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Introduction

Availability of genetic data has increased tremendously due to advances in sequencing technologies and reduced costs [START_REF] Mardis | DNA sequencing technologies: 2006-2016[END_REF]. The vast amount of human genetic data is used in a wide range of fields, from medicine to evolution. Despite the advances, cost is still a limiting factor and more data is always welcome, especially in population genetics and genome-wide association studies (GWAS) which usually require substantial amounts of samples. Partially related to the costs but also to the research bias toward studying populations of European ancestry, many autochthonous populations are under-represented in genetic databases, diminishing the extent of the resolution in many studies [START_REF] Cann | A Human Genome Diversity Cell Line Panel[END_REF][START_REF] Mallick | The Simons Genome Diversity Project: 300 genomes from 142 diverse populations[END_REF][START_REF] Popejoy | Genomics is failing on diversity[END_REF][START_REF] Sirugo | The Missing Diversity in Human Genetic Studies[END_REF]. Additionally, the majority of the data held by government institutions and private companies is considered sensitive and not easily accessible due to privacy issues, exhibiting yet another barrier for scientific work. A class of machine learning methods called generative models might provide a suitable solution to these problems.

Generative models are used in unsupervised machine learning to discover intrinsic properties of data and produce new data points based on those. In the last decade, generative models have been studied and applied in many domains of machine learning [START_REF] Libbrecht | Machine learning applications in genetics and genomics[END_REF][START_REF] Zhang | StackGAN: Text to Photo-Realistic Image Synthesis with Stacked Generative Adversarial Networks[END_REF][START_REF] Rolnick | Generative models and abstractions for large-scale neuroanatomy datasets[END_REF]. There have also been a few applications in the genetics field [START_REF] Davidsen | Deep generative models for T cell receptor protein sequences[END_REF][START_REF] Liu | HicGAN infers super resolution Hi-C data with generative adversarial networks[END_REF][START_REF] Tubiana | Learning protein constitutive motifs from sequence data[END_REF][START_REF] Shimagaki | Selection of sequence motifs and generative Hopfield-Potts models for protein families[END_REF], one specific study focusing on generating DNA sequences via deep generative models to capture protein binding properties [START_REF] Killoran | Generating and designing DNA with deep generative models[END_REF]. Among the various generative approaches, we focus on two of them in this study, generative adversarial networks (GANs) and restricted Boltzmann machines (RBMs). GANs are generative neural networks which are capable of learning complex data distributions in a variety of domains [START_REF] Goodfellow | Generative Adversarial Networks (GANs) -Tutorial[END_REF]. A GAN consists of two neural networks, a generator and a discriminator, which compete in a zero-sum game (Supplementary Figure 1). During training, the generator produces new instances while the discriminator evaluates their authenticity. The training objective consists in learning the data distribution in a way such that the new instances created by the generator cannot be distinguished from true data by the discriminator.

Since their first introduction, there have been several successful applications of GANs, ranging from generating high quality realistic imagery to gap filling in texts [START_REF] Ledig | Photorealistic single image super-resolution using a generative adversarial network[END_REF][START_REF] Fedus | MaskGAN: Better Text Generation via Filling in the[END_REF].

GANs are currently the state-of-the-art models for generating realistic images [START_REF] Brock | Large Scale GAN Training for High Fidelity Natural Image Synthesis[END_REF].

A restricted Boltzmann machine, initially called Harmonium, is another generative model which is a type of neural network capable of learning probability distributions through input data [START_REF] Smolensky | Information processing in dynamical systems: Foundations of harmony theory[END_REF][START_REF] Teh | Rate-coded restricted boltzmann machines for face recognition[END_REF]. RBMs are two-layer neural networks consisting of an input (visible) layer and a hidden layer (Supplementary Figure 2). The learning procedure for the RBM consists in maximizing the likelihood function over the visible variables of the model. This procedure is done by adjusting the weights such that the correlations between the visible and hidden variables on both the dataset and sampled configurations from the RBM converge. Then RBM models recreate data in an unsupervised manner through many forward and backward passes between these two layers (Gibbs sampling), corresponding to sampling from the learned distribution. The output of the hidden layer goes through an activation function, which in return becomes the input for the hidden layer. Although mostly overshadowed by recently introduced approaches such as GANs or Variational Autoencoders [START_REF] Kingma | Auto-Encoding Variational Bayes[END_REF], RBMs have been used effectively for different tasks (such as collaborative filtering for recommender systems, image or document classification) and are the main components of deep belief networks [START_REF] Hinton | Reducing the dimensionality of data with neural networks[END_REF][START_REF] Hinton | Learning multiple layers of representation[END_REF][START_REF] Larochelle | Classification using discriminative restricted boltzmann machines[END_REF].

Here we propose and compare a prototype GAN model along with an RBM model to create Artificial Genomes (AGs) which can mimic real genomes and capture population structure along with other characteristics of real genomes. These prototypes are compared to alternative generative models based on multiple summaries of the data and we explore whether a meaningful encoding of real data has been learned. Finally, we investigate the potential of using AGs as proxies for private datasets that are not accessible in order to address various genomic tasks such as imputation or selection scans.

Results

Reconstructing genome wide population structure:

Initially we created AGs with GAN, RBM, and two simple generative models for comparison: a Bernoulli and a Markov chain model (see Materials & Methods) using 2504 individuals (5008 haplotypes) from 1000 Genomes data [START_REF] Auton | A global reference for human genetic variation[END_REF], spanning 805 SNPs from all chromosomes which reflect a high proportion of the population structure present in the whole dataset [START_REF] Colonna | Human genomic regions with exceptionally high levels of population differentiation identified from 911 whole-genome sequences[END_REF]. Both GAN and RBM models capture a good portion of the population structure present in 1000 Genomes data while the other two models could only produce instances centered around 0 on principal component analysis (PCA) space (Figure 1). All major modes, corresponding to African, European and Asian genomes, are well represented in AGs produced by GAN and RBM models and absent for the Markovian and Bernouilli models. Wasserstein distances between the 2D PCA representations of real versus generated individuals were closer to 0 for GAN (0.006), RBM (0.006) and the test set (0.01) than for the Markovian (0.124) and Bernoulli (0.240) models. Uniform manifold approximation and projection (UMAP) mapping results (performed on the combined dataset) lead to similar conclusions (Wasserstein 2D distance from real for GAN: 0.021, RBM: 0.091, Markovian: 0.088, Bernoulli: 0.127) although the RBM distribution is slightly shifted compare to the real one (Supplementary Figure 3). We additionally computed the distribution of pairwise differences of haploid genomes within a single dataset or between the real and artificial datasets (Supplementary Figure 4). The real, GAN and RBM distributions present similar multimodal patterns reflecting the underlying population structure (in particular the RBM distribution exhibits three modes corresponding to the average distances between European and Asian, European and African, or African and Asian populations. The overall real pairwise distribution is captured as accurately by the GAN (Wasserstein distance between real and generated distributions: 3.24) and RBM (6.21) models than by a test set (5.06) and those clearly outperform the binomial (42.20) and Markovian (37.92) models. No real genome was copied into the AGs (0 identical pair). Since GANs and RBMs showed an excellent performance for this use case, we further explored other characteristics using only these two models.

Reconstructing local high-density haplotype structure:

To evaluate if high quality artificial dense genome sequences can also be created by generative models, we applied the GAN and RBM methods to a 10K SNP region using (i) the same individuals from 1000 Genomes data and (ii) 1000 Estonian individuals from the high coverage Estonian Biobank [START_REF] Leitsalu | Cohort profile: Estonian biobank of the Estonian genome center, university of Tartu[END_REF] to generate artificial genomes. PCA results of AGs spanning consecutive 10K SNPs show that both GAN and RBM models can still capture the relatively toned-down population structure (Supplementary Figure 5; 2D Wasserstein distances for 1000 Genomes and Estonian respectively: 0.004 and 0.011 for GAN, 0.011 and 0.006 for RBM, 0.004 and 0.002 for test sets) as well as the overall distribution of pairwise distances (Supplementary Figure 6). Looking at the allele frequency comparison between real and artificial genomes, we see that especially GAN performs poorly for low frequency alleles, due to a lack of representation of these alleles in the AGs whereas RBM seems to have wider distribution over all frequencies (Supplementary Figure 7; correlation between real and generated for 1000 Genomes and Estonian respectively: 0.99 and 0.91 for GAN, 0.94 and 0.94 for RBM, 0.99 and 0.99 for test sets). The overall pairwise distributions are fitted better by the RBM than the GAN (Wasserstein distance 117 and 227 for GAN, 38 and 26 for RBM, 22 and 16 for test sets). On the other hand, the distribution of the distance of real genomes to the closest AG neighbour shows that GAN model, although slightly underfitting, outperforms RBM model, for which an excess of small distances points towards overfitting, visible by the distribution being closer to the zero point (Supplementary Figure 8).

Additionally, we performed linkage disequilibrium (LD) analyses comparing artificial and real genomes to assess how successfully the AGs imitate short and long range correlations between SNPs. Pairwise LD matrices for real and artificial genomes all show a similar block pattern demonstrating that GAN and RBM accurately captured the overall structure with SNPs having higher linkage in specific regions (Figure 2a). However, plotting LD as a function of the SNP distance showed that all models capture weaker correlation, with RBM outperforming the GAN model perhaps due to its slightly overfitting characteristic (Figure 2b). However, correlations between real and generated LD across all pairs were similar for GAN and RBM (for 1000 Genomes and Estonian respectively: 0.95 and 0.97 for GAN, 0.94 and 0.98 for RBM) and slightly lower than for test sets (0.99 and 1.0) (Supplementary Figure 9). LD can be seen as a two-point correlation statistic, we also investigated 3-point correlation statistics, that represent the amount of correlation between triplets of SNPs and thus characterize more complex correlation patterns in datasets (Supplementary Figure 10). To further determine the haplotypic integrity of AGs, we performed ChromoPainter [START_REF] Lawson | Inference of population structure using dense haplotype data[END_REF] and Haplostrips [START_REF] Marnetto | Haplostrips: revealing population structure through haplotype visualization[END_REF] analyses on AGs created using Estonians as the training data. We did not observe separate clustering of real and artificial genomes with Haplostrips (Supplementary Figure 11). However, the majority of the AGs produced via GAN model displayed an excess of short chunks when painted against 1000 Genomes individuals, whereas we do not observe this for RBM AGs (Supplementary Figure 12). Average European chunk length over 100 individuals for GAN AGs was 44.21%, RBM AGs was 54.92%, whereas for real Estonian genomes, it was 62.83%.

After demonstrating that our models generated realistic AGs according to the described summary statistics, we investigated further whether they respected privacy by measuring the extent of overfitting. We calculated two metrics of resemblance and privacy, the nearest neighbour adversarial accuracy (AATS) and privacy loss presented in a recent study [START_REF] Yale | Privacy Preserving Synthetic Health Data[END_REF]. AATS score measures whether two datasets were generated by the same distribution based on the distances between all data points and their nearest neighbours in each set. When applied to artificial and real datasets, a score between 0.5 and 1 indicates underfitting, between 0 and 0.5 overfitting (and likely privacy loss), and exactly 0.5 indicates that the datasets are indistinguishable. By using an additional real test set, it is also possible to calculate a privacy loss score that is positive in case of information leakage, negative otherwise, and approximately ranges from -0.5 to 0.5.

Computed on our generated data, both scores support haplotypic pairwise difference results confirming low privacy loss for GAN AGs with a score similar to the one of an independent Estonian test set never used during training (GAN: 0.027 ; Test: 0.021) and the overfitting nature of RBM AGs with a high risk of privacy leakage (RBM privacy loss: 0.327; Supplementary Figure 13). Using an alternative sampling scheme for the RBM (see Material and Methods) slightly reduced privacy loss (restrained under 0.2 for low number of epochs; Supplementary Figure 14). A dataset produced by this alternative scheme had only a slight decrease in quality of the summary statistics while the privacy loss was reduced to 0.1. For this scheme, the correlation between generated and true allele frequencies was 0.92 (instead of 0.95 for the previous RBM and 0.98 for GAN), the correlation for LD values was 0.97 (RBM:0.98, GAN:0.97), the 2D-Wasserstein distance for the PCA representations was 0.026 (RBM: 0.006, GAN: 0.011, RBM sampling initialized randomly: 0.339), the Wasserstein distance for the pairwise distribution was 97 (RBM: 26, GAN: 227, RBM sampling initialized randomly: 689).

Selection tests:

We additionally performed cross population extended haplotype homozygosity (XP-EHH) and population branch statistic (PBS) on a 3348 SNP region homogenously dispersed over chromosome 15 to assess if AGs can also capture selection signals.

Both XP-EHH and PBS results provided high correlation between the scores of real and artificial genomes (Figure 3). Similar peaks were observed for real and artificial genome datasets (see Discussion).

Imputation:

Since it has been shown in previous studies that imputation scores can be improved using additional population specific reference panels [START_REF] Gurdasani | The African Genome Variation Project shapes medical genetics in Africa[END_REF][START_REF] Mitt | Improved imputation accuracy of rare and low-frequency variants using population-specific high-coverage WGS-based imputation reference panel[END_REF], as a possible future use case, we tried imputing real Estonian genomes using 1000 Genomes reference panel and additional artificial reference panels with Impute2 software [START_REF] Howie | Genotype imputation with thousands of genomes. G3 Genes, Genomes[END_REF]. Both combined RBM AG and combined GAN AG panels outperformed 1000 Genomes panel for the lowest MAF bin (for MAF < 0.05, 2.5% and 4.4% improvement respectively) which had 5926 SNPs out of 9230 total (Figure 4). Also mean info metric over all SNPs were intermediate between the regular imputation scheme (1000 Genomes panel only) and the 'perfect' scheme (panel including private Estonian samples). The scores were 1.3%, 2.3%, and 6.9% higher for the combined RBM, GAN and real Estonian panels respectively, compared to the panel with only 1000 Genomes samples. However, aside from the lowest MAF bin, 1000 Genomes panel slightly outperformed both concatenated AG panels for all the higher bins (by 0.05% to 0.6% depending on the frequency bin). This might be a manifestation of haplotypic deformities in AGs that might have disrupted the imputation algorithm.

Data encoding and visualization via RBM model:

Furthermore, similarly to tSNE and UMAP, RBMs perform a non-linear dimension reduction of the data and provides a suitable representation of a genomic dataset as a by-product based on the non-linear feature space associated to the hidden layer (Materials & Methods). As Diaz-Papkovich et al [START_REF] Diaz-Papkovich | Revealing multi-scale population structure in large cohorts[END_REF], we found that the RBM representation differs from the linear PCA ones (Supplementary Figure 15), although the general structure identified by the two lower rank components is highly similar.

Like in a PCA, African, East Asian, and to a lesser extent, European populations stand out on the two first components yet the relative positions differ slightly from PCA to RBM. In particular, the Finnish appear slightly more isolated from the other European populations on the first component of the RBM. South Asians are located at the center separated from Europeans, partially overlapping with American populations, and stand out at dimension 5 and higher (versus 3 for the PCA). The third RBM component exhibit a stronger gradient than PCA for Peruvian and Mexican individuals and might reflect their gradient in Native American ancestry. Finally, RBM still exhibits population structure in components higher than 7, contrary to PCA. Interestingly when screening the hidden node activations, we observed that different populations or groups activate different hidden nodes, each one representing a specific combination of SNPs, thereby confirming that the hidden layer provides a meaningful encoding of the data (Supplementary Figure 16).

Comparison with alternative generative models:

We additionally performed tests to compare AGs with advanced methods used to generate genomes. One such method is the copying model [START_REF] Li | Modeling Linkage Disequilibrium and Identifying Recombination Hotspots Using Single-Nucleotide Polymorphism Data[END_REF] implemented in HAPGEN2 [START_REF] Su | HAPGEN2: Simulation of multiple disease SNPs[END_REF]. Although genomes generated via this approach performed very well in terms of SFS, LD and PCA, there was extensive overfitting and privacy loss and multiple individuals (747 identical haplotypes) were directly copied from the original dataset (Supplementary Figure 17).

Another commonly used approach to generate genomes is coalescent simulations.

Although it is inherently difficult to make a fair comparison since coalescent simulations require additional (demographic) parameters and do not provide the desired one-to-one SNP correspondence (see Discussion), we compared SFS and LD decay of AGs with genomes simulated via a previously inferred demographic model [START_REF] Gutenkunst | Inferring the joint demographic history of multiple populations from multidimensional SNP frequency data[END_REF] using HapMapII genetic map [START_REF] Frazer | A second generation human haplotype map of over 3.1 million SNPs[END_REF] implemented in stdpopsim [START_REF] Adrion | A community-maintained standard library of population genetic models[END_REF][START_REF] Kelleher | Efficient Coalescent Simulation and Genealogical Analysis for Large Sample Sizes[END_REF][START_REF] Tian | Estimating the Genome-wide Mutation Rate with Three-Way Identity by Descent[END_REF][START_REF] Lander | Initial sequencing and analysis of the human genome[END_REF]. Initially, we performed PCA and checked the allele frequency distribution compared to real genomes (Supplementary Figure 18). The reasoning behind PCA was to demonstrate that coalescent simulation genomes cannot be combined with real genomes since they exist in different planes. Since we had selected SNPs for 1000 Genomes and Estonian datasets to be overlapping, we removed alleles below 0.1 frequency from all datasets to eliminate biases and analyzed LD decay and allele frequency spectrum (Supplementary Figure 19). For both summary statistics, coalescent simulation genomes performed well. Still, direct comparison of frequencies SNPs by SNPs, LD pairs by pairs, PCA, AATS or distributions of pairwise distances between real and generated data are not feasible for coalescent simulations. Notably, the demographic model we adopted was optimized for another European population (CEU from the

Discussion

In this study, we applied generative models to produce artificial genomes and evaluated their characteristics. To the best of our knowledge, this is the first application of GAN and RBM models in the population genetics context, displaying an overall promising applicability. We showed that population structure and frequency-based features of real populations can successfully be preserved in AGs created using GAN and RBM models. Furthermore, both models can be applied to sparse or dense SNP data given a large enough number of training individuals. Our different trials showed that the minimum required number of individuals for training is highly variable (i.e. to avoid training failures such as mode collapse or incomplete training without converging to an ideal mode) depending on the unknown dimension of the dataset, which is linked to the type of data to be generated and the population(s). Since haplotype data is more informative, we created haplotypes for the analyses but we also demonstrated that the GAN model can be applied to genotype data too, by simply combining two haplotypes if the training data is not phased (see Materials & Methods). In addition, we showed that it might be possible to generate AGs with simple phenotypic traits through genotype data (see Supplementary Table and Supplementary Text). Even though there were only two simple classes, blue and brown eye color phenotypes, generative models can be improved in the future to hold the capability to produce artificial datasets combining AGs with multiple phenotypes One major drawback of the proposed models is that, due to computational limitations, they cannot yet be harnessed to create whole artificial genomes but rather snippets or sequential dense chunks. It should be possible to create whole genomes by independently training and generating multiple chunks from different genomic regions using a single uniform population such as Estonians and stitching them together to create a longer, genome-like, sequence for each AG individual. To mitigate possible disruptions in the long-range haplotype structure, these chunks can be defined based on "approximately independent LD blocks" [START_REF] Berisa | Approximately independent linkage disequilibrium blocks in human populations[END_REF]. Yet for data with population structure, it would be difficult to decide which combination of chunks can form a single genome.

Statistics such as FST or generative models conditioned on group labels might be utilized to overcome this issue. On the other hand, a collection of chunks covering the whole genome can be used for analyses based solely on allele frequencies without any stitching. A technically different approach would be to adapt convolutional GANs for AG generation [START_REF] Radford | Unsupervised Representation learning with Deep Convolutional GANs[END_REF].

Another problem arose due to rare alleles, especially for the GAN model. We showed that nearly half of the alleles become fixed in the GAN AGs in the 10K SNP dataset, whereas RBM AGs capture more of the rare alleles present in real genomes (Supplementary Figure 20). A known issue in GAN training is mode collapse [START_REF] Salimans | Improved techniques for training GANs[END_REF], which occurs when the generator fails to cover the full support of the data distribution. This type of failure could explain the inability of GANs to generate rare alleles. For some applications that depend on rare alleles, GAN models less sensitive to mode dropping may be a promising alternative [START_REF] Arjovsky | Wasserstein generative adversarial networks[END_REF][START_REF] Lucas | Mixed batches and symmetric discriminators for GAN training[END_REF][START_REF] Dieng | Prescribed generative adversarial Accepted[END_REF].

An important use case for the AGs in the future might be creating public versions of private genome banks. Through enhancements in scientific and technology knowledge, genetic data becomes more and more sensitive in terms of privacy. AGs might offer a versatile solution to this delicate issue in the future, protecting the anonymity of real individuals. They can be utilized as input for downstream operations such as forward steps of a specific evolutionary process for which they can become variations of the real datasets (similar to bootstrap), or they can be the sole input when the real dataset is not accessible. Initializing a simulation with real data is a procedure that is commonly used in population genetics [START_REF] Martin | Determination of genetic relatedness from low-coverage human genome sequences using pedigree simulations[END_REF][START_REF] Fortes-Lima | Complex genetic admixture histories reconstructed with Approximate Bayesian Computations[END_REF]. Our results showed that GAN AGs are possibly underfitting while, on the contrary, RBM AGs are overfitting, based on distribution of minimum distance to the closest neighbour (Supplementary Figure 8) and AATS scores (Supplementary Figure 13a), although we showed how overfitting could be restrained by integrating AATS scores within our models as a criterion for early stopping in training (before the networks start overfitting) and by modifying the RBM sampling scheme. In the context of the privacy issue, GAN AGs have a slight advantage since underfitting and low leakage information is preferable. More distant AGs would hypothetically be harder to be traced back to the original genomes. We also tested the sensitivity of the AATS score and privacy loss (Supplementary Figure 21). It appears that both scores are affected very slightly when we add only a few real genomes to the AG dataset from the training set. Although this case is easily detectable by examining the extreme left tail of the pairwise distribution, it advocates for combining multiple privacy loss criteria and developing other sensitive measurement techniques for better assessment of generated AGs. Additionally, even though we did not detect exact copies of real genomes in AG sets created either by RBM or GAN models, it is a very complicated task to determine if the generated samples can be traced back to the originals. Reliable measurements need to be developed in the future to assure complete anonymity of the source individuals given the released AGs. In particular, we will investigate whether the differential privacy framework is performant in the context of large population genomics datasets [START_REF] Dwork | Calibrating noise to sensitivity in private data analysis[END_REF][START_REF] Torkzadehmahani | DP-CGAN : Differentially Private Synthetic Data and Label Generation[END_REF].

Imputation results demonstrated promising outcomes especially for population specific low frequency alleles. However, imputation with both RBM and GAN AGs integrated reference panels showed slight decrease of info metric for higher frequency alleles compared to only 1000 Genomes panel (Figure 4). Increasing the number of AGs did not affect the results significantly. We initially speculated that this decrease might be related to the disturbance in haplotypic structure and therefore, tried to filter AGs based on chunk counts from ChromoPainter results, preserving only AGs which are below the average chunk count of real genomes. The reasoning behind this was to preserve most realistic AGs with undisturbed chunks. Even with this filtering, slight decrease in higher MAF bins was still present. Yet results of implementation with AGs for low frequency alleles and without AGs for high frequency ones could be combined to achieve the best performance. Although being not very practical in its current form, future improved models can become very useful, largely for GWAS studies in which imputation is a common application to increase resolution. Different generative models such as MaskGAN ( 16) which demonstrated good results in text gap filling might also be adapted for genetic imputation. RBM is possibly another option to be used as an imputation tool directly by itself, since once the weights have been learned, it is possible to fix a subset of the visible variables and to compute the average values of the unobserved ones by sampling the probability distribution (in fact, it is even easier than sampling entirely new configurations since the fixed subset of variables will accelerate the convergence of the sampling algorithm).

Scans for detecting selection are another promising use case for AGs as high-fidelity alternatives to real genomes. The XP-EHH and PBS scores computed on AGs were highly correlated with the scores of real genomes. In particular, the highest peak we obtained for Estonian genomes was also present in AGs, although it was the second highest peak in RBM XP-EHH plot (Figure 3). This peak falls within the range of skin color associated SLC24A5 gene, which is potentially under positive selection in many European populations [START_REF] Basu Mallick | The Light Skin Allele of SLC24A5 in South Asians and Europeans Shares Identity by Descent[END_REF].

As an additional feature, training an RBM to model the data distribution gives access to a latent encoding of data points, providing a potentially easier to use representation of data (Supplementary Figure 15). Future works could enhance our current GAN model to also provide an encoding mechanism, in the spirit of ( 53), ( 54) or [START_REF] Donahue | Adversarial Feature Learning[END_REF]. It is expected that these interpretable representations of the data will be relevant for downstream tasks [START_REF] Chen | InfoGAN: Interpretable representation learning by information maximizing generative adversarial nets[END_REF] and can be used as a starting point for various population genetics analyses.

We want to highlight that AGs are created without requiring the knowledge of the underlying evolutionary history, or the pre-processing bioinformatic pipelines (SNP ascertainment, data filtering). Unlike coalescent simulations, for which one needs to control parameters, AGs in their current form are solely constructed on raw information of real genomes. Our method offers a direct way to generate artificial genomes for any original dataset. On the other hand, the genomes generated using a coalescent simulator required substantial upstream work (from previous studies) as they were based on an explicitly parameterized model that had been inferred on real data using advanced methods for demographic reconstruction. In particular, this approach is not suitable when we want to generate AGs for highly complex datasets (eg full 1000 Genomes) for which it is arduous to infer a full evolutionary model accurately fitting the data and even more so, to mimic all the biases induced by potentially unknown bioinformatic pipelines. Last but not least, this coalescent generated data cannot be merged directly with real public genomes because there is no direct correspondence between the real SNPs and those generated, and coalescent approaches might struggle to match, among other things, real complex patterns of LD [START_REF] Su | HAPGEN2: Simulation of multiple disease SNPs[END_REF]. To summarize, while the classical coalescent simulator only allows unconditional sampling of a new haplotype h from a predefined distribution P(h|θ) where the demographic parameters θ have to be given, our generative models learn how to generate h from the conditional sampling distribution (CSD) P(h|h1,...hn), where (hi) are the observed haplotypes. Computing, approximating or sampling from this CSD is known to be a difficult task [START_REF] Li | Modeling Linkage Disequilibrium and Identifying Recombination Hotspots Using Single-Nucleotide Polymorphism Data[END_REF][START_REF] Paul | An accurate sequentially markov conditional sampling distribution for the coalescent with recombination[END_REF][START_REF] Paul | A principled approach to deriving approximate conditional sampling distributions in population genetics models with recombination[END_REF].

We believe it will be possible in the future to extend our approach with conditional GAN/RBM methods to allow fine control over the composition of artificial datasets based on (i) additional labels such as population names or any environmental covariate, or (ii) evolutionary parameters. While the former is based only on real datasets, the latter requires training on genetic simulations (coalescent-based or forward) and has a different goal: it may provide an alternative simulator and/or permit inference of evolutionary models.

We envision three main applications of our generative methods: (i) improve the performance of genomic tasks such as imputation, ancestry reconstruction, GWAS studies, by augmenting public genomic panels with AGs that serve as proxies for private datasets that are not accessible; (ii) enable preliminary genomic analyses and proof-of-concept before committing to long term application protocols and/or to facilitate future collaborations to access private datasets; (iii) use the encoding of real data learned by generative models as a starting input of various tasks, such as recombination, demography or selection inference or yet unknown tasks.

Although there are currently some limitations, generative models will most likely become prominent for genetic research in the near future with many promising applications. In this work, we demonstrated the first possible implementations and use of AGs, particularly to be used as realistic surrogates of real genomes which can be accessed publicly without privacy concerns.

Materials & Methods

Data:

We used 2504 individual genomes from 1000 Genomes Project (1000 Genomes Project Consortium 2015) and 1000 individuals from Estonian Biobank [START_REF] Leitsalu | Cohort profile: Estonian biobank of the Estonian genome center, university of Tartu[END_REF] to create artificial genomes (AGs). Additional 2000 Estonian genomes were used as a test dataset. Another Estonian dataset consisting of 8678 individuals which were not used in training were used for imputation via Impute2 software [START_REF] Howie | Genotype imputation with thousands of genomes. G3 Genes, Genomes[END_REF]. Analyses were applied to a highly differentiated 805 SNPs selected as a subset from ( 25 

GAN model:

We implemented the GAN model using python-3.6, Keras 2.2.4 deep learning library with TensorFlow backend (58), pandas 0.23.4 (59) and numpy 1.16.4 [START_REF] Oliphant | SciPy: Open source scientific tools for Python[END_REF]. We implemented a fully-connected generator network consisting of an input layer with the size of the latent vector size 600, one hidden layer with size proportional to the number of SNPs as SNP_number/1.2 rounded, another hidden layer with size proportional to the number of SNPs as SNP_number/1.1 rounded and an output layer with the size of the number of SNPs. The latent vector is drawn from a Gaussian distribution with zero-mean and unit-variance. The discriminator is also a fully-connected network including an input layer with the size of the number of SNPs, one hidden layer with size proportional to the number of SNPs as SNP_number/2 rounded, another hidden layer with size proportional to the number of SNPs as SNP_number/3 rounded and an output layer of size 1. All layer outputs except for output layers have LeakyReLU activation functions with leaky_alpha parameter 0.01 and L2 regularization parameter 0.0001. The generator output layer activation function is tanh and discriminator output layer activation function is sigmoid. Both discriminator and combined GAN were trained thanks to the Adam optimization algorithm with binary cross entropy loss function. We set the discriminator learning rate as 0.0008 and combined GAN learning rate as 0.0001. For 5000 SNP data, the discriminator learning rate was set to 0.00008 and the combined GAN learning rate was set to 0.00001. The training to test dataset ratio was 3:1. We used batch size of 32 and trained all datasets up to 20000 epochs.

We also investigated stopping the training based on AATS scores. The score was calculated at 200 epoch intervals. For 805 SNP data, AATS converged very quickly close to optimum 0.5 score. However, the difference between AAtruth and AAsyn scores indicates possible overfitting to multiple data points so it was difficult to define a stopping point. For 10K SNP data, convergence was observed after ~30K epochs (to around 0.75) and reduced the number of fixed alleles in AGs but the gain was very minimal (Supplementary Figure 22). Additionally, GAN was prone to mode collapse especially after 20K epochs which resulted in multiple failed training attempts.

Therefore, this study presents results for AGs generated at 20k epochs, since the first two PCs of AGs combined with real genomes were visually coherent for all targeted datasets (Figure 1, Supplementary Figure 5). Note that it could be possible to utilize AGs before or after the 20K epoch point. During each batch in the training, when only the discriminator is trained, we applied smoothing to the real labels [START_REF] Mardis | DNA sequencing technologies: 2006-2016[END_REF] by vectoral addition of random uniform distribution via numpy.random.uniform with lower bound 0 and upper bound 0.1. Elements of the generated outputs were rounded to 0 or 1. After the training is complete, it is possible to generate as many AGs as desired. The code is available at "https://gitlab.inria.fr/ml_genetics/public/artificial_genomes".

RBM model:

The They are there to build dependencies among visible variables which by default are independent, via the interaction strength W. The weight matrix can be used in two different manners to interpret the learned model:

1. feature wise: for each hidden variable j the vector {𝑊 𝑖𝑗 , 𝑖 = 1, … 𝑁 𝑣 } represents a certain combination of SNPs which, if activated, will contribute to activate or inhibit this feature j. These features are expected to be characteristic of the data structure (such as the population structure) and the vector of feature activations should provide a suitable representation of individuals. If 𝑁 𝑣 < 𝑁 ℎ this corresponds to compressing the input representation. hidden nodes no improvement were observed during the learning. The learning in general is quite stable, in order to have a smooth learning curve, the learning rate was set between 0.001 and 0.0001 and we used batch size of 32. The negative term of the gradient of the likelihood function was approximated using the PCDk method [START_REF] Brügge | The flip-the-state transition operator for restricted Boltzmann machines[END_REF], with k=10 and 100 of persistent chains. As a stopping criterion, we looked at when the AATS score converges to the ideal value of 0.5 when sampling the learned distribution. When dealing with large and sparse datasets for selection tests, RBM model did not manage to provide reasonable AATS scores because the sampling is intrinsically difficult for large systems with strong correlation. In that case, we used visually coherent PCA results as a stopping criterion. Once the RBM is trained over the dataset, it is possible, in order to avoid running a very long Monte Carlo Markov Chain, to initialize the chain on the training set. However, in the case of the large dataset (Estonian), we observe that the RBM is overfitting the dataset and therefore, starting from the training dataset makes the overfitting even worse. In order to prevent this effect as much as possible, we used another independent dataset of Estonian individuals (denoted sampling set) to start the Monte Carlo Markov Chain. With this trick, we observe that the AATS score exhibits less overfitting than when the Markov Chain was started on the training dataset. We measure the privacy scores for both training and sampling sets compared to a test set. Similar to the GAN, it is possible to generate as many AGs as wanted after training. The relevant RBM code is available at "https://gitlab.inria.fr/ml_genetics/public/artificial_genomes".

Bernoulli distribution model:

We used python-3.6, pandas 0.23.4 and numpy 1.16.4 for the Bernoulli distribution model code. Each allele at a given position was randomly drawn given the derived allele frequency in the real population.

Markov chain model:

We used python-3.6, pandas 0. ). This probability is computed from the observed haplotype frequencies in real data. After the initial position, the sequence window size increased incrementally up to a predefined window size (5 or 10 SNPs). The relevant code is available at "https://gitlab.inria.fr/ml_genetics/public/artificial_genomes".

HAPGEN2:

We used HAPGEN2 [START_REF] Su | HAPGEN2: Simulation of multiple disease SNPs[END_REF] to generate our targeted region of chromosome 15 for as many individuals as in the original dataset. We provided the training dataset (e.g.

either 1000 Genomes or Estonian) and a recombination map (37) of the region as input. We sampled only control individuals and no cases. All other parameters were set to default.

Coalescent simulations:

We used stdpopsim [START_REF] Adrion | A community-maintained standard library of population genetic models[END_REF] with the command line "stdpopsim HomSap -c chr15 -o CEU_chr15.trees -g HapMapII_GRCh37 -d OutOfAfrica_3G09 0 2000 0" to generate et al. 2009 [START_REF] Gutenkunst | Inferring the joint demographic history of multiple populations from multidimensional SNP frequency data[END_REF]. We then selected the genome region corresponding to one targeted when generating AGs.

Summary statistics:

We define here the statistics that are not commonly used in population genetics. The PCA were computed on all datasets combined (e.g. Figure 1) as well as on "pairs" of datasets (the combination of real and a single type of generated data). 2D-Wasserstein distances for these paired PCA representations were computed based on the entropic regularized optimal transport problem with square euclidean distances computed from PCs 1 and 2 and a regularization parameter set to 0.001 (POT library, (64)).

To have reference values regarding the best achievable distances or correlations between real and generated summary statistics we split randomly the 1000Genomes dataset in two and considered half of it as the real dataset and half as a "perfectly generated" dataset (called test).

Chromosome painting:

We compared the haplotype sharing distribution between real and artificial chromosomes through ChromoPainter [START_REF] Lawson | Inference of population structure using dense haplotype data[END_REF]. In detail, we have painted 100 randomly selected "real" and "artificial" Estonians (recipients) against all the 1000 Genome Project phased data (donors). The nuisance parameters -n (348.57) and -M (0.00027), were estimated running 10 iterations of the expectation-maximization algorithm on a subset of 3,800 donor haplotypes.

Haplostrips:

We used Haplostrips [START_REF] Marnetto | Haplostrips: revealing population structure through haplotype visualization[END_REF] to visualize the haplotype structure of real and artificial genomes. We extracted 500 individuals from each sample set (Real, GAN AGs, RBM AGs) and considered them as different populations. Black dots represent derived alleles, white dots represent ancestral alleles. The plotted SNPs were filtered for a population specific minor allele frequency >5%; haplotypes were clustered and sorted for distance against the consensus haplotype from the real set. See the application article for further details about the method.

Nearest Neighbour Adversarial Accuracy (AATS) and privacy loss

We used the following equations for calculating AATS and privacy loss scores [START_REF] Yale | Privacy Preserving Synthetic Health Data[END_REF] :

𝐴𝐴 𝑡𝑟𝑢𝑡ℎ = 1 𝑛 ∑ 𝟏(𝑑 𝑇𝑆 (𝑖) > 𝑑 𝑇𝑇 𝑛 𝑖=1 (𝑖)) 𝐴𝐴 𝑠𝑦𝑛 = 1 𝑛 ∑ 𝟏(𝑑 𝑆𝑇 (𝑖) > 𝑑 𝑆𝑆 𝑛 𝑖=1 (𝑖)) 𝐴𝐴 𝑇𝑆 = 1 2 (𝐴𝐴 𝑡𝑟𝑢𝑡ℎ + 𝐴𝐴 𝑠𝑦𝑛 )
𝑃𝑟𝑖𝑣𝑎𝑐𝑦 𝐿𝑜𝑠𝑠 = 𝑇𝑒𝑠𝑡 𝐴𝐴 𝑇𝑆 -𝑇𝑟𝑎𝑖𝑛 𝐴𝐴 𝑇𝑆 where n is the number of real samples as well as of artificial samples; 1 is a function which takes the value 1 if the argument is true and 0 if the argument is false; dTS(i) is the distance between the real genome indexed by i and its nearest neighbour in the artificial genome dataset; dST(i) is the distance between the artificial genome indexed by i and its nearest neighbour in the real genome dataset; dTT(i) is the distance of the real genome indexed by i to its nearest neighbour in the real genome dataset; dSS(i) is the distance of the artificial genome indexed by i to its nearest neighbour in the artificial genome dataset. An AATS score of 0.5 is optimal whereas lower values indicate overfitting and higher values indicate underfitting. For a better resolution for the detection of overfitting, we also provided AAtruth and AAsyn metrics identified in the general equation of AATS. If AATS 0.5 but AAtruth 0 and AAsyn 1, this means that the model is not overfitting in terms of a single data point but multiple ones. In other words, the model might be focusing on small batches of similar real genomes to create artificial genomes clustered at the center of each batch. Privacy loss is the difference of AATS score of AGs calculated against the training samples set and a different real test set which was not used in training.

Selection tests:

We used scikit-allel package for XP-EHH [START_REF] Sabeti | Genomewide detection and characterization of positive selection in human populations[END_REF] and PBS (66) tests. We used 1000 Estonian individuals (2000 haplotypes) with 3348 SNPs which were homogenously 

  ), 3348 SNPs dispersed over the whole chromosome 15 and a dense 10000 SNP range/region from chromosome 15. In the data format we used, rows are individuals/haplotypes (instances) and columns are positions/SNPs (features). Each allele at each position is represented either by 0 or 1. In the case of phased data (haplotypes), each column is one position whereas in the case of unphased data, each two column corresponds to a single position with alleles from two chromosomes. Genomes from Estonian Biobank were accessed with Approval Number 285/T-13 obtained on 17/09/2018 by the University of Tartu Ethics Committee.

  RBM model consists of one visible layer of size Nv and one hidden layer of size Nh coupled by a weight matrix W. It is a probabilistic model of the joint distribution of visible {𝑣 𝑖 , 𝑖 = 1, … 𝑁 𝑣 } and hidden variables {ℎ 𝑗 , 𝑗 = 1, … 𝑁 ℎ } of the form 𝑃(𝑣, ℎ) = 𝑒 -𝐸(𝑣,ℎ) with 𝐸(𝑣, ℎ) = ∑ 𝑊 𝑖𝑗 𝑣 𝑖 ℎ 𝑗 𝑖𝑗 + 𝑏𝑖𝑎𝑠 𝑡𝑒𝑟𝑚𝑠 Visible variables here are 0,1 as they represent reference/alternative alleles, while the hidden variable type depends on the chosen activation function (sigmoid or RELU).

  23.4 and numpy 1.16.4 for the Markov chain model code. For each generated sample alleles were drawn from left (position 0) to right. At the initial position the allele was set by drawing from a Bernoulli distribution parameterized with the real frequency. At a given position p the allele hp was drawn in {0,1} according to its probability given the previous sequence window of size w, P(hp | hp-w, …, hp-1

3 -

 3 point scores measure the correlation patterns for SNP triplets. The 3-point correlation for SNPs i, j, and k is defined as[START_REF] Shimagaki | Selection of sequence motifs and generative Hopfield-Potts models for protein families[END_REF]:ci jk(a,b,c) = fi jk(a,b,c) -fi j(a,b) fk(c) -fi k(a,c) fj (b) -fj k(b,c) fi (a) + 2 fi (a) fj (b) fk(c) ,where the alleles (a,b,c) ∈ {0,1}3 , fi (a) is the frequency of allele a at SNP i, fi j(a,b) is the frequency of the combination of allele a at SNP i and b at SNP j, and finally fi jk(a,b,c) is the frequency of the combination (a,b,c) at SNPs (i,j,k). We computed the 3-point correlations for 8,000 randomly-picked triplets under different conditions (SNPs separated by 1, 4, 16, 64, 256, 512 or 1024 SNPs, as well as SNPs chosen at random) in each dataset.
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1000 Genomes Project), since an in depth study of the demographic properties of Estonians, our target population, required extensive efforts beyond the scope of this paper and in themselves a cost to be considered when adopting coalescent simulations as a generative model.

2. direction wise: the SVD decomposition of W provides two sets of singular vectors with one corresponding to the visible space (visible axes) and the other one to the hidden representation (hidden axes). The vectors associated to the largest singular values offer the possibility to project the data in a low dimensional space. Dominant visible axes are expected to be similar to the principal component axes while dominant hidden axes are expected to produce more separable datapoints due to non-linear activation mechanisms. We used the latter (i.e. the projection into the hidden space) to perform our non-linear dimension reduction of the 1000 Genomes data (see Supplementary Figure 13).

The RBM was coded in Julia [START_REF] Bezanson | Julia: A fresh approach to numerical computing[END_REF], and all the algorithm for the training has been done by the authors. The part of the algorithm involving linear algebra used the standard package provided by Julia. Two versions of the RBM were considered. In both versions, the visible nodes were encoded using Bernoulli random variables {0,1}, and the size of the visible layer was the same size as the considered input. Two different types of hidden layers were considered. First with a sigmoid activation function (hence having discrete {0,1} hidden variables), second with ReLu (Rectified Linear unit) activations in which case the hidden variables were positive and continuous (there are distributed according to a truncated gaussian distribution when conditioning on the values of the visible variables). Results with sigmoid activation function were worse compared to ReLu so we used ReLu for all the analyses (Supplementary Figure 23).

The number of hidden nodes considered for the experiment was Nh=100 for the 805 SNP dataset and Nh=500 for the 10k one. There is no canonical way of fixing the number of hidden nodes, in practice we checked that the number of eigenvalues learnt by the model was smaller than the number of hidden nodes, and that by adding more
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Supplementary Figure 1. Generative adversarial network (GAN) scheme. 
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Supplementary Table. Genotype/phenotype contingency table for real and artificial

Estonian genomes (AG). Ancestral allele "A" is associated with brown eye color and derived allele "G" is associated with blue eye color phenotype. Supplementary Figure 16. Activations of each of the 100 nodes belonging to the RBM hidden layer when applied to the real genomes from 1000 Genomes data spanning 805 SNPs. For each hidden node the X-axis corresponds to the real haplotypes and Y-axis to the activation of the node by a single haplotype. On the X-axis, haplotypes are ordered by region (Africa, America, East Asia, European, East Asia) and colored by population. Because this RBM activation function is a ReLU with threshold 0 (by design), all values are positive and a zero-value indicates that the node is not activated by a given haplotype. The ordering of nodes has no specific meaning. 
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