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ON THE TEICHMÜLLER STACK OF HOMOGENEOUS

SPACE OF SL2(C)

THÉO JAMIN

Abstract. Let Γ be a discrete torsion-free co-compact subgroup of
SL2(C). E. Ghys has shown in [7] that the Kuranishi space of M =
SL2(C)/Γ is given by the germ of the representation variety Hom(Γ, SL2(C))
at the trivial morphism and gave a description of the complex structures
given by representations. In this note, we prove that for all admissible
representation, i.e. which allow to construct compact complex manifold
by this description, the representation variety (pointed at this represen-
tation), leads to a complete family even at singular points. Hence, we
will consider the (admissible) character stack [R(Γ)a/ SL2(C)], where
R(Γ)a stands for the open subset formed by admissible representations
with SL2(C) acting by conjugation on it and show that this quotient
stack is an open substack of the Teichmüller stack of M.

1. Introduction

Let Γ be a discrete co-compact subgroup of SL2(C) and let R(Γ) be the
associated SL2(C)-representation variety Hom(Γ, SL2(C)). Take a represen-
tation ρ ∈ R(Γ) and consider the following right action

Γ× SL2(C) 7−→ SL2(C)

(γ, x) 7−→ γ •
ρ
x = ρ(γ)−1xγ(1)

When this action is free and properly discontinuous we say that ρ is ad-
missible and we denote byMρ the corresponding quotient manifold and by
R(Γ)a the set of admissible representations. One can show [7, Lemme 2.1,
p.115] that R(Γ)a and R(Γ) coincide on a open neigborhood of the trivial
morphism ρ0 : Γ → Id. Theorem A of [7, p.115] states that the Kuranishi
space of SL2(C)/Γ is the analytic germ of algebraic variety R(Γ) at the triv-
ial morphism ρ0 : Γ→ Id. We will show that this result can be extended in
a global version:

Theorem 1. The quotient stack

[R(Γ)a/ SL2(C)]

where SL2(C) act by conjugaison is an open substack of the Teichmüller
stack of SL2(C)/Γ.

This theorem basically follows from two results, the completeness of the
tautological family over the representation and the computation of some
group of automorphisms ofMρ (which give the isotropy group of a point in
the Teichmüller stack). More rigorously
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Theorem 2. For any admissible representation ρ, the deformation

{Mρ | ρ ∈ R(Γ)a} → R(Γ)a

pointed at ρ is complete.

The plan of this article is to review some notions about the geometry of
the Mρ, such as (G,X)-structure and the admissibility condition on repre-
sentations given by a work of Guéritaud, Guichard, Kassel and Wienhard
[11] and completed by Tholozan [25]. We will conclude the first part with
some computations of automorphisms groups, in particular Aut1(Mρ) which
leads to the isotropy group of a point in the character stack and prove

Proposition 1. For any admissible representation ρ, the group Aut1(Mρ) :=

Aut(Mρ)∩Diff0(Mρ) is equal to the quotient of centralizer of ρ(Γ) in SL2(C)
by {± Id}.

Then, in a second part, after some cohomological considerations we demon-
strate theorems 2 and 1 and we briefly discuss the differences between the
character stack and character variety, as a GIT quotient. We will also give
some local informations through the computation of the Kodaira-Spencer
map and results about equivariant transversal slices which, as germs, gives
the Kuranishi space of Mρ. To conclude this paper, we give an example of
application.

2. Geometry of Mρ

2.1. (G,X)-structure. In this section, we recall some general ideas of (G,X)-
structure inspired by Ehresmann and developped by Thurston.

A (G,X)-structure on a manifold M is an atlas of charts with values in the
model space X and whose transition functions are restrictions of elements
of G. A (G,X)-manifold is a manifold endowed with this structure. Note
that every G-invariant geometric structure g on X, in the sense of Gromov
[10], defines a structure (locally isomorphic to g) on M . For example, a
holomorphic metric G-invariant on X defines a holomorphic metric on M .

In the case ofM = SL2(C)/Γ, we have an obvious (SL2(C)×SL2(C), SL2(C))-
structure given by left/right translations on SL2(C) and the Killing form
on sl2(C), which is bi-invariant and non-degenerate, induces a holomorphic
metric on M with constant negative curvature, computed in [7]. We call a
(G,X)-morphism between two (G,X)-manifold, a morphism between mani-
folds which is a local diffeomorphism given in charts of the (G,X)-structure
by an element of G. When dealing with the natural morphism from the

universal covering M̃ of a (G,X)-manifold M to X, one recover the usual
notion of developping and holonomy maps:

D : M̃ → X, h : π1(M)→ G

which satisfies D(γ.x) = h(γ).D(x) for γ ∈ π1(M) and x ∈ M̃ . The well-
known Ehresmann-Thurston principle [26] states that this holonomy map
defines a local homeomorphism from the set of marked (G,X)-structures on
M to the topological quotient Hom(π1(M), G)/G (see also [8]). In other
word, if M is a (G,X)-manifold and h′ a representation close to the ho-
lonomy h0 of M , there exists a (G,X)-structure on M with holonomy
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given by h′ and two (G,X)-structures are equivalent if their correspond-
ing holonomies are conjugated by a small element in G. But the topological
quotient Hom(π1(M), G)/G can be quite bad, even non-reduced [19] and we
want to consider it as the stack for the global point of view, see section 4.3.

When the developping map is a diffeomorphism, we say that the (G,X)-
structure is complete and we can recover it by taking the quotient of the
whole X by h(π1(M)). The completeness of such a structure on M is
equivalent to the completeness of the holomorphic metric on M, in the
sense that all local geodesics can be extended in global geodesics.

A result of Tholozan [25, Theorem 3, p.1923] state, in the particular case
of SL2(C), that the set of complete (SL2(C)×SL2(C), SL2(C))-structure form
a union of connected component in the set of deformation of this structure.
Hence, we cannot have a continuous deformation of a complete (SL2(C) ×
SL2(C),SL2(C))-structure with non-complete fibers.

2.2. Admissibility condition. We refer to [25], [15] or [11] for details on
properness condition.

In order to construct the Kuranishi space of M, Ghys show that the
action (1) is free and properly discontinuous for, at least, representations
that are close to the trivial one (see [7, Lemma 2.1, p.115]). This result was
widely improved:
[15, Theorem 1.3, p.3] Assume that Γ is residually finite and not a torsion
group. Then ρ ∈ R(Γ) is admissible if, and only if, for all R > 0,

µ(γ)− µ(ρ(γ)) > R(2)

for almost all γ ∈ Γ. where µ : SL2(C) → R+ is the projection of a fixed
Cartan decomposition of SL2(C) given by SU2A

+ SU2
1 on A+ ' R+. This

means that ρ is admissible if its image ”drift away at infinity” from Γ.
In this note, Γ is the fundamental group of a hyperbolic 3-manifold thus it

is residually finite and without torsion. This theorem state for example that
each representation with image contained in a compact subset of SL2(C) is
admissible.

Moreover, we have the following key result for this note:

Proposition 2. [11, Corollary 1.18] The set of admissible representations
R(Γ)a is a (classical) open in R(Γ).

Remark. Actually, Kassel’s results are more precise and in particular one
can show that R(Γ)a is not, in general, a Zariski open. It only happen in
the ”rigid case” that is to say when all admissible representations are rigids
(i.e. they corresponds to isolated points in R(Γ)), see example 7.

2.3. Automorphisms groups. Let φ be an automorphism of Mρ and φ̃
its lifted application to the universal cover. We will denote by Lg (resp. Rg)
the left (resp. right) translation by g and by ιg the conjugation by g.

Lemma 1. Let φ be an automorphism of Mρ. Then there exists g and δ in

SL2(C) such that φ̃ = Lg ◦Rδ.
1Note that this is not a diffeomorphism, in opposition to the ”classical” Cartan de-

composition, due to the non-unicity in this decomposition. Only the projection on A+ is
uniquely determined. See [12, Chapitre 9, Theorem 1.1]
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Proof. This is using a particular case of theorem B in [7].
Let ρ ∈ R(Γ) and let φ an automorphism ofMρ. This automorphism φ lifts

to a biholomorphism φ̃ of SL2(C) such that there exists θ ∈ Aut(Γ) such

that the Γ-equivariance of φ̃ is

φ̃(γ •
ρ
x) = θ(γ) •

ρ
φ̃(x), ∀γ ∈ Γ.(3)

Because SL2(C) has non-trivial center {± Id}, we apply Mostow’s rigidity
to PSL2(C) and lift it to SL2(C). Hence, we know that there exists Θ a
continuous group automorphism of SL2(C) and ε ∈ Hom(Γ, {± Id}) such
that θ = ε.Θ|Γ. Since φ is a holomorphic function, Θ as to be so. But, up
to conjugation, the only continuous automorphism of SL2(C) is either the
identity or the complex conjugation. Hence, Θ is an inner automorphism.

Consider another representation morphism η ∈ R(θ(Γ)) such that

Θ(ρ(γ)) = ε(γ).η(θ(γ)), ∀γ ∈ Γ

It is easy to see that Θ go down to a biholomorphism betweenMρ andMη.
In fact,

Θ(γ •
ρ
x) = θ(γ) •

η
Θ(x), ∀γ ∈ Γ

Now, let ψ = φ̃ ◦Θ−1, we get:

ψ(γ •
η
x) = γ •

ρ
ψ(x), ∀γ ∈ Γ

E. Ghys has proved that such biholomorphism has to be a left translation
by some element g of SL2(C) such that η and ρ are conjugate by g.

As Θ = ιδ and ψ = Lh, for some δ and h in SL2(C), we have φ̃(x) = ψ ◦
Θ(x) = hδxδ−1. Back to the equivariance condition (3), we get successively

φ̃(γ •
ρ
x) =

(
ε(γ)ιδ(γ)

)
•
ρ
φ̃(x)

hδ
(
ρ(γ)−1xγ

)
δ−1 =ρ(ε(γ)ιδ(γ))−1

(
hδxδ−1

)
ε(γ)δγδ−1

Which simplify in

ρ(ε(γ)).ρ(ιδ(γ)) = ε(γ).ιg(ρ(γ)), ∀γ ∈ Γ(4)

where g = hδ. �

Denote by Gρ the set of pairs (g, δ) ∈ SL2(C) × SL2(C) for which x 7→
Lg ◦ Rδ(x) descends to an automorphism of Mρ, i.e. pairs (g, δ) which
satisfies (4) for some ε ∈ Hom(Γ, {± Id}). As Lg ◦ Rδ = L−g ◦ R−δ, we will
consider the quotient PGρ := Gρ/{± Id}

Lemma 2. Let ρ ∈ R(Γ)a then, we have a surjective morphism of group

PGρ → Aut(Mρ)

with kernel given by Deck transformations, i.e. isomorphic to Γ.

Proof. The morphism PGρ 3 (g, δ) 7→ φ ∈ Aut(Mρ) such that φ̃ = Lg ◦ Rδ
is surjective by definition of PGρ and by previous lemma. As SL2(C) is

simply connected, φ is the identity in Aut(Mρ) if, and only if, φ̃ is a Deck

transformation. That is, φ̃(x) = γ •
ρ
x for some γ ∈ Γ, or equivalently

(g, δ) = (ρ(γ)−1, γ). �
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Lemma 3. Let ρ ∈ R(Γ)a, then the connected component of the auto-
morphism group of Mρ is the projection on PSL2(C) of the centralizer
CSL2(C)(ρ(Γ)) of ρ(Γ) in SL2(C).

Proof. By Mostow’s theorem, Aut(Γ) is discrete and so is the projection on
the second factor of PGρ. Hence, we get a injection PG0

ρ → PSL2(C) ×
{Id}. It is straighforward to check that the action of Γ on PGρ induced by
composition of automorphism is given by

Γ× PGρ → PGρ, (γ, (g, δ)) 7→ (gρ(γ), γ−1δ)

thus, there is no element of Γ\{Id} fixing the connected component of PGρ.
Moreover, the condition (4) apply to (g, Id) is equivalent to require g to be
in centralizer of ρ(Γ).

Finally, by previous lemma we have

Aut0(Mρ) ' (PGρ/Γ)0 ' PG0
ρ '

(
CSL2(C)(ρ(Γ))/{± Id}

)0
And one can check that the centralizer CSL2(C)(ρ(Γ)) is always connected.

�

As in [17], we denote by Aut1(Mρ) the group of automorphisms isotopic
to identity through C∞-diffeomorphisms (eventually not through biholomor-
phisms), that is Aut1(Mρ) = Aut(Mρ) ∩ Diff 0(Mρ). This group will be
used in the next section as it is the isotropy group of a point in the Te-
ichmüller stack. Note that there exists examples of manifolds X for which
Aut0(X) 6= Aut1(X), see [17].

Proposition 3. Let ρ ∈ R(Γ)a, then Aut1(Mρ) = Aut0(Mρ).

Proof. Let φ ∈ Aut1(Mρ) then by lemma 1, there exists g and δ in SL2(C)

such that φ̃ = Lg ◦Rδ. Suppose we have an isotopy

Φ : SL2(C)× [0, 1]→ SL2(C)

with Φ(−, t) ∈ Diff(Mρ), Φ(−, 1) = φ and Φ(−, 0) is the identity. Obvi-
ously, Φt := Φ(−, t) have to preserve fibers (and also its inverse) so that there
exists for each t ∈ [0, 1] a corresponding automorphism θt of Γ ' π1(Mρ)
such that the fibers-preserving condition is

Φt(γ •
ρ
x) = θt(γ) •

ρ
Φt(x), ∀t ∈ [0, 1],∀γ ∈ Γ

By discretness of Aut(Γ), general continuity argument shows that θt is con-
stant and by assumption on Φ0, it is the identity. Hence, with the same
notations as in lemma 1, the lifted continuous automorphisms Θ (such that
θ = εΘ) is also the identity and Θ = ιδ = Id. We conclude that δ = Id and
the fiber-preserving condition applied on g gives the same constraint on it
that Aut0(Mρ) does. �

3. representation variety.

As Γ arises as a fundamental group of an hyperbolic compact manifold it
is finitely presented. Let

〈γ1, · · · , γn|R1, · · · , Rm〉
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be a presentation of Γ. Thus, we define the representation variety

R(Γ) := {(g1, · · · , gn) ∈ SL2(C)n|Ri(g1, · · · , gn) = Id, ∀1 ≤ i ≤ m}
This set has a structure of algebraic variety (since SL2(C) is algebraic) and
carries two topologies, the Zariski topology and the classical one. Note
that, up to isomorphism, the presentation does not change the structure of
algebraic variety of R(Γ).

Let review the Weyl’s constuction. Let ρt be a smooth path of represen-
tation with extremity ρ in R(Γ). By setting

c(γ) :=
d ρt(γ)

dt

∣∣∣∣
t=0

ρ(γ)−1

we obtain a cocycle c ∈ Z1(Γ, slρ2), where slρ2 stands for the Lie algebra
sl2(C) with the structure of Γ-module given by the adjoint representation
composed by ρ. If ρt is given by the conjugaison of ρ by a path of matrices
At emanating from Id the corresponding cocycle is a coboundary, i.e. given
by γ 7→ X −Adρ(γ)X with X = dAt

dt

∣∣
t=0

. This construction leads to:
We have the following isomorphism [16, Proposition 2.2]

TZarρ R(Γ) ' Z1(Γ, slρ2)

and the inclusion I ⊂
√
I induces an injection

TZarρ R(Γ)red ↪→ Z1(Γ, slρ2)

where R(Γ)red is the reduction of the affine scheme R(Γ) and I is the ideal
defining the variety R(Γ). This inclusion can be strict, see [13, Example
2.18]. As we are interested in compute Kuranishi spaces, which can be
non-reduced, it is very important to deal with the scheme R(Γ) and not its
reduction.

Remark. Actually, Kapovich and Millson [19] proved that there are no
“local” restrictions on geometry of the SL2(C)-representation schemes of
3-manifold groups.

4. Teichmüller stack

4.1. Preliminary results. Let ρ ∈ R(Γ) be admissible. The tangent bun-
dle of Mρ is identified with the adjoint bundle associated to the SL2(C)-
principal bundle πρ : SL2(C) → Mρ, the universal cover, that is TMρ '
Adρ(SL2(C)) := SL2(C)×Adρ sl2(C) where the action is given by

Γ× SL2(C)× sl2(C) −→ SL2(C)× sl2(C)

(γ, (x, v)) 7−→
(
ρ(γ)−1xγ,Adρ(γ)−1(v)

)
(5)

Consider the sheaf Θρ given by germs of its holomorphic sections. Remark
that holomorphic sections of this bundle corresponds to holomorphic vector
fields onMρ, it follows that Θρ is exactly the sheaf of germs of holomorphic
vector fields on Mρ.

It is well known that this tangent bundle, as it is constructed by a repre-
sentation of the fundamental group, carries a flat connection (see for example
[9]). We also denote by Fρ the sheaf of germs of its flat sections. The inter-
est of these sheaves is that H1(Mρ,Θρ) is identified to the Zariski tangent
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of the Kuranishi space at the base point and the elements of H1(Mρ,Fρ)
corresponds to infinitesimal deformations of the (SL2(C)×SL2(C), SL2(C))-
structure of Mρ.

Proposition 4. Let ρ be an admissible representation. Then, the embedding
of Fρ in Θρ induces an isomorphism

H1(Mρ,Fρ) ' H1(Mρ,Θρ)

and an injection
H2(Mρ,Fρ) ↪→ H2(Mρ,Θρ)

We will show the successive maps:

H i(Mρ,Fρ) ' H i(Γ, slρ2) ↪→ H i(Γ,Hρ) ' H i(Mρ,Θρ), i ≥ 0

where Hρ is the set of global holomorphic functions with values in slρ2. Here,
slρ2 stands for sl2(C) endowed with the structure of Γ-module induced by
(1), i.e. given by Ad ◦ρ. Then we will prove that the embedding is actually
an isomorphism for i = 0 and 1.

Lemma 4. Let ρ ∈ R(Γ)a, then

H i(Mρ,Fρ) ' H i(Γ, slρ2), ↪→ H i(Γ,Hρ) ' H i(Mρ,Θρ), i ≥ 0

Proof. The way to go from Čech coholomogy to group cohomology is given
by a well known result in [21, Appendix to §2, p.22]. Consider the case
πρ : SL2(C) → Mρ and F is Fρ or Θρ. As both sheaves are obtained as
sheaves of germs of sections of fiber bundles, the pullback sheaves are simply
the corresponding sheaves of germs of sections of the pullback bundles:

SL2(C)× sl2(C) SL2(C)×Adρ sl2(C)

SL2(C) Mρ

dπ

p1 πρ

π

Therefore, the global holomorphic sections (resp. flat sections) of the
trivial bundle SL2(C) × sl2(C) → SL2(C) is the set of holomorphic (resp.
constant) functions from SL2(C) to sl2(C), which we denoted by Hρ (resp.
slρ2). The Γ-structure of both sets is given by precomposition by the action
of Γ via •

ρ
and postcomposition by adjoint representation of ρ, that is

Hρ 3 f 7→
(
γ.f : x 7→ Adρ(γ)−1 f(ρ(γ−1)xγ)

)
(6)

The Cartan’s theorem B states that for any Stein manifold X and any
coherent sheaf F , Hp(X,F) vanish for p ≥ 1. In our context, SL2(C) is a
Stein manifold as it is isomorphic to the affine variety ad − bc = 1 in C4

and the sheaves Θρ and Fρ are locally free. We finally end up with the
isomorphisms

H i(Γ, slρ2) ' H i(Mρ,Fρ), H i(Γ,Hρ) ' H i(Mρ,Θρ), ∀i ∈ N
Finally, as the embedding of slρ2 in Hρ is SL2(C)-equivariant, by general

arguments in group cohomology [4], the applications

H i(Γ, slρ2)→ H i(Γ,Hρ)
are injective. �
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Proof of proposition 4. Let as always ρ be an admissible representation.
Consider the short exact sequence of Γ-modules

0→ slρ2 → Hρ → Ξρ := Hρ/(1⊗ slρ2)→ 0

and the following part of the long exact sequence associated to it

H0(Γ,Ξρ) H1(Γ, slρ2) H1(Γ,Hρ)

H1(Γ,Ξρ) H2(Γ, slρ2) H2(Γ,Hρ)

δ0 f1

δ1 f2

By lemma 4, f1 and f2 are injective maps, so the coboundary maps δi are
the zero maps. We end up with the short exact sequence

0→ H1(Γ, slρ2)→ H1(Γ,Hρ)→ H1(Γ,Ξρ)→ 0(7)

We will show that the last term always vanish.
Consider the two Γ-modules Ξρ and Ξρ0 underlying the same abelian

group (identify with global holomorphic functions from SL2(C) to sl2(C)
with vanishing constant term) but with Γ-module structures induced re-
spectively by ρ and ρ0, the trivial morphism. From the short exact sequence
of groups:

1 7→ Γ0 := ker(ρ) 7−→ Γ 7−→ ρ(Γ) 7−→ 1(8)

one can construct the two associated inflation-restriction exact sequences
respectively with values in Ξρ and Ξρ0 :

0 H1(ρ(Γ),ΞΓ0
• ) H1(Γ,Ξ•)

H1(Γ0,Ξ•)
ρ(Γ) H2(ρ(Γ),ΞΓ0

• ) H2(Γ,Ξ•)

res

for • = ρ or ρ0. Obviously, the action of Γ0 = ker(ρ) on Ξ• is the same for
• = ρ or ρ0, which is given by precomposition by right multiplication by γ ∈
Γ0 (see (6)). Moreover, E. Ghys showed [7, p.131-132] that a holomorphic
function invariant by Γ0 is also invariant by its Zariski closure, which is
SL2(C) by [7, Lemma 5.6]. Hence, these functions are constant and by
definition of Ξ•, equal to zero. We end up with ΞΓ0

ρ = ΞΓ0
ρ0 = 0 and it follows

that H1(ρ(Γ),ΞΓ0
• ) = H2(ρ(Γ),ΞΓ0

• ) = 0. In other words, the restriction
map, which is the curvy arrow in the previous inflation-restriction exact
sequence, is an isomorphism either for ρ and ρ0. to summarize, we have the
following isomorphisms

H1(Γ0,Ξρ) 'H1(Γ0,Ξρ0)

res : H1(Γ,Ξρ)
∼−→H1(Γ0,Ξρ)

ρ(Γ)

res : H1(Γ,Ξρ0)
∼−→H1(Γ0,Ξρ0)ρ(Γ) = H1(Γ0,Ξρ0)

Theorem 4.1 in [7] states, with our notations, that H1(Γ,Ξρ0) = 0. With
the previous isomorphisms and this result we have that H1(Γ,Ξρ) = 0 as
announced and (7) gives the desired isomorphism. �
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4.2. Higher obstructions. We want to describe deformations ofMρ over
(C, 0). In order to do it, we recall the construction given by [6, p.4-10].
For all open U in Mρ, we consider biholomorphisms

f : W →W ′

where W,W ′ ⊂Mρ ×C are open which contains U × {0}. We consider the
set of such biholomorphisms which preserves the fibers M × {p} and such
that f |Mρ×{0} = Id. We define the sheaf Λρ by Λρ(U) as the quotient of this
set by identify two biholomorphisms which coincides on a neighborhood of
U × {0}. The important fact is that
The space H1(Mρ,Λρ) is identify to the set of classes of germs of deforma-
tions of Mρ parametrized by (C, 0) [6].

This sheaf is naturally filtered:
For each open U , we consider the set of biholomorphisms of Λnρ (U) which
are tangent to the identity up to the order n − 1 and we denote by Λnρ the
corresponding sheaf. For all n ≥ 1, we denote by Qnρ the quotient sheaf

Λρ/Λ
n+1
ρ . It is well know that (see [20])

ker
(
Qn+1
ρ → Qnρ

)
' Θρ

Thus, we get the following exact sequence of sheaves

0→ Θρ → Qn+1
ρ → Qnρ → 0(9)

The elements of H1(Mρ, Qn) are called n-th order deformation of Mρ.

Proof of Theorem 2. Assume that up to order n, the set of classes of germs
of deformation of Mρ over C is given by germs of deformations of the rep-
resentation ρ by cochains {ci}ni=1 via

ρn := ρ(c1,··· ,cn) : γ 7→ exp

(
n∑
i=1

ci(γ)ti

)
ρ(γ)

Then, we can equip gn := sl2(C[t]/(tn+1)) with the Γ-structure given by
Adρn . We denote gρnn the Lie algebra with its Γ-structure.

Interpreting Bnρ := H0(SL2(C), π∗Qnρ ) as a set of global sections of n-jets,

we get an injection of Γ-modules gρnn → Bnρ . These maps induce a morphism
between exact sequences

0 slρ2 gρnn g
ρn−1

n−1 0

0 Hρ Bnρ Bn−1
ρ 0

which induces, a map of long exact sequences in cohomology of groups
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H1(Γ, slρ2) H1(Γ, gρnn ) H1(Γ, g
ρn−1

n−1 ) H2(Γ, slρ2)

H1(Γ,Hρ) H1(Γ,Bnρ ) H1(Γ,Bn−1
ρ ) H2(Γ,Hρ)

H1(Mρ,Θρ) H1(Mρ, Q
n
ρ ) H1(Mρ, Q

n−1
ρ ) H2(Mρ,Θρ)

i1 i2 i3

δ

i4

o o o o

δ̌

Proposition 4 says that i1 is an isomorphism and i4 is a monomorphism.
By assumption, i3 is an isomorphism. The four-lemma states that i2 is
surjective, thus it is an isomorphism.

Let Un(γ) :=
(
d
dtρn(γ)

)
ρn(γ)−1 and fn the corresponding element in

H1(Mρ, Q
n−1
ρ ). If fn can be extended to order (n + 1) then the class of

δ̌(fn) in H2(Mρ,Θρ) is zero. The class of [δUn] ∈ H2(γ, slρ2) is then also
zero which is an equivalent condition to the existence of a cochain cn+1 such
that ρn+1 := ρ(c1,··· ,cn+1) is a morphism up to order n+1 (see [14, Proposition
3.1]).

Inductively, a deformation of the complex structure of Mρ parametrized
by (C, 0) is given by a formal deformation of the representation ρ:

ρ∞ : γ 7→ exp

( ∞∑
i=1

ci(γ)ti

)
ρ(γ)

The existence of a convergent solution follows directly from a result of Artin
[1], as in [14, Proposition 3.6]. This show us that the representation variety
is complete at each point that corresponds to an admissible representation
and therefore this conclude the proof of theorem 2. �

4.3. Teichmüller stack. The Newlander-Nirenberg Theorem [22] says that
a structure of a complex manifold on M is equivalent to a a C∞ bundle
operator J on the tangent bundle of M such that

J2 = − Id, and [T 0,1, T 0,1] ⊂ T 0,1

Where T 0,1 = {v + iJv| v ∈ TM ⊗ C} is the subbundle given by the eigen-
vectors of J with eigenvalue −i of the complexified tangent bundle of M .
We denote by I(M) the set of complex structure on the C∞ manifold Mdiff

(forgetting its natural complex structure). Note that the group Diff(Mρ) of
C∞-diffeomorphisms of M act on I(M) as

Diff(M)× I(M)→ I(M), (f, J)→ (df)−1 ◦ J ◦ df
The Teichmüller space of M , denoted T (M), is given by the quotient of
I(M) by the action of the subgroup Diff0(M) of Diff(M) formed by dif-
feomorphisms isotopic to the identity. There exists example of manifold M
for which (see [18, Example 12.3]), this topological space does not admit a
structure of analytic space. But, under some assumption on the dimension
of the group of automorphisms of M , the Teichmüller has a structure of
Artin stack and we shall review some definitions of its construction.
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4.4. Teichmüller and character stack. Let AnC be the category of com-
plex analytic space. In this note, a stack is a stack in groupoids over the site
AnC in the sense of [24, Definition 8.5.1]. Let M be a C∞ manifold which
admits a complex structure J . We construct the Teichmüller stack T (M)
of M as the category whose

• objects are deformations of M which are Diff0(M)-bundle when con-
sidered in the C∞ categorie.
That is, smooth and proper morphism π : X → B, between objects
X,B ∈ (AnC), which is diffeomorphic, when considered as real ana-
lytic spaces, to a bundle E → B with fiber M and structural group
reduced to Diff0(M).
• morphisms are cartesian diagrams

X ′ X

B′ B

π′ π

f

where the isomorphism f∗X ' X ′ induced a Diff0(M)-isomorphism
of the smooth bundle structure in the category of real analytic spaces.

If V is an open subset of I(M), we can define in the same way TV (M)
the Teichmüller stack of M for complex structures belonging to V , that is
objects are smooth morphisms π : X → B as well but the complex structures
on fibers of π belongs to V . For more details see [18].

We want to define a map i : R(Γ)a → I(M) which sends an admissible
representation ρ to the bundle operator corresponding to the natural com-
plex structure ofMρ. So we can define TR(Γ)a(M) the Teichmüller stack of
M for complex structures arising as Mρ for some ρ ∈ R(Γ)a. The way to
construct i is the following. Take ρ ∈ R(Γ)a and consider the frame bundle

F (Mdiff
ρ ) of Mdiff

ρ the C∞ manifold underlying Mρ. Points in this bundle

over x ∈ Mρ are identified with linear isomorphisms R6 → TxMdiff
ρ . Note

that the tangent bundle Adρ(SL2(C)) (see (5)) gives a natural subbundle

of F (Mdiff
ρ ) by C-linear isomorphisms C3 → TxMdiff

ρ and the correspond-
ing reduction of the structural group is exactly the C∞ bundle operator
Jρ corresponding to the complex structure of Mρ. Hence, we define i by
i : ρ 7→ Jρ.

Naturally, we define

Definition. The character stack (resp. admissible character stack) is the
quotient stack

[R(Γ)/ SL2(C)], (resp. [R(Γ)a/SL2(C)])

over the site AnC.

Obviously the admissible character stack is a substack of the character
stack in the sense of [2, Definition 6.9, p.112], that is a full saturated sub-
category of the character stack which is also a stack.

Remark. It is important to notice that the character stack see as a stack
over the site Sch of schemes is algebraic but the admissible character stack
is not since R(Γ)a is not a Zariski open in R(Γ) (see remark 2.2). However,
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both of them are analytic stacks and this explains why we have to work on
the analytic site rather than an algebraic one.

Theorem 3. The admissible character stack is an open substack of the
Teichmüller stack of M.

Proof. The completeness theorem 2 implies that there exists an open V a ⊂
I(M) of complex structuresMρ given by representations ρ ∈ R(Γ)a. Hence,
locally we know that any deformation X → B in the Teichmüller stack
TV a(M) can be seen as a SL2(C)-principal bundle P → B with an SL2(C)-
equivariant map p : P → R(Γ)a, that is an element of the (admissible)
character stack.

Denote by X → R(Γ)a the tautological family above R(Γ)a, that is X is
obtained as the quotient of SL2(C)×R(Γ)a by the action of Γ :

Γ× SL2(C)×R(Γ)a →SL2(C)×R(Γ)a

(γ, x, ρ) 7→(ρ(γ)−1xγ, ρ)

We restrict our attention on isomorphism between SL2(C)-torsors so we only
look at tautological families. Let B be an analytic space and φ, ψ : B →
R(Γ)a analytic maps such that the induced tautological families φ∗X → B
and ψ∗X → B are isomorphic in the Teichmüller stack. So there exists an
analytic map F : φ∗X→ ψ∗X such that

φ∗X ψ∗X

B B

F

πφ πψ

Id

is a cartesian diagram and F is a Diff0-bundle isomorphism. Lifting F to an

analytic map F̃ : SL2(C) ×R(Γ)a → SL2(C) ×R(Γ)a, we see that on each

fibers F̃
∣∣∣
π−1
φ (b)

(x, ρ) = (ιg(x), ιg ◦ ρ), where g ∈ Aut1(Mρ) ' CSL2(C)(ρ(Γ))

by proposition 3. Doing this on each fibers, we obtain a map

f : R(Γ)a → SL2(C)

such that F̃ (x, ρ) = (ιf(ρ)(x), ιf(ρ) ◦ ρ). This application obviously satisfies
s(f(ρ), ρ) = ρ and t(x, f) = ιf(ρ)(ρ), where the map s and t are the source
and the target map of the Lie groupoid

SL2(C)×R(Γ)a
ι
⇒
p2
R(Γ)a

that is s is the projection on the second factor and t is the SL2(C)-action of
conjugation on R(Γ)a. �

We easily deduce the following corollary, which is a reformulation of the
theorem 1:

Corollary 1. The Lie groupoid

SL2(C)×R(Γ)a
ι
⇒
p2
R(Γ)a

is an atlas for TR(Γ)a(M).
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Remark. However, it is an open question to know if this open substack is
a union of connected components of the Teichmüller stack, or if it is not,
what is the boundary of this substack.

5. Characters stack versus character variety

We want to emphasize the use of stack instead of GIT quotient. As
remarked before (see remark 4.4), R(Γ)a is not a Zariski open when b1(Γ) 6=
0, hence it is not possible to form the quotient (in the sense of geometric
invariant theory) nor the algebraic stack associated. Actually, the situation
seems to be even worse, for instance, let π : R(Γ)→ R(Γ)//SL2(C) be the
affine quotient and take ρ ∈ R(Γ)a such that its orbit is not closed, there is
no reason for π−1(π(ρ)) to contains only admissible representations, even if
we don’t have any example of such situation.

We want to underline the fact that the character stack contains more
informations as the character variety. To do so, we can look at fibers of the
morphism

φ : [R(Γ)a/ SL2(C)]→ [R(Γ)// SL2(C)]

where X(Γ) := [R(Γ)// SL2(C)] stands for the stack associated to the affine
quotient R(Γ)// SL2(C), over the site AnC. Let χ be a point in X(Γ), then
the it is easy to see that the preimage of χ by φ is formed by all SL2(C)-
principal bundles O(ρ)→ {ρ} such that π(ρ) = χ. Whenever χ is obtained
as the trace character of two non conjugated representations ρ and η, the
preimage of φ contains two non biholomorphic families in the Teichmüller
stack. In other words, there are points in the Teichmüller stack which are
identified in the character variety.

6. Kodaira-Spencer map

In this section, we will show that the Kodaira-Spencer map associated to
the natural deformation over R(Γ)a is surjective at each point.

Consider the variety X̃ := SL2(C)×R(Γ)a and its quotient X by Γ given
by the action

Γ× X̃ → X̃

(γ, (x, ρ)) 7→ (ρ(γ−1)xγ, ρ)

The natural projection p2 : X → R(Γ)a is a deformation of complex struc-
tures withMρ ⊂ X above ρ ∈ R(Γ)a. Let ρ be an admissible representation
and V a Stein open neigborhood in R(Γ)a containing ρ. One can consider
the fundamental exact sequence of this deformation restricted to V

0→ Θ|p−1
2 (V ) → Π|p−1

2 (V ) → Υ|p−1
2 (V ) → 0

Where Θ is the sheaf of germs of holomorphic vector fields on fibers of p2,
Π is the sheaf of projectable vector fields and Υ the sheaf of germs of vector
fields on R(Γ).
And for the infinitesimal neigborhood of ρ, this sequence tends to

0→ Θ|Mρ → Π|Mρ → Υ|Mρ → 0(10)

It is well known that the Kodaira-Spencer map KSρ of this deformation is
the connecting homorphism of the long exact sequence associated to it.
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Let V be an small Stein neigborhood of ρ in R(Γ). Since X̃|V = SL2(C)×
V is a product of Stein manifolds it is also Stein. The pullback sheaf is not

necesseraly coherent, but X̃|V is an open in affine and thus noetherian so the
pullback of any coherent sheaf if also coherent. Then by Cartan’s theorem

H i(X̃|V , π∗Θ|V ) = {0} for i > 0, in particular for i = 1. Hence, on the
infinitesimal neighborhood of ρ, the sequence

0→ H0(SL2(C), π∗Θ|Mρ)→ H0(SL2(C), π∗Π|Mρ)→ H0(SL2(C), π∗Υ|Mρ)→ 0

is exact.
Hence, one can consider the following part of the associated long exact

sequence:

0 −→ HΓ
ρ −→ H0(Γ, H0(SL2(C), π∗Π|Mρ)) −→ Z1(Γ, slρ2)

K̃Sρ−→ H1(Γ,Hρ)

(11)

where Z1(Γ, slρ2) ' TρR(Γ) ' H0(Γ, H0(SL2(C), π∗Υ|Mρ)). This exact se-

quence is isomorphic to the long exact sequence associated to (8) in Čech
cohomology by [21]. All diagrams formed by this isomorphism is commu-

tative and this is why we called K̃Sρ the map above the Kodaira-Spencer
map:

· · · Z1(Γ, slρ2) H1(Γ, slρ2) · · ·

· · · H0(Mρ,ΥMρ) H1(Mρ,Θρ) · · ·

∼

K̃Sρ

∼

KS

Proposition 5. Let ρ be an admissible representation. Then

H0(Mρ,Π|Mρ) ' H0(SL2(C), π∗Π|Mρ)
Γ ' sl2(C)

Proof. We show that the vector space of projectable vector fields, i.e. vector
fields that descends to the quotient, is isomorphic to sl2(C). Let

Gγ : X̃→ X̃

(x, ρ) 7→ (ρ(γ−1)xγ, ρ)

Then a vector field V on X̃|ρ is projectable if, and only if, (Gγ)∗V = V, ∀γ ∈
Γ. We decompose V in (v, c) where v is a vector field on SL2(C) and c is a
cocycle in Z1(Γ, slρ2) ' TρR(Γ)a. From

(Gγ)∗

(
v(x)

0

)
=

(
Adρ(γ)−1(v(x))

0

)
and (Gγ)∗

(
0
c

)
=

(
c(γ−1)
c

)
it follows that V is Γ-invariant, or projectable, if

c(γ−1) +Adρ(γ)−1(v(x)) = v(ρ(γ)−1xγ)(12)

Or equivalently

c(γ) = v(ρ(γ)xγ−1)−Adρ(γ)(v(x))
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Let us remark that if v is constant, then c has to be a coboundary to form
a projectable vector field. Hence, for γ, δ ∈ ker(ρ), we get

c((γδ)−1) = v(xγδ)− v(x)

= c(γ−1) + c(δ−1)

= v(xγ)− v(x) + v(xδ)− v(x)

Putting these lignes together, we obtain

v(x) = v(xγ) + v(xδ)− v(xγδ)(13)

If v is fixed by the action described by this formula, see as an action of
the subgroup ker(ρ) × ker(ρ) in SL2(C) × SL2(C), then it is fixed by the
Zariski closure of it. By lemma [7, Lemme 5.6], the Zariski closure of ker(ρ)
is SL2(C) and the Zariski closure of a product is the product of the Zariski
closure (true for general topology), so that

ker(ρ)× ker(ρ)
Zar

= SL2(C)× SL2(C)

As constant vector fields together with the corresponding coboundary form a
suitable projetable vector field, one can suppose that v(Id) = 0sl2(C). Thus,
(13) implies (for x = Id) that v is an holomorphic morphism from SL2(C)
to its Lie algebra.
Finally, as sl2(C) is an abelian group, v factorizes through

SL2(C)ab = SL2(C)/ [SL2(C), SL2(C)] = {Id}

and v is globally constant and by assumption equal to 0. �

Proposition 6. For any ρ ∈ R(Γ)a, the Kodaira-Spencer map KSρ is sur-
jective.

Proof. By (11), it is equivalent to prove that

K̃Sρ0 : H0(π∗Υ|Mρ)
Γ → H1(Γ,Hρ)

is surjective.
By proposition 5, we know that H0(π∗Π|Mρ)

Γ is isomorphic to the image of
sl2(C) under the following map

f : sl2(C)→ sl2(C)⊕B1(Γ, slρ2)

X → (X,φ : γ 7→ X −Adρ(γ)X).

We obtain the following diagram of exact sequences

0 sl2(C)ρ(Γ) sl2(C)⊕B1(Γ, slρ2) Z1(Γ, slρ2) H1(Γ, slρ2)

0 HΓ
ρ H0(π∗Π|Mρ)

Γ H0(π∗Υ|Mρ)
Γ H1(Γ,Hρ)

o o o

K̃Sρ

o

KSρ

We conclude that the Kodaira-Spencer map is nothing else than the natural
projection Z1(Γ, slρ2)→ H1(Γ, slρ2) which is surjective. �
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6.1. Equivariant slices and Kuranishi spaces. The geometry of a rep-
resentation variety is in general very complicated and it is a hard game to
find an SL2(C)-equivariant slice which, as a germ at ρ ∈ R(Γ), gives by
proposition 2 the Kuranishi space of ρ. However, few words can be said in
general.

Corollary 2. Let ρ ∈ R(Γ)a, then any complex analytic space transverse
to the orbits passing through ρ gives (as a germ) the Kuranishi space ofMρ.

Proof. The Kodaira-Spencer is surjective and two conjugated representa-
tions gives the same manifold Mρ up to biholomorphism. �

In opposition to this imprecise result, more acurate results can be state
in some particular cases. For instance, assume that the first betti number
of Γ is one and let

〈γ1, · · · , γn|R〉
be a presentation of Γ such that the natural projection p : Γ → Γab ' Z
sends γ1 to 1.

Proposition 7. For all representation ρ such that ρ(γ1) is semi-simple in
SL2(C) then there exists an étale slice V at ρ in R(Γ) such that TρV is
isomorphic to H1(Γ, slρ2).

Since the orbit of such representation is closed [23, Theorem 30], this
proposition is given by the Luna’s slice theorem as in [3, Proposition 2.8].

7. Example.

We give an example which emphasize the main contribution of this this
work compare to [7]. The Weeks manifold MW is known to has the smallest
volume among hyperbolic 3-manifold with first Betti number 0. Among all
its properties, it is compact, closed, oriented, arithmetic which turn it into
a particular case of interest in this note. We also have a presentation of its
fundamental group

π1(MW ) = 〈a, b| a2b2a2b−1ab−1, a2b2a−1ba−1b2〉

and one discrete and faithful SL2(C)-representation of this group is given by

η(a) =

(
x 1
0 x−1

)
, η(b) =

(
x 0
r x−1

)
with r = 2− x− x−1 and 1 + 2x2 − x3 + 2x4 + x6 = 0 (see [5]). Up to the
choice of x we fix ΓW to be the image of π1(MW ) under this representation.

With this presentation, it is clear that this manifold has betti number
equal to 0 and it follows that the trivial representation is an isolated point
in representation variety and that SL2(C)/ΓW is rigid (in the sense that the
Kuranishi space is a point). But it is not globally rigid.

Consider the case of a representation of ΓW with abelian image. Direct
computations gives that, up to conjugation, it is given by

ρn,m(a) =

(
ωm 0
0 ω−1

m

)
, ρn,m(b) =

(
ωn 0
0 ω−1

n

)
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for ωk = e
2ikπ
5 and m,n = 0, · · · , 4. Those representations ρn,m have obvi-

ously images in a compact subgroup of SL2(C) and the properness criterion
(2) implies that the induced action is admissible.

Let treat the non abelian case. It is a general fact that ρ(a) and ρ(b) can
be of the form

ρ(a) =

(
x 1
0 x−1

)
, ρ(b) =

(
y 0
r y−1

)
with x, y 6= 0. According to [5, p. 24-25], the second relation in the presen-
tation of π1(MW ) implies that y is either equal to x or x−1. Moreover, if
r 6= 0 and x is not a root of unity, the representation is faithful and it follows
that it is not admissible (as remarked in the proof of proposition 5). Fol-
lowing the computations of [5], none of these cases have a solution (except
x5 = 1, y = 1 and r = 0 which leads to an abelian representation) and we
conclude that the admissible locus of R(ΓW ) contains only representations
with abelian images.

By the open criterion of R(ΓW ) in the Teichmüller stack, we know that
|T (SL2(C)/ΓW )| (the underlying topological space) contains at least 25 iso-
lated points as connected components, corresponding to the representations
ρn,m, n,m = 0, · · · , 4.

Remark. There are plenty of examples, but few of them are actually ”com-
putable” since the complexity in finding a discrete and faithful representa-
tion increase with the complexity of the relations. However, we can mention
another example: the manifold v1539(5, 1) (in the notations of SnapPy).
This manifold has a first Betti number of 2. It is a closed, oriented, compact
and hyperbolic 3-fold which fiber over the circle. We have a presentation of
its fundamental group with SnapPy and by same arguments as above, one
can show that the quotient stack

{A,B ∈ SU2×SU2 | [A,B] = Id} / SL2(C)

is in the Teichmüller space and corresponds to a subset of the set of abelian
representations. But it is a hard game to find other admissible representa-
tions since the numerical criterion (2) not allow us to do real computations.
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13 (1960-1961) no. 1, Exposé no. 4, 19 p. 1-19.
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L’Enseignement Mathématique, 63 (2017), no.3-4, p. 263-272.
https://hal.archives-ouvertes.fr/hal-01399727.

[18] L. Meersseman: The Teichmüller and Riemann moduli stacks. Journal de l’École
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