Q1(p) +Q2(p) =
−2[µ+ (σ − ρ)p]

σ
= 2x,

Q1(p)Q2(p) =
2(σ − ρ)p2

σ
= x2 + y2.

Equations (5.8) and (5.9) follow immediately, and (5.10) is obtained in an entirely similar

way. ■

5.6. Analytic continuation and BVP. For any arbitrary simple closed curve U , GU (resp.

Gc
U ) will denote the interior (resp. exterior) domain bounded by U , i.e., the domain

remaining on the left-hand side when U is traversed in the positive (counterclockwise)

direction. This definition remains valid for the case when U is unbounded but closable

at infinity. For instance, GH+
q
(resp. Gc

H+
q
) is the region situated to the right (resp. to

the left) of the branch H+
q of the hyperbola Hq.

Corollary 5.9.

1. GH−
p
\ [−∞, p1]

Q2(p)−−−−−→←−−−−−
P1(q)

GH+
q
\ [q2,+∞] and the mappings are conformal.

2. The values of Q1 belong to Gc
H+

q
.

3. The values of Q2 belong to Gc
H−

q
.

Moreover, the following automorphy relationships hold:

P1 ◦Q1(p) =

{
p, if p ∈ Gc

H+
p
,

̸= p, if p ∈ GH+
p
.

Then P1 ◦Q1(G
c
H+

p
) = Gc

H+
p

P2 ◦Q1(p) =

{
p, if p ∈ GH+

p
,

̸= p, if p ∈ Gc
H+

p
.

Then P2 ◦Q1(GH+
p
) = GH+

p
.

P1 ◦Q2(p) =

{
p, if p ∈ GH−

p
,

̸= p, if p ∈ Gc
H−

p
.

Then P1 ◦Q2(GH−
p
) = GH−

p
.
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P2 ◦Q2(p) =

{
p, if p ∈ Gc

H−
p
,

̸= p if p ∈ GH−
p
.

Then P2 ◦Q2(G
c
H−

p
) = Gc

H−
p

Proof. The arguments are analogous to those presented in [11, Chap. 5 and Chap. 6].

Assertion 1 is immediate. As for assertions 2 and 3, they follow mainly from the

maximum modulus principle applied to the functions Q1(p) and Q2(p) respectively.

The automorphy relationships can be checked up to some tedious calculus (omitted).

They also can be verified by using the following GeoGebra numerical animation

https://www.geogebra.org/m/phvjk35w ■

Letting q tend successively to the upper and lower edge of the slit (−∞, q1], and using

the fact that m(q) is analytic in the left half-plane {ℜ(q) ≤ 0}, we eliminate m(q) from

(5.1) to get

(5.11) ℓ1(P1(q))F (P1(q), q)− ℓ1(P2(q))F (P2(q), q) = 0, for q ∈ (−∞, q1],

where

F (p, q) =
C(p, q)

A(p, q)
.

Then the determination of ℓ1(p), meromorphic in the domain Gc
H+

p
, is equivalent to

solving a BVP of Riemann-Hilbert-Carleman type, on the contour H+
p in the complex

plane, as originally proposed in [10]. More precisely, by using the first two properties of

Corollary 5.9, and remembering that on the cut (−∞, q1], P1(q) = P2(q), this BVP takes

the following form:

(5.12) ℓ1(p)K(p)− ℓ1(p)K(p) = 0, p ∈ H+
p ,

where K(p) = F (p,Q1(p)), and ℓ1 is sought to be meromorphic inside Gc
H+

p
, its poles

being the possible zeros of C(p,Q1(p)) in the region Gc
H+

p
∩ {ℜ(p) > 0}.

Interestingly, Corollary 5.9 allows to carry out the analytic continuation of the

functions ℓ1(p) and m(q), satisfying equation (5.1).

Theorem 5.10. The functional equation

(5.13) ℓ1(p)F (p,Q1(p))− ℓ1(P2 ◦Q1(p))F (P2 ◦Q1(p), Q1(p)) = 0

is valid for all p ∈ C and provides the analytic continuation of ℓ1 as a meromorphic

function (the number of poles being finite) to the whole complex plane cut along [p2,∞).

Proof. It is a direct consequence of the automorphy properties given in Corollary 5.9.

Indeed, it suffices in equation (5.11) to let q quit the cut (−∞, q1], while remaining in

H−q . Then to this q corresponds a point p ∈ Gc
H+

q
satisfying P1 ◦Q1(p) = p, which leads

to equation (5.13). ■

https://www.geogebra.org/m/phvjk35w
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5.7. Reformulation as a reflected Brownian motion in a β-cone. Let β be the angle in

(π, 2π) such that cosβ = −ρ/σ, that is

β = 2π − arccos(−ρ/σ) ∈ (π, 2π).

The simple linear mapping

T
def
=

1√
σ

(
1

sinβ cotβ

0 1

)
given in the appendix of [17] transforms the reflected Brownian motion Z of covariance

matrix Σ in the three-quarter plane into a Brownian motion in a non-convex cone of

angle β, with identity covariance matrix and with two equal reflection angles δ such that

(5.14) tan δ =
sinβ

r + cosβ
.

Proposition 5.11. The process TZ̃ is a reflected Brownian motion in a cone of angle β/2

and reflection angle ε = π/2 and δ ∈ (0, π) defined in (5.14), see Figure 5.1.

Proof. The Brownian motion Z̃ has the covariance matrix(
σ̃1 ρ̃

ρ̃ σ̃2

)
=

(
2(σ − ρ) (σ − ρ)

(σ − ρ) σ

)
,

see Proposition (5.3). Let

β̃ = arccos

(
− ρ̃√

σ̃1σ̃2

)
= arccos

(
−
√

1

2

(
1− ρ

σ

))
the angle associated to the new kernel U . In particular, β̃ ∈ (π2 , π), and we have

cos2 β̃ =
1 + cosβ

2
,

whence

cosβ = cos 2β̃ and β = 2β̃,

see also [35, Lem. 10] and [28]. Then the new reflection matrix is equal to(
1 r̃2
r̃1 1

)
def
=

(
1 1− r

1/2 1

)
.

Performing the same change of variables as in the appendix of [17], this equation

amounts to studying a Brownian motion in a wedge of angle β̃, identity covariance

matrix and reflection angles

tan ε =
sin β̃

r̃1
√

σ̃1/σ̃2 + cos β̃
and tan δ =

sin β̃

r̃2
√

σ̃2/σ̃1 + cos β̃
.

Then we get

■(5.15) tan ε = ∞, i.e., ε = π/2 and tan δ =
2 cos β̃ sin β̃

r − 1 + 2 cos2 β̃
=

sinβ

r + cosβ
.
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5.8. Algebraic nature of the Laplace transform. For reflected Brownian motion in a

quadrant, the work [3] proposes an exhaustive classification of the parameters (drift,

opening of the cone and reflection angles), allowing to decide which of the following

classes of functions the associated Laplace transform L̃1(p, q) belongs to:

(C1) Rational

(C2) Algebraic

(C3) D-finite (D for Differentially) (by this, we mean that the Laplace transform

satisfies two linear differential equations with coefficients in R(p, q), one in p and

one in q)

(C4) D-algebraic (that is, when it satisfies a polynomial differential equation in p, and

another in q)

(C5) D-transcendental (when it is non-D-algebraic)

Notice that the classes (C1) to (C4) define a hierarchy, in the sense that

(C1) ⊂ (C2) ⊂ (C3) ⊂ (C4).

A more probabilistic description of the models having a Laplace transform in the class

(C1) above is as follows:

• The skew symmetric condition: ε + δ = π, which is a necessary and sufficient

condition for the stationary distribution to be exponential, see [22].

• The Dieker and Moriarty [7] criterion: ε + δ − π ∈ −βN, which is a necessary

and sufficient condition for the stationary distribution to be a sum of exponential

terms.

Accordingly, we may transfer the classification of [3] to our symmetric Brownian

motion in a three-quarter plane, via its projection in the domain S1 and its quadrant

description Z̃. Then the following proposion holds.

Proposition 5.12. The Laplace transform of the reflected Brownian motion in the quarter

plane Z̃ is never rational (class (C1)). However, there exist values of parameters such

that L̃ is D-algebraic, D-finite or algebraic.

Before proving Proposition 5.12, let us do some remarks:

• As a consequence, there is no skew symmetry in the three-quarter plane (nor

Dieker and Moriarty condition). From this point of view, Brownian motion in

non-convex cones is deeply different from Brownian motion in convex cones.

• The above feature (absence of skew symmetry) admits a clear interpretation in

terms of the growth of exponential functions in R2. Indeed, for (a, b) ̸= (0, 0), an

exponential function

(5.16) (p, q) 7→ exp(−ap− bq)

tends to infinity in half of the directions of R2, so such an exponential function

(and any finite linear combination of exponential functions as well) will never be

integrable on a non-convex domain. As a direct consequence, it cannot represent

any stationary distribution.
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• The example presented in Figure 1.4 (see (1.1)) has an algebraic Laplace

transform, as computed in [3]. It appears as the simplest example which one

may construct in a non-convex wedge.

Proof of Proposition 5.12. The skew symmetric condition is

2ρ̃ = r̃1σ̃1 + r̃2σ̃2,

or

σ − ρ = (1/2)(σ − ρ) + (1− r)σ/2,

which yields r = ρ/σ < 1. Hence, as the recurrence conditions imply r > 1, we can

conclude that the skew symmetric case is not possible. More generally the Dieker and

Moriarty condition

ε+ δ − π ∈ −Nβ̃

cannot hold, because ε + δ − π = δ − π/2 > 0. However, there exist some parameters

such that

π/2 + δ ∈ β̃Z + πZ,

which is exactly condition [3] to admit a D-algebraic Laplace transform. ■

5.9. Line of steepest descent of π. In the symmetric case, we remarked that the Laplace

transform of the normal derivative of π along the diagonal is zero and then n(x, y) = 0,

see (3.2). Thus we may formulate the following question, in the non-symmetric case: does

there also exist a line (not necessarily the diagonal) along which the normal derivative

of π is zero?

Let us consider the steepest descent line of π starting from (0, 0). In other words,

we consider that π is a potential and we are looking to the field line of grad π passing

through (0, 0). This defines the curve

C = {(z1(t), z2(t)) : t ∈ R+},

where (z1(0), z2(0)) = (0, 0) and
z′1(t) =

∂π

∂z1
(z1(t), z2(t)),

z′2(t) =
∂π

∂z2
(z1(t), z2(t)).

If we divide the three-quarter plane along this line, we obtain a functional equation with

only two unknown functions. We focus on a few examples where the curve C is a simple

half-line:

• In the symmetric case studied in Section 5, the curve C is simply the first diagonal.

• In the special case of Figure 1.4, the curve C is the half-line starting from the

origin and following the direction of the drift.

• In the quadrant, when the skew symmetric condition is satisfied, the stationary

distribution has an exponential density of the form (5.16) (up to a normalization

constant), and the curve C is also a half-line of direction −(a, b).
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Appendix A. Proof of Proposition 3.1

Proof. Let us introduce the three following sets

Sε
1

def
= {(z1, z2) : z2 > z1 + ε/

√
2 and z2 ⩾ 0},

Sε
2

def
= {(z1, z2) : z1 > z2 + ε/

√
2 and z1 ⩾ 0}

and S̃ε def
= S \ (Sε

1 ∪ Sε
2). Then, we define the function Iε such that

(A.1) Iε(z1, z2)
def
=


1 if z ∈ Sε

1,
z2−z1√

2ε
+ 1

2 if z ∈ S̃ε,

0 if z ∈ Sε
2.

From now on, we will often omit to note the variables (z1, z2). We have

∇Iε =

(
∂Iε
∂z1

,
∂Iε
∂z2

)
=

 (0, 0) if z ∈ Sε
1 ∪ Sε

2,(
−1√
2ε
, 1√

2ε

)
if z ∈ S̃ε,

and, for all z ∈ S,

(A.2)
∂2Iε
∂z21

=
∂2Iε
∂z22

= − ∂2Iε
∂z1∂z2

=
1√
2ε

(
δε/
√
2(z1 − z2)− δ−ε/

√
2(z1 − z2)

)
,

where δa is the Dirac distribution at a. For the sake of brevity, we write

I ′ε
def
=

∂Iε
∂z2

= −∂Iε
∂z1

and I ′′ε
def
=

∂2Iε
∂z21

=
∂2Iε
∂z22

= − ∂2Iε
∂z1∂z2

.

Let us take fε
def
= exz1+yz2Iε. Its first and second derivatives are equal to

∂fε
∂z1

=

(
xIε +

∂Iε
∂z1

)
exz1+yz2 ,

∂fε
∂z2

=

(
yIε +

∂Iε
∂z2

)
exz1+yz2 ,

∂2fε
∂z21

=

(
x2Iε + 2x

∂Iε
∂z1

+
∂2Iε
∂z21

)
exz1+yz2 ,

∂2fε
∂z22

=

(
y2Iε + 2y

∂Iε
∂z2

+
∂2Iε
∂z22

)
exz1+yz2 ,

∂fε
∂z1∂z2

=

(
xyIε + x

∂Iε
∂z2

+ y
∂Iε
∂z1

+
∂2Iε

∂z1∂z2

)
exz1+yz2 .

Therefore, the generator at fε is given by

Gfε =
(
K(x, y)Iε +

(∂K
∂y

− ∂K

∂x

)
I ′ε +

1

2

(∂2K

∂x2
+

∂2K

∂y2
− 2

∂2K

∂x∂y

)
I ′′ε

)
exz1+yz2 ,

that is,

Gfε =
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K(x, y)Iε +

(
σ2y − σ1x− ρ(y − x) + µ2 − µ1

)
I ′ε +

1

2
(σ1 + σ2 − 2ρ) I ′′ε

)
exz1+yz2 .

We also have

R1 · ∇fε(z1, 0) =
(
(r1x+ y)Iε + (1− r1)I

′
ε

)
exz1 ,

R2 · ∇fε(0, z2) =
(
(x+ r2y)Iε + (r2 − 1)I ′ε

)
eyz2 .

Now we apply the basic adjoint relationship of Proposition 2.1 to fε (which can be

written as the difference of two convex functions and therefore satisfies the hypotheses

of Proposition 2.1). Since all integrals converge, as fε and its derivatives are bounded

in S for all (x, y) in {ℜ(x) ⩾ 0, ℜ(x+ y) ⩽ 0}, we obtain

0 = K(x, y)

∫
S
Iε(z1, z2)e

xz1+yz2π(z1, z2)dz1dz2

+
(
σ2y − σ1x− ρ(y − x) + µ2 − µ1

) ∫
S
I ′ε(z1, z2)e

xz1+yz2π(z1, z2)dz1dz2

+
1

2
(σ1 + σ2 − 2ρ)

∫
S
I ′′ε (z1, z2)e

xz1+yz2π(z1, z2)dz1dz2

+ (r1x+ y)

∫ 0

−∞
Iε(z1, 0)e

xz1ν1(z1)dz1 + (1− r1)

∫ 0

−∞
I ′ε(z1, 0)e

xz1ν1(z1)dz1

+ (x+ r2y)

∫ 0

−∞
Iε(0, z2)e

yz1ν2(z2)dz2 + (r2 − 1)

∫ 0

−∞
I ′ε(0, z2)e

yz2ν1(z2)dz2.(A.3)

Since lim
ε→0

Iε = 1S1 , the dominated convergence theorem implies that:

lim
ε→0

∫
S
Iε(z1, z2)e

xz1+yz2π(z1, z2)dz1dz2 =

∫
S1

exz1+yz2π(z1, z2)dz1dz2 = L(x, y),

lim
ε→0

∫ 0

−∞
Iε(z1, 0)e

xz1ν1(z1)dz1 =

∫ 0

−∞
exz1ν1(z1)dz1 = ℓ1(x),

lim
ε→0

∫ 0

−∞
Iε(0, z2)e

yz2ν2(z2)dz2 = 0.

We also have lim
ε→0

I ′ε(z1, z2) = δ0(z2 − z1), then by continuity of π, ν1 and ν2, we obtain

the limits:

lim
ε→0

∫
S
I ′ε(z1, z2)e

xz1+yz2π(z1, z2)dz1dz2 =

∫ ∞
0

e(x+y)zπ(z, z)dz = m(x+ y),

lim
ε→0

∫ 0

−∞
I ′ε(z1, 0)e

xz1ν1(z1)dz1 = ν1(0),

lim
ε→0

∫ 0

−∞
I ′ε(0, z2)e

yz2ν2(z2)dz2 = ν2(0).

Our next goal is to show that

lim
ε→0

∫
S
I ′′ε (z1, z2)e

xz1+yz2π(z1, z2)dz1dz2 =
1

2
n(x+ y) +

1

2
(x− y)m(x+ y).
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To this end, we introduce the linear change of variables

(z1, z2)
def
= φ(u, v) =

(
u− v√

2
,
u+ v√

2

)
, (u, v) = φ−1(z1, z2) =

(
z1 + z2√

2
,
z2 − z1√

2

)
,

where detφ = 1. Recall that for arbitrary constants a and c, we have δa(c×·) = 1
|c|δa/c(·).

So we deduce from (A.2) the equality I ′′ε
(
φ(u, v)

)
= 1

2

(
δ− ε

2
− δ ε

2

)
(v). Let us define

g(u, v)
def
= e

xu−v√
2
+y u+v√

2 π

(
u− v√

2
,
u+ v√

2

)
.

We have∫
S
I ′′ε (z1, z2)e

xz1+yz2π(z1, z2)dz1dz2 =
1

2ε

∫
φ−1(S)

(
δ− ε

2
− δ ε

2

)
(v) g(u, v)dudv

=
1

2ε

∫ ∞
−ε/2

(
g
(
u,−ε

2

)
− g
(
u,

ε

2

))
du

−→
ε→0

−1

2

∫ ∞
0

∂g

∂v
(u, 0)du

=
1

2

∫ ∞
0

e(x+y)z

(
∂π

∂z1
− ∂π

∂z2

)
(z, z)dz

+
1

2
(x− y)

∫ ∞
0

e(x+y)zπ(z, z)dz.

Finally, letting ε → 0 in (A.3) concludes the proof. ■

Notice that in the proof of Proposition 3.1, the particular expression (A.1) is not at

all crucial: any similar function with the desired properties would have been suitable.
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