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Abstract—The prognostic of proton exchange membrane 

fuel cells (PEMFCs) degradation and the estimation of its 

remaining useful life (RUL) are effective ways to improve the 

reliability of the target system and reduce maintenance costs, 

which is of great significance for the wide commercialization of 

PEMFCs. Many factors cause the degradation of PEMFCs, 

and these factors are often difficult to measure accurately. The 

prognostic method based on long short-term memory networks 

(LSTMs) has better memory ability for time series and has 

been demonstrated able to describe the degradation trend of 

PEMFCs. However, the traditional LSTM prediction 

algorithm seems to easily fall into the local optimal solution in 

long-term prediction cases. Overfitting like errors may result 

in an imprecise or even unstable prognostic. This paper 

proposes a novel method, named navigation sequence driven 

LSTMs (NSD-LSTMs), to enhance the accuracy of PEMFCs 

degradation trend prediction. Two types of PEMFCs aging test 

data under different load conditions were used to verify the 

performance of NSD-LSTMs. Experimental results show that, 

compared with traditional LSTMs, NSD-LSTMs can improve 

the accuracy of trend prediction. Accurate degradation 

prognostic can be used to predict RUL and provide guidance 

for the commercial application of PEMFCs.  

Keywords—PEMFCs, Prognostic, NSD-LSTMs, Degradation 

trend 

I. INTRODUCTION  

Fuel cells (FCs) are considered to be an energy 
conversion system that has received widespread attention. 
Compared with traditional fossil fuels, FCs can greatly 
reduce environmental pollution. At present, among different 
types, proton exchange membrane fuel cells (PEMFCs) are 
one of the most widely used ones [1]. In particular, PEMFCs 
can convert chemical energy into electrical energy without 
generating greenhouse gases during their work. This makes 
PEMFCs suitable for use in transportation represented by 
electric vehicles [2]. However, for PEMFCs used in electric 
vehicles, many factors affect degradation in the process of 
energy conversion. At the same time, electric vehicles often 
have to face different operating conditions and loads, which 
results in the remaining useful life (RUL) of PEMFCs often 
failing to meet the demand [3, 4]. In order to better 
understand the degradation trend of PEMFCs and facilitate 
condition-based maintenance and/or control for PEMFCs 
health management, it is essential to estimate the remaining 
life of PEMFCs as accurately as possible. 

The degradation prediction methods for PEMFCs are 
mainly categorized as model-driven and data-driven ones. 
Model-based methods describe the degradation of FCs by 
building analytical degradation models. The authors in [5], 

proposed a multi-agent prediction method based on particle 
filter (PF) for three parallel PEMFCs. However, only a 
physical model PF method was considered in this work. In 
[6], the authors proposed a reconstructed RUL prediction 
model of FCs, which is used to estimate the RUL of city bus 
FCs. In this work, the FCs voltage deviation model was built 
by analyzing different operating conditions of the FCs bus. 
The authors of [7] proposed a prognostic model based on 
adaptve unscented Kalman filter (AUKF) for PEMFCs. This 
model estimated the health state and the RUL by improving 
the initial parameters setting of conventional UKF. 

In practice, model-driven prediction methods are difficult 
to implement since an analytical degradation model with 
sufficient fidelity is often hard to build. Data-driven methods 
have been attracting wider attention compared with model-
driven ones, thanks to their light physical model dependency. 
Especially, inspired by the recent remarkable advances in 
deep neural networks (NNs), special attention has been put 
on the development of data-driven prognostic tools by 
configuring and training different NNs structures. Li et al. [8] 
used a low-power PEMFCs to conduct long-term 
experiments in different operating modes, and extracted 
health indicators (HI) using a sliding adaptive data prediction 
strategy. The echo state network (ESN) is used to predict the 
degradation trend and estimate the RUL. Hua et al. proposed 
a multi-input multi-output echo state network (MIMO-ESN) 
structure to consider the effects of operating parameters in 
RUL prediction [9]. In [10], Ma et al. Proposed a recurrent 
neural network (RNN) structure based on grid long-term 
short-term memory (G-LSTM) for FC prognostics. The 
degradation trend of FCs is predicted through short-term and 
long-term degradation data sets. In the LSTM framework, 
Liu et al. proposed the use of equal interval sampling and 
local weighted regression dispersion smoothing method to 
reconstruct and smooth the data [11].  

Among different NNs structures, LSTM has been 
considered as an effective tool to handle time series 
prediction problems. For FC prognostics, thanks to the 
special "gate" structure, well-tuned LSTMs should have the 
potential to "forget" the abnormal disturbances during stack 
degradation and "remember" the long-term downward trend 
of FC performance. However, LSTMs using traditional 
training protocols are prone to local overfitting, which may 
lead to significant accumulated errors in multi-step 
predictions. This work is dedicated to solving the overfitting-
like problem of LSTMs and make LSTMs more suitable for 
long-term prognostic use. Specifically, in this work, an 
autoregressive integrated moving average model with 
exogenous variables (ARIMAX) is proposed to generate a 
navigation sequence (NS) to guide LSTMs for multi-step 



prediction. As a consequence, a novel navigation sequence 
driven LSTMs (NSD-LSTM) prognostic strategy design is 
proposed. The strategy is then tested using static and 
dynamic data sets. The results show that the NSD-LSTM 
based prognostic model has outperformed the classical 
LSTM methods. The novel training protocol can 
significantly improve the robustness of LSTM in long-term 
prediction. 

The organization of the paper is as follows. In Section II, 
the principles of LSTMs and ARIMAX are briefly 
introduced. The prognostic strategy of NSD-LSTMs is also 
presented in the same section. In Section III, FCs aging 
experiments and data set preprocessing are introduced. Then, 
the proposed prognostic strategy is tested and compared with 
classical methods. Finally, the work is concluded in Section 
IV. 

II. PROGNOSTIC STRATEGY BASED ON NSD-LSTMS. 

A. LSTMs Structure 

The degradation process of FCs often lasts more than 
2,000 hours. Even in some application scenarios, FCs will 
undergo more than 6,000 hours of degradation process. 
However, during this longer degradation cycle, the FCs stack 
output voltage tends to decline very slowly. LSTMs can 
selectively store long-term data and capture the correlation 
between time series data. This is also the reason why LSTMs 
are used to predict the degradation of FCs. In this work, the 
measured output voltage of FCs is used as the input time 
series of LSTMs.  

Unlike the feedforward neural network, the output of the 
hidden layer unit in the recurrent neural network (RNN) 
enters its upper layer network as an input, and also serves as 
the input of the hidden layer in the next time step. Therefore, 
the information in the time series data can be continuously 
retained. RNN has made breakthroughs in many natural 
language processing projects. Traditional RNN mostly uses 
backpropagation through time (BPTT) algorithm. The 
disadvantage of this algorithm is that the increase in the 
number of network layers will cause problems such as 
gradient disappearance or gradient explosion with time. 
LSTMs are an important improved model developed on the 
basis of RNN. The core essence of LSTMs is that through 
the introduction of ingenious and controllable self-circulation, 
a path is created that allows the gradient to flow continuously 
for a long time. This makes it possible to track information 
over a longer period, and has become a deep learning model 
particularly suitable for processing time-series related tasks. 
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Fig. 1. The repeating units in LSTMs. 

As shown in Fig. 1, the key to LSTMs is the cell state (ct). 
The horizontal line at the top reflects the operation of ct. This 
process can be likened to a conveyor belt, through some 
smaller linear interactions to achieve chain-like information 
transfer. LSTMs have a special gate structure that can 
carefully adjust the information that needs to be deleted and 
added in the unit. The gate is composed of sigmoid function 

(σ), hyperbolic tangent function (tanh) and dot product 
operation. An LSTM unit contains three such gate structures, 
called forget gate (ft), input gate (it) and output gate (ot), to 
complete the maintenance and control of ct.  

Equations (1) to (6) show the functional equations of 
LSTMs. 
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where, Wf, Wi, Wc and Wo are weight matrix, bf, bi, bc and bo 
are offset terms, ht and xt are the output vector and input 
vector of the current unit, (ht-1, xt) indicates that the output 
vector (ht-1) of the previous unit is connected to xt to form a 

longer vector, tc  is the state of the input unit generated 

according to xt. 

B. ARIMAX Mathematical Model 

For a complex system like FCs, the use of a multivariate 
time series analysis model when constructing its prognostic 
strategy can potentially enhance the prognostic performance. 
The ARIMAX model is one of the most commonly used 
multivariate time series analysis models, which can be used 
to explain the relationship between system variables. In the 
long-term prediction, compared with the multilayer 
perceptron artificial neural network (MLP ANN), adaptive 
neuro-fuzzy inference systems (ANFIS) and support vector 
machine (SVM), thanks to the addition of exogenous 
sequences, the ARIMAX model shows better prediction 
accuracy [12]. The following is a simplified ARIMAX 
mathematical model: 
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where yt, xit and t  represent response sequence, independent 

variable sequence and random error sequence, respectively. 

 
i

B  denotes the auto-regression coefficients' multinomial 

of the i-th input time series,  
i

B  denotes the average 

coefficients' multinomial of the i-th input time series, li 
represents the lag degree of the i-th independent variables, 
 B denotes residual series' moving average coefficients' 

multinomial,  B denotes residual series' auto-regression 

coefficients' multinomial, and {at} is white noise time series 
with zero average. 

The prediction process of ARIMAX model is shown in 
Fig. 2. The training set and the exogenous sequence should 
be standardized before fitting the ARIMAX model, so that 



the data can be more easily predicted. Then, the data is input 
to the ARIMAX model as training data. The trained 
ARIMAX model is used to predict the next m hours of data. 
Finally, the actual prediction data is obtained through inverse 
standardization [13]. 
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Fig. 2. The prediction process of ARIMAX model. 

C. The Prognostic Strategies of NSD-LSTMs 

When FCs are used in dynamic load scenarios such as 
electric vehicles, the start-stop process of FCs will cause 
their stack voltage degradation trend to show large 
fluctuations in a short period of time [8]. Although LSTMs 
can selectively forget the unnecessary voltage fluctuations in 
the long-term change trend of FCs stack voltage during time 
series processing, the large-scale fluctuations of the short-
term voltage mentioned above are still easy to cause LSTMs 
to fall into the error of local overfitting. Therefore, this paper 
proposes a novel prognostic strategy that takes into account 
the characteristics of LSTMs and ARIMAX.  

The Prognostic Strategies of NSD-LSTMs
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Fig. 3. The prognosis strategy based on NSD-LSTMs. 

The prognostic strategy based on NSD-LSTMs is shown 
in Fig. 3. In this work, the NSD-LSTMs prognostic strategy 
is developed to predict FC stack voltage evolution. The 
datasets used to test the proposed strategy were obtained 
from FCs aging experiments. Before the implementation of 
the prognostic strategy, each dataset is divided into training 
and test sets. The operation process of NSD-LSTMs 
prognostic strategy is implemented in two phases, i.e. offline 
and online phases. The test set is considered completely 
unknown whether in the online phase or offline phase. When 
verifying the accuracy of the prognostic strategy, the test set 
is used to generate the actual RUL. 

Offline training phase: The offline phase, which is 
displayed on the left half of the bottom of Fig. 3. This phase 
contains two parts: generating NS and training LSTMs. 

 Generating NS 

1) Generate exogenous sequences. Specifically, the 
exogenous sequence is obtained by filtering the training set 
using locally weighted scatterplot smoothing (LOESS) 
method [11]. It can be found that in Fig. 4, the exogenous 
sequence reduces some large voltage fluctuations compared 

with the training set, and the exogenous sequence also retains 
the long-term degradation trend of the stack voltage.  

2) As shown in Fig. 4, the NS is generated by 
simultaneously inputting two time series, the training set and 
the exogenous sequence, into the ARMIAX model. For a 
dataset, NS is unique and fixed. 
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Fig. 4. The stack voltage dataset. 

 Training LSTMs 

In the proposed prognostic strategy, ADAM is used as an 
optimizer to train LSTMs [14]. By setting multiple 
initialization parameters randomly in ADAM, multiple 
LSTMs can be trained to generate multiple prognostic 
models, as LSTMs 1, LSTMs 2, ..., LSTMs n shown in Fig. 3. 
The multiple LSTMs setting benefits to provide diverse 
prediction results, which will be used further to evaluate 
prediction uncertainty. 
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Fig. 5. Single-step prediction and multi-step prediction of LSTMs. 

Online predicting phase: As shown in the green frame of 
Fig. 3, the prediction of stack voltage degradation trend and 
RUL prediction are completed in the online phase. The 
trained LSTMs model can perform single-step prediction and 
multi-step prediction, as shown in Fig. 5. In this study, an 
iterative single-step prediction is deployed to achieve multi-
step prediction of FC stack voltage. As in each single-step 
prediction, the previous predicted value s fed to LSTMs 
models, the prediction error will be accumulated with the 
prediction steps. In this study, NS is added to the avalable 
training data to assist LSTMs in the multi-step prediction 



process and limit the accumulated error. In the online phase, 
multiple multi-step prediction models (NSD-LSTMs 1, 
NSD-LSTMs 2,..., NSD-LSTMs n) are trained at each 
prediction instant. These multi-step models will give n 
different voltage degradation prediction results. Assuming 
that the predictions of multiple NSD-LSTMs models follow 
the standard Gaussian distribution, the confidence interval 
(CI) is configured as 95% probability interval [8], and the 
average value of the predicted values is regarded as the final 
predicted voltage degradation trend. The RUL is estimated 
by comparing the predicted degradation trend with a 
predetermined failure threshold. At the same time, the CI of 
RUL is also set to 95%. 

III. FCS AGING EXPERIMENT AND EVALUATION OF 

PROGNOSTIC STRATEGY 

A. FCs Aging Experiment 

In this paper, through two long-term aging experiments 
of FCs, the stack voltage degradation trend datasets, which 
are also used to predict the corresponding RUL, were 
constructed. 

1). Constant load aging experiment 

The FCs aging experiment of the constant load is 
completed on 1kW Proton Motor 200 (PM200) fuel cell. In 
this experiment, the PM200 FC stack with 96 cells was 
tested under the operating conditions shown in TABLE I.  

TABLE I.  CONSTANT LOAD AGING EXPERIMENTS OPERATING 

CONDITION 

Operating mode Constant load 

Air supply Air blower & filter 

Cooling system DI-water/glycol 

Fuel gas supply 99.99% dry H2@1.5 bar 

Number of cells 96 

Operating hours 10430 h 

Stack temp. 58 °C 

Current density 0.64 A/cm2 

2). Dynamic load aging experiment 

TABLE II.  DYNAMIC LOAD AGING EXPERIMENTS OPERATING 

CONDITION 

Operating mode Dynamic load 

FCs type Open cathode/Dead-end anode 

Active surface 33.63 cm2 

Nominal pressure at hydrogen inlet 1.35 bar 

Number of cells 15 

Nominal output power 73.5 W 

Operating temperature corresponding to current 

Maximum temperature 75 °C 

Maximum current 13.45 A 

Lowest permitted stack voltage 7.5 V 

Pressure interval at hydrogen inlet 0.10 to 0.40 bar 

In the dynamic load aging experiment, the FC stack is 
designed as an open cathode and a dead-end anode structure. 
Some operating conditions are shown in TABLE II. A 24V 
DC fan realizes the functions of air supply and temperature 
adjustment. The hydrogen pressure as fuel is fixed at about 
1.35 bar. In addition, FCs are self-humidifying and a purge 
lasting for 0.5 seconds is activated every 30 seconds. In order 
to get closer to the dynamic operating conditions of FCs in 

electric vehicle applications, a programmable electronic DC 
load was used to set the output current in the experiment. 

B. Dataset Preprocessing 

The data set of FCs stack voltage can be found in Fig. 5 
and Fig. 6, where the abnormal voltage fluctuation occurs in 
the marked positions. These abnormalities are caused by the 
stops and starts of FCs due to peripheral equipment failure or 
fuel replacement. To test the prognostic performance of the 
proposed strategy, from 50% to 90% of final time instant, the 
prediction time points are placed with increment of 1%. That 
means that prognostic procedure is implemented for 40 times 
for each dataset. For instance, a prognostic point is set at 70% 
instant, the part before the point is called the training set, and 
the part after the point is called the test set.  
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Fig. 6. Dataset of stack voltage of dynamic load FCs. 

C. Evaluation Criteria 

It is necessary to formulate evaluation criteria for 
prognostic strategies, which can accurately and 
comprehensively evaluate a prediction model. This article 
sets two evaluation criteria, the root-mean-square error 
(RMSE) and the relative error (RE), where RMSE evaluates 
the training effect of the LSTMs model in the offline phase, 
and RE is used in the online phase to evaluate the accuracy 
of the RUL given by the prognostic strategy. The 
mathematical description of RMSE and RE can be found in 
equations (8)-(9) 
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1 n

j j
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where, yj is the actual stack voltage observation value in the 

test set, and jy  is the predicted voltage value output by the 

trained LSTMs model in the offline phase.  

 100%RE RUL RUL RUL    

where, RUL is the actual RUL generated by the test set, and 

RUL  is the RUL predicted by the proposed prognostic 

strategy. 

D. Prognostic Experiment and Discussion 

The program code used in the FCs prognostic experiment 
was developed in Matlab R2019b. The specific operating 



environment is as follows. Central Processing Unit (CPU): 
Intel (R) Core (TM) i5-3230M CPU @ 2.60GHz; memory 
capacity (type): 8 GBytes (DDR3); operating system: 
Microsoft Windows 7 (64-bit). 

1) Evaluation of LSTMs prediction model 

The training hyperparameters of LSTMs are configured 
similarly to a regular NNs. The ADAM optimizer is selected 
for training the LSTMs model, and the number of hidden 
units is set to 200. The mini batch size is specified as 64, and 
the maximum training epoch is 150. To avoid gradient 
explosion, the gradient threshold is set to 1. The initial 
learning rate is specified as 0.001, and after 125 epochs 
training, the learning rate is reduced by multiplying by a 
factor of 0.2.  

 

Fig. 7. LSTMs single-step prediction. 

 

Fig. 8. RMSE of prediction result. 

By comparing the single-step predicted voltage value 
with the observed voltage value in the test set and calculating 
the RMSE, the predicted performance of the trained LSTMs 
model is evaluated. As shown in Fig. 7 and Fig. 8, the single-
step prediction results under constant load operating 
conditions when the split point between training and test data 
is selected to be 50%. The prediction results show that the 
RMSE of the prediction results of the LSTMs model is 
0.0079686, which is acceptable for an aging experiment with 
a total operating time of 14,300 hours. By changing the split 
point, multiple tests were conducted to verify the accuracy of 
the LSTMs model prediction. It is worth mentioning that this 
test can also be modified to set the parameters of LSTMs in 
the offline phase. The same test was also performed on the 
dynamic load FCs dataset and presented a consistent 
conclusion. 

2) Evaluation of NSD-LSTMs Prognostic model 

Limited by paper length, only results concerning dynamic 
data are presented and discussed in the sequel. The NSD-
LSTMs models were used to perform 20 prognostic 
experiments at the 57% split point. As shown in Fig. 9, 
colored lines represent the results of multiple prognostic. The 
prognostic results can be summarized as the following three 
points: First, multiple prognostic results show ideal 
consistency, which shows that the proposed prognostic 
model can work stably. Second, in the vicinity of the split 
point, the prognostic results have decreased significantly, this 
is because NS played a guiding role. At the same time, this 
also seems to be related to the severe voltage fluctuations 
before the split point. Third, the prognostic models 
remember the potential voltage degradation trends in the 
training set, and filter out useless voltage fluctuation details.  

 

Fig. 9. Multiple prognostic through NSD-LSTMs model. 

At each time point in the prediction phase, the average 
and CI of multiple prognostic results are calculated. As 
shown in Fig. 10, the red line is the average value, which is 
the final predicted degradation trend, and the green line 
represents the upper and lower limits of CI. The cyan line is 
the degradation trend predicted by the classic LSTMs model, 
and the magenta line is the NS generated by the ARIMAX 
model. The time required for the predicted degradation trend 
to reach the threshold is recorded, which is noted as the 
predicted RUL. 

 

Fig. 10. Prediction of FCs stack voltage degradation trend. 

The prediction time slides from 50% to 90% of the whole 
data time horizon with an increment of 1%. The RUL can be 



estimated at each prediction time, as shown in Fig. 11. The 
RE  can be calculated accordingly in combination with the 
actual RUL, as shown in Fig. 12. The results show that RE 
shows an related trend of fluctuations. The smallest RE in the 
test results is 0.34%, which means that the RUL prediction 
accuracy rate at this time is 99.66%. 

700 800 900 1000 1100 1200 1300 1400
0

200

400

600

800

1000

R
U
L
 
(
h
)

Time (h)

 Predicted RUL
 Actual RUL

Dynamic load FCs

 

Fig. 11. RUL prediction at different moments. 
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Fig. 12. The RE of the predicted RUL 

IV. CONCLUSION 

This paper presents an NSD-LSTMs prognostic model. 
This prognostic strategy can assist in the prediction of stack 
voltage degradation trends and RUL of FCs in dynamic 
operating scenarios such as electric vehicles. In order to 
verify the correctness of the proposed method, the aging 
experimental data of constant load and dynamic load FCs 
were used. Under the guidance of NS, the trained LSTMs 
can obviously better predict the degradation trend of the FCs 
stack. A series of NSD-LSTMs models generated using 
different initial values can predict multiple degradation 
trends and show appropriate consistency. By testing the 
proposed prognostic models with real experimental data, it 

shows that the proposed model can accurately predict the 
RUL of FCs and provide reliable reference information in 
different operating conditions. 
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