
HAL Id: hal-03149930
https://hal.science/hal-03149930

Submitted on 23 Feb 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Creating artificial human genomes using generative
neural networks

Burak Yelmen, Aurélien Decelle, Linda Ongaro, Davide Marnetto, Corentin
Tallec, Francesco Montinaro, Cyril Furtlehner, Luca Pagani, Flora Jay

To cite this version:
Burak Yelmen, Aurélien Decelle, Linda Ongaro, Davide Marnetto, Corentin Tallec, et al.. Creating
artificial human genomes using generative neural networks. PLoS Genetics, 2021, �10.1371/jour-
nal.pgen.1009303�. �hal-03149930�

https://hal.science/hal-03149930
https://hal.archives-ouvertes.fr


Accepted in PLoS Genetics     https://doi.org/10.1371/journal.pgen.1009303 

Creating Artificial Human Genomes Using Generative 1 

Neural Networks2 

3 
Authors: Burak Yelmen1,2,3*, Aurélien Decelle3,4, Linda Ongaro1,2, Davide Marnetto1, Corentin 4 
Tallec3, Francesco Montinaro1,5, Cyril Furtlehner3, Luca Pagani1,6, Flora Jay3,* 5 

6 
Affiliations: 7 

1 Institute of Genomics, University of Tartu, Estonia 8 

2 Institute of Molecular and Cell Biology, University of Tartu, Estonia 9 

3 Laboratoire de Recherche en Informatique, CNRS UMR 8623, Université Paris-Sud, 10 

Université Paris-Saclay, Orsay, France 11 

4 Departamento de Física Téorica I, Universidad Complutense, 28040 Madrid, Spain 12 

5 Department of Biology-Genetics, University of Bari, Bari, Italy 13 

6 APE Lab, Department of Biology, University of Padova, Italy 14 

*to whom correspondence should be addressed: burakyelmen@gmail.com, flora.jay@lri.fr15 

mailto:burakyelmen@gmail.com
mailto:flora.jay@lri.fr


Abstract16 

Generative models have shown breakthroughs in a wide spectrum of domains due to 17 

recent advancements in machine learning algorithms and increased computational 18 

power. Despite these impressive achievements, the ability of generative models to 19 

create realistic synthetic data is still under-exploited in genetics and absent from 20 

population genetics. Yet a known limitation in the field is the reduced access to many 21 

genetic databases due to concerns about violations of individual privacy, although they 22 

would provide a rich resource for data mining and integration towards advancing 23 

genetic studies. In this study, we demonstrated that deep generative adversarial 24 

networks (GANs) and restricted Boltzmann machines (RBMs) can be trained to learn 25 

the complex distributions of real genomic datasets and generate novel high-quality 26 

artificial genomes (AGs) with none to little privacy loss. 27 

28 

We show that our generated AGs replicate characteristics of the source dataset such 29 

as allele frequencies, linkage disequilibrium, pairwise haplotype distances and 30 

population structure. Moreover, they can also inherit complex features such as signals 31 

of selection. To illustrate the promising outcomes of our method, we showed 32 

that  imputation quality for low frequency alleles can be improved by augmenting 33 

reference panels with AGs and that the RBM latent space provides a relevant 34 

encoding of the data, hence allowing further exploration of the reference dataset and 35 

features for solving supervised tasks. 36 

37 

Generative models and AGs have the potential to become valuable assets in genetic 38 

studies by providing a rich yet compact representation of existing genomes and high-39 

quality, easy-access and anonymous alternatives for private databases. 40 

Accepted in PLoS Genetics         https://doi.org/10.1371/journal.pgen.1009303



Author Summary 41 

Generative neural networks have been effectively used in many different domains in 42 

the last decade, including machine dreamt photo-realistic imagery. In our work, we 43 

apply a similar concept to genetic data to automatically learn its structure and, for the 44 

first time, produce high quality realistic genomes. These novel genomes are distinct 45 

from the original ones used for training the generative networks. We show that artificial 46 

genomes, as we name them, retain many complex characteristics of real genomes 47 

and the heterogeneous relationships between individuals. They can be used in 48 

intricate analyses such as imputation of missing data as we demonstrated. We believe 49 

they have a high potential to become alternatives for many genome databases which 50 

are not publicly available or require long application procedures or collaborations and 51 

remove an important accessibility barrier in genomic research in particular for 52 

underrepresented populations.  53 
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Introduction 54 

Availability of genetic data has increased tremendously due to advances in 55 

sequencing technologies and reduced costs (1). The vast amount of human genetic 56 

data is used in a wide range of fields, from medicine to evolution. Despite the 57 

advances, cost is still a limiting factor and more data is always welcome, especially in 58 

population genetics and genome-wide association studies (GWAS) which usually 59 

require substantial amounts of samples. Partially related to the costs but also to the 60 

research bias toward studying populations of European ancestry, many 61 

autochthonous populations are under-represented in genetic databases, diminishing 62 

the extent of the resolution in many studies (2–5). Additionally, the majority of the data 63 

held by government institutions and private companies is considered sensitive and not 64 

easily accessible due to privacy issues, exhibiting yet another barrier for scientific 65 

work. A class of machine learning methods called generative models might provide a 66 

suitable solution to these problems. 67 

 68 

Generative models are used in unsupervised machine learning to discover intrinsic 69 

properties of data and produce new data points based on those. In the last decade, 70 

generative models have been studied and applied in many domains of machine 71 

learning (6–8). There have also been a few applications in the genetics field (9–12), 72 

one specific study focusing on generating DNA sequences via deep generative models 73 

to capture protein binding properties (13).  Among the various generative approaches, 74 

we focus on two of them in this study, generative adversarial networks (GANs) and 75 

restricted Boltzmann machines (RBMs). GANs are generative neural networks which 76 

are capable of learning complex data distributions in a variety of domains (14). A GAN 77 

consists of two neural networks, a generator and a discriminator, which compete in a 78 
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zero-sum game (Supplementary Figure 1). During training, the generator produces 79 

new instances while the discriminator evaluates their authenticity. The training 80 

objective consists in learning the data distribution in a way such that the new instances 81 

created by the generator cannot be distinguished from true data by the discriminator. 82 

Since their first introduction, there have been several successful applications of GANs, 83 

ranging from generating high quality realistic imagery to gap filling in texts (15,16). 84 

GANs are currently the state-of-the-art models for generating realistic images (17). 85 

 86 

A restricted Boltzmann machine, initially called Harmonium, is another generative 87 

model which is a type of neural network capable of learning probability distributions 88 

through input data (18,19). RBMs are two-layer neural networks consisting of an input 89 

(visible) layer and a hidden layer (Supplementary Figure 2). The learning procedure 90 

for the RBM consists in maximizing the likelihood function over the visible variables of 91 

the model. This procedure is done by adjusting the weights such that the correlations 92 

between the visible and hidden variables on both the dataset and sampled 93 

configurations from the RBM converge. Then RBM models recreate data in an 94 

unsupervised manner through many forward and backward passes between these two 95 

layers (Gibbs sampling), corresponding to sampling from the learned distribution. The 96 

output of the hidden layer goes through an activation function, which in return becomes 97 

the input for the hidden layer. Although mostly overshadowed by recently introduced 98 

approaches such as GANs or Variational Autoencoders (20), RBMs have been used 99 

effectively for different tasks (such as collaborative filtering for recommender systems, 100 

image or document classification) and are the main components of deep belief 101 

networks (21–23). 102 

 103 
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Here we propose and compare a prototype GAN model along with an RBM model to 104 

create Artificial Genomes (AGs) which can mimic real genomes and capture 105 

population structure along with other characteristics of real genomes. These 106 

prototypes are compared to alternative generative models based on multiple 107 

summaries of the data and we explore whether a meaningful encoding of real data 108 

has been learned. Finally, we investigate the potential of using AGs as proxies for 109 

private datasets that are not accessible in order to address various genomic tasks 110 

such as imputation or selection scans.  111 
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Results 112 

Reconstructing genome wide population structure: 113 

Initially we created AGs with GAN, RBM, and two simple generative models for 114 

comparison: a Bernoulli and a Markov chain model (see Materials & Methods) using 115 

2504 individuals (5008 haplotypes) from 1000 Genomes data (24), spanning 805 116 

SNPs from all chromosomes which reflect a high proportion of the population structure 117 

present in the whole dataset (25). Both GAN and RBM models capture a good portion 118 

of the population structure present in 1000 Genomes data while the other two models 119 

could only produce instances centered around 0 on principal component analysis 120 

(PCA) space (Figure 1). All major modes, corresponding to African, European and 121 

Asian genomes, are well represented in AGs produced by GAN and RBM models and 122 

absent for the Markovian and Bernouilli models.  Wasserstein distances between the 123 

2D PCA representations of real versus generated individuals were closer to 0 for GAN 124 

(0.006), RBM (0.006) and the test set (0.01) than for the Markovian (0.124) and 125 

Bernoulli (0.240) models. Uniform manifold approximation and projection (UMAP) 126 

mapping results (performed on the combined dataset) lead to similar conclusions 127 

(Wasserstein 2D distance from real for GAN: 0.021, RBM: 0.091, Markovian: 0.088, 128 

Bernoulli: 0.127) although the RBM distribution is slightly shifted compare to the real 129 

one (Supplementary Figure 3). We additionally computed the distribution of pairwise 130 

differences of haploid genomes within a single dataset or between the real and artificial 131 

datasets (Supplementary Figure 4). The real, GAN and RBM distributions present 132 

similar multimodal patterns reflecting the underlying population structure (in particular 133 

the RBM distribution exhibits three modes corresponding to the average distances 134 

between European and Asian, European and African, or African and Asian 135 

populations. The overall real pairwise distribution is captured as accurately by the GAN 136 
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(Wasserstein distance between real and generated distributions: 3.24) and RBM 137 

(6.21) models than by a test set (5.06) and those clearly outperform the binomial 138 

(42.20) and Markovian (37.92) models. No real genome was copied into the AGs (0 139 

identical pair). Since GANs and RBMs showed an excellent performance for this use 140 

case, we further explored other characteristics using only these two models. 141 

 142 

Reconstructing local high-density haplotype structure: 143 

To evaluate if high quality artificial dense genome sequences can also be created by 144 

generative models, we applied the GAN and RBM methods to a 10K SNP region using 145 

(i) the same individuals from 1000 Genomes data and (ii) 1000 Estonian individuals 146 

from the high coverage Estonian Biobank (26) to generate artificial genomes. PCA 147 

results of AGs spanning consecutive 10K SNPs show that both GAN and RBM models 148 

can still capture the relatively toned-down population structure (Supplementary Figure 149 

5; 2D Wasserstein distances for 1000 Genomes and Estonian respectively: 0.004 and 150 

0.011 for GAN, 0.011 and 0.006 for RBM, 0.004 and 0.002 for test sets) as well as the 151 

overall distribution of pairwise distances (Supplementary Figure 6). Looking at the 152 

allele frequency comparison between real and artificial genomes, we see that 153 

especially GAN performs poorly for low frequency alleles, due to a lack of 154 

representation of these alleles in the AGs whereas RBM seems to have wider 155 

distribution over all frequencies (Supplementary Figure 7; correlation between real and 156 

generated for 1000 Genomes and Estonian respectively: 0.99 and 0.91 for GAN, 0.94 157 

and 0.94 for RBM, 0.99 and 0.99 for test sets). The overall pairwise distributions are 158 

fitted better by the RBM than the GAN (Wasserstein distance 117 and 227 for GAN, 159 

38 and 26 for RBM, 22 and 16 for test sets). On the other hand, the distribution of the 160 

distance of real genomes to the closest AG neighbour shows that GAN model, 161 
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although slightly underfitting, outperforms RBM model, for which an excess of small 162 

distances points towards overfitting, visible by the distribution being closer to the zero 163 

point (Supplementary Figure 8). 164 

 165 

Additionally, we performed linkage disequilibrium (LD) analyses comparing artificial 166 

and real genomes to assess how successfully the AGs imitate short and long range 167 

correlations between SNPs. Pairwise LD matrices for real and artificial genomes all 168 

show a similar block pattern demonstrating that GAN and RBM accurately captured 169 

the overall structure with SNPs having higher linkage in specific regions (Figure 2a). 170 

However, plotting LD as a function of the SNP distance showed that all models capture 171 

weaker correlation, with RBM outperforming the GAN model perhaps due to its slightly 172 

overfitting characteristic (Figure 2b). However, correlations between real and 173 

generated LD across all pairs were similar for GAN and RBM (for 1000 Genomes and 174 

Estonian respectively: 0.95 and 0.97 for GAN, 0.94 and 0.98 for RBM) and slightly 175 

lower than for test sets (0.99 and 1.0) (Supplementary Figure 9). LD can be seen as 176 

a two-point correlation statistic, we also investigated 3-point correlation statistics, that 177 

represent the amount of correlation between triplets of SNPs and thus characterize 178 

more complex correlation patterns in datasets (Supplementary Figure 10). To further 179 

determine the haplotypic integrity of AGs, we performed ChromoPainter (27) and 180 

Haplostrips (28) analyses on AGs created using Estonians as the training data. We 181 

did not observe separate clustering of real and artificial genomes with Haplostrips 182 

(Supplementary Figure 11). However, the majority of the AGs produced via GAN 183 

model displayed an excess of short chunks when painted against 1000 Genomes 184 

individuals, whereas we do not observe this for RBM AGs (Supplementary Figure 12). 185 
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Average European chunk length over 100 individuals for GAN AGs was 44.21%, RBM 186 

AGs was 54.92%, whereas for real Estonian genomes, it was 62.83%.  187 

 188 

After demonstrating that our models generated realistic AGs according to the 189 

described summary statistics, we investigated further whether they respected privacy 190 

by measuring the extent of overfitting. We calculated two metrics of resemblance and 191 

privacy, the nearest neighbour adversarial accuracy (AATS) and privacy loss presented 192 

in a recent study (29).  AATS score measures whether two datasets were generated by 193 

the same distribution based on the distances between all data points and their nearest 194 

neighbours in each set. When applied to artificial and real datasets, a score between 195 

0.5 and 1 indicates underfitting, between 0 and 0.5 overfitting (and likely privacy loss), 196 

and exactly 0.5 indicates that the datasets are indistinguishable. By using an additional 197 

real test set, it is also possible to calculate a privacy loss score that is positive in case 198 

of information leakage, negative otherwise, and approximately ranges from -0.5 to 0.5. 199 

Computed on our generated data, both scores support haplotypic pairwise difference 200 

results confirming low privacy loss for GAN AGs with a score similar to the one of an 201 

independent Estonian test set never used during training (GAN: 0.027 ; Test: 0.021) 202 

and the overfitting nature of RBM AGs with a high risk of privacy leakage (RBM privacy 203 

loss: 0.327; Supplementary Figure 13). Using an alternative sampling scheme for the 204 

RBM (see Material and Methods) slightly reduced privacy loss (restrained under 0.2 205 

for low number of epochs; Supplementary Figure 14). A dataset produced by this 206 

alternative scheme had only a slight decrease in quality of the summary statistics while 207 

the privacy loss was reduced to 0.1. For this scheme, the correlation between 208 

generated and true allele frequencies was 0.92 (instead of 0.95 for the previous RBM 209 

and 0.98 for GAN), the correlation for LD values was  0.97 (RBM:0.98, GAN:0.97), the 210 
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2D-Wasserstein distance for the PCA representations was 0.026 (RBM: 0.006, GAN: 211 

0.011, RBM sampling initialized randomly: 0.339), the Wasserstein distance for the 212 

pairwise distribution was 97 (RBM: 26, GAN: 227, RBM sampling initialized randomly: 213 

689).  214 

 215 

Selection tests: 216 

We additionally performed cross population extended haplotype homozygosity (XP-217 

EHH) and population branch statistic (PBS) on a 3348 SNP region homogenously 218 

dispersed over chromosome 15 to assess if AGs can also capture selection signals. 219 

Both XP-EHH and PBS results provided high correlation between the scores of real 220 

and artificial genomes (Figure 3). Similar peaks were observed for real and artificial 221 

genome datasets (see Discussion). 222 

 223 

Imputation: 224 

Since it has been shown in previous studies that imputation scores can be improved 225 

using additional population specific reference panels (30,31), as a possible future use 226 

case, we tried imputing real Estonian genomes using 1000 Genomes reference panel 227 

and additional artificial reference panels with Impute2 software (32). Both combined 228 

RBM AG and combined GAN AG panels outperformed 1000 Genomes panel for the 229 

lowest MAF bin (for MAF < 0.05, 2.5% and 4.4% improvement respectively) which had 230 

5926 SNPs out of 9230 total (Figure 4). Also mean info metric over all SNPs were 231 

intermediate between the regular imputation scheme (1000 Genomes panel only) and 232 

the ‘perfect’ scheme (panel including private Estonian samples). The scores were 233 

1.3%, 2.3%, and 6.9% higher for the combined RBM, GAN and real Estonian panels 234 

respectively, compared to the panel with only 1000 Genomes samples. However, 235 
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aside from the lowest MAF bin, 1000 Genomes panel slightly outperformed both 236 

concatenated AG panels for all the higher bins (by 0.05% to 0.6% depending on the 237 

frequency bin). This might be a manifestation of haplotypic deformities in AGs that 238 

might have disrupted the imputation algorithm. 239 

 240 

Data encoding and visualization via RBM model: 241 

Furthermore, similarly to tSNE and UMAP, RBMs perform a non-linear dimension 242 

reduction of the data and provides a suitable representation of a genomic dataset as 243 

a by-product based on the non-linear feature space associated to the hidden layer 244 

(Materials & Methods). As Diaz-Papkovich et al (33), we found that the RBM 245 

representation differs from the linear PCA ones (Supplementary Figure 15), although 246 

the general structure identified by the two lower rank components is highly similar. 247 

Like in a PCA, African, East Asian, and to a lesser extent, European populations stand 248 

out on the two first components yet the relative positions differ slightly from PCA to 249 

RBM. In particular, the Finnish appear slightly more isolated from the other European 250 

populations on the first component of the RBM. South Asians are located at the center 251 

separated from Europeans, partially overlapping with American populations, and stand 252 

out at dimension 5 and higher (versus 3 for the PCA). The third RBM component 253 

exhibit a stronger gradient than PCA for Peruvian and Mexican individuals and might 254 

reflect their gradient in Native American ancestry. Finally, RBM still exhibits population 255 

structure in components higher than 7, contrary to PCA. Interestingly when screening 256 

the hidden node activations, we observed that different populations or groups activate 257 

different hidden nodes, each one representing a specific combination of SNPs, thereby 258 

confirming that the hidden layer provides a meaningful encoding of the data 259 

(Supplementary Figure 16). 260 

Accepted in PLoS Genetics         https://doi.org/10.1371/journal.pgen.1009303



 261 
Comparison with alternative generative models: 262 

We additionally performed tests to compare AGs with advanced methods used to 263 

generate genomes. One such method is the copying model (34) implemented in 264 

HAPGEN2 (35). Although genomes generated via this approach performed very well 265 

in terms of SFS, LD and PCA, there was extensive overfitting and privacy loss and 266 

multiple individuals (747 identical haplotypes) were directly copied from the original 267 

dataset (Supplementary Figure 17).  268 

 269 

Another commonly used approach to generate genomes is coalescent simulations. 270 

Although it is inherently difficult to make a fair comparison since coalescent 271 

simulations require additional (demographic) parameters and do not provide the 272 

desired one-to-one SNP correspondence (see Discussion), we compared SFS and LD 273 

decay of AGs with genomes simulated via a previously inferred demographic model 274 

(36) using HapMapII genetic map (37) implemented in stdpopsim (38–41). Initially, we 275 

performed PCA and checked the allele frequency distribution compared to real 276 

genomes (Supplementary Figure 18). The reasoning behind PCA was to demonstrate 277 

that coalescent simulation genomes cannot be combined with real genomes since they 278 

exist in different planes. Since we had selected SNPs for 1000 Genomes and Estonian 279 

datasets to be overlapping, we removed alleles below 0.1 frequency from all datasets 280 

to eliminate biases and analyzed LD decay and allele frequency spectrum 281 

(Supplementary Figure 19). For both summary statistics, coalescent simulation 282 

genomes performed well. Still, direct comparison of frequencies SNPs by SNPs, LD 283 

pairs by pairs, PCA, AATS or distributions of pairwise distances between real and 284 

generated data are not feasible for coalescent simulations. Notably, the demographic 285 

model we adopted was optimized for another European population (CEU from the 286 
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1000 Genomes Project), since an in depth study of the demographic properties of 287 

Estonians, our target population, required extensive efforts beyond the scope of this 288 

paper and in themselves a cost to be considered when adopting coalescent 289 

simulations as a generative model.   290 
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Discussion 291 

In this study, we applied generative models to produce artificial genomes and 292 

evaluated their characteristics. To the best of our knowledge, this is the first application 293 

of GAN and RBM models in the population genetics context, displaying an overall 294 

promising applicability. We showed that population structure and frequency-based 295 

features of real populations can successfully be preserved in AGs created using GAN 296 

and RBM models. Furthermore, both models can be applied to sparse or dense SNP 297 

data given a large enough number of training individuals. Our different trials showed 298 

that the minimum required number of individuals for training is highly variable (i.e. to 299 

avoid training failures such as mode collapse or incomplete training without converging 300 

to an ideal mode) depending on the unknown dimension of the dataset, which is linked 301 

to the type of data to be generated and the population(s). Since haplotype data is more 302 

informative, we created haplotypes for the analyses but we also demonstrated that the 303 

GAN model can be applied to genotype data too, by simply combining two haplotypes 304 

if the training data is not phased (see Materials & Methods). In addition, we showed 305 

that it might be possible to generate AGs with simple phenotypic traits through 306 

genotype data (see Supplementary Table and Supplementary Text). Even though 307 

there were only two simple classes, blue and brown eye color phenotypes, generative 308 

models can be improved in the future to hold the capability to produce artificial datasets 309 

combining AGs with multiple phenotypes 310 

 311 
One major drawback of the proposed models is that, due to computational limitations, 312 

they cannot yet be harnessed to create whole artificial genomes but rather snippets or 313 

sequential dense chunks. It should be possible to create whole genomes by 314 

independently training and generating multiple chunks from different genomic regions 315 

using a single uniform population such as Estonians and stitching them together to 316 

Accepted in PLoS Genetics         https://doi.org/10.1371/journal.pgen.1009303



create a longer, genome-like, sequence for each AG individual. To mitigate possible 317 

disruptions in the long-range haplotype structure, these chunks can be defined based 318 

on "approximately independent LD blocks" (42). Yet for data with population structure, 319 

it would be difficult to decide which combination of chunks can form a single genome. 320 

Statistics such as FST or generative models conditioned on group labels might be 321 

utilized to overcome this issue. On the other hand, a collection of chunks covering the 322 

whole genome can be used for analyses based solely on allele frequencies without 323 

any stitching. A technically different approach would be to adapt convolutional GANs 324 

for AG generation (43).  325 

 326 

Another problem arose due to rare alleles, especially for the GAN model. We showed 327 

that nearly half of the alleles become fixed in the GAN AGs in the 10K SNP dataset, 328 

whereas RBM AGs capture more of the rare alleles present in real genomes 329 

(Supplementary Figure 20). A known issue in GAN training is mode collapse (44), 330 

which occurs when the generator fails to cover the full support of the data distribution. 331 

This type of failure could explain the inability of GANs to generate rare alleles. For 332 

some applications that depend on rare alleles, GAN models less sensitive to mode 333 

dropping may be a promising alternative (45–47).  334 

 335 

An important use case for the AGs in the future might be creating public versions of 336 

private genome banks. Through enhancements in scientific and technology 337 

knowledge, genetic data becomes more and more sensitive in terms of privacy. AGs 338 

might offer a versatile solution to this delicate issue in the future, protecting the 339 

anonymity of real individuals. They can be utilized as input for downstream operations 340 

such as forward steps of a specific evolutionary process for which they can become 341 
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variations of the real datasets (similar to bootstrap), or they can be the sole input when 342 

the real dataset is not accessible. Initializing a simulation with real data is a procedure 343 

that is commonly used in population genetics (48,49). Our results showed that GAN 344 

AGs are possibly underfitting while, on the contrary, RBM AGs are overfitting, based 345 

on distribution of minimum distance to the closest neighbour (Supplementary Figure 346 

8) and AATS scores (Supplementary Figure 13a), although we showed how overfitting 347 

could be restrained by integrating AATS scores within our models as a criterion for early 348 

stopping in training (before the networks start overfitting) and by modifying the RBM 349 

sampling scheme. In the context of the privacy issue, GAN AGs have a slight 350 

advantage since underfitting and low leakage information is preferable. More distant 351 

AGs would hypothetically be harder to be traced back to the original genomes. We 352 

also tested the sensitivity of the AATS score and privacy loss (Supplementary Figure 353 

21). It appears that both scores are affected very slightly when we add only a few real 354 

genomes to the AG dataset from the training set. Although this case is easily 355 

detectable by examining the extreme left tail of the pairwise distribution, it advocates 356 

for combining multiple privacy loss criteria and developing other sensitive 357 

measurement techniques for better assessment of generated AGs. Additionally, even 358 

though we did not detect exact copies of real genomes in AG sets created either by 359 

RBM or GAN models, it is a very complicated task to determine if the generated 360 

samples can be traced back to the originals. Reliable measurements need to be 361 

developed in the future to assure complete anonymity of the source individuals given 362 

the released AGs. In particular, we will investigate whether the differential privacy 363 

framework is performant in the context of large population genomics datasets (50,51). 364 

 365 
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Imputation results demonstrated promising outcomes especially for population specific 366 

low frequency alleles. However, imputation with both RBM and GAN AGs integrated 367 

reference panels showed slight decrease of info metric for higher frequency alleles 368 

compared to only 1000 Genomes panel (Figure 4). Increasing the number of AGs did 369 

not affect the results significantly. We initially speculated that this decrease might be 370 

related to the disturbance in haplotypic structure and therefore, tried to filter AGs 371 

based on chunk counts from ChromoPainter results, preserving only AGs which are 372 

below the average chunk count of real genomes. The reasoning behind this was to 373 

preserve most realistic AGs with undisturbed chunks. Even with this filtering, slight 374 

decrease in higher MAF bins was still present. Yet results of implementation with AGs 375 

for low frequency alleles and without AGs for high frequency ones could be combined 376 

to achieve the best performance. Although being not very practical in its current form, 377 

future improved models can become very useful, largely for GWAS studies in which 378 

imputation is a common application to increase resolution. Different generative models 379 

such as MaskGAN (16) which demonstrated good results in text gap filling might also 380 

be adapted for genetic imputation. RBM is possibly another option to be used as an 381 

imputation tool directly by itself, since once the weights have been learned, it is 382 

possible to fix a subset of the visible variables and to compute the average values of 383 

the unobserved ones by sampling the probability distribution (in fact, it is even easier 384 

than sampling entirely new configurations since the fixed subset of variables will 385 

accelerate the convergence of the sampling algorithm). 386 

 387 

Scans for detecting selection are another promising use case for AGs as high-fidelity 388 

alternatives to real genomes. The XP-EHH and PBS scores computed on AGs were 389 

highly correlated with the scores of real genomes. In particular, the highest peak we 390 
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obtained for Estonian genomes was also present in AGs, although it was the second 391 

highest peak in RBM XP-EHH plot (Figure 3). This peak falls within the range of skin 392 

color associated SLC24A5 gene, which is potentially under positive selection in many 393 

European populations (52). 394 

 395 

As an additional feature, training an RBM to model the data distribution gives access 396 

to a latent encoding of data points, providing a potentially easier to use representation 397 

of data (Supplementary Figure 15). Future works could enhance our current GAN 398 

model to also provide an encoding mechanism, in the spirit of (53), (54) or (55). It is 399 

expected that these interpretable representations of the data will be relevant for 400 

downstream tasks (54) and can be used as a starting point for various population 401 

genetics analyses. 402 

 403 

We want to highlight that AGs are created without requiring the knowledge of the 404 

underlying evolutionary history, or the pre-processing bioinformatic pipelines (SNP 405 

ascertainment, data filtering). Unlike coalescent simulations, for which one needs to 406 

control parameters, AGs in their current form are solely constructed on raw information 407 

of real genomes. Our method offers a direct way to generate artificial genomes for any 408 

original dataset. On the other hand, the genomes generated using a coalescent 409 

simulator required substantial upstream work (from previous studies) as they were 410 

based on an explicitly parameterized model that had been inferred on real data using 411 

advanced methods for demographic reconstruction. In particular, this approach is not 412 

suitable when we want to generate AGs for highly complex datasets (eg full 1000 413 

Genomes) for which it is arduous to infer a full evolutionary model accurately fitting the 414 

data and even more so, to mimic all the biases induced by potentially unknown 415 
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bioinformatic pipelines. Last but not least, this coalescent generated data cannot be 416 

merged directly with real public genomes because there is no direct correspondence 417 

between the real SNPs and those generated, and coalescent approaches might 418 

struggle to match, among other things, real complex patterns of LD (35). To 419 

summarize, while the classical coalescent simulator only allows unconditional 420 

sampling of a new haplotype h from a predefined distribution P(h|θ) where the 421 

demographic parameters θ have to be given, our generative models learn how to 422 

generate h from the conditional sampling distribution (CSD) P(h|h1,...hn), where (hi) 423 

are the observed haplotypes. Computing, approximating or sampling from this CSD is 424 

known to be a difficult task (34,56,57). 425 

 426 

We believe it will be possible in the future to extend our approach with conditional 427 

GAN/RBM methods to allow fine control over the composition of artificial datasets 428 

based on (i) additional labels such as population names or any environmental 429 

covariate, or (ii) evolutionary parameters. While the former is based only on real 430 

datasets, the latter requires training on genetic simulations (coalescent-based or 431 

forward) and has a different goal: it may provide an alternative simulator and/or permit 432 

inference of evolutionary models. 433 

 434 

We envision three main applications of our generative methods: (i) improve the 435 

performance of genomic tasks such as imputation, ancestry reconstruction, GWAS 436 

studies, by augmenting public genomic panels with AGs that serve as proxies for 437 

private datasets that are not accessible; (ii) enable preliminary genomic analyses and 438 

proof-of-concept before committing to long term application protocols and/or to 439 

facilitate future collaborations to access private datasets; (iii) use the encoding of real 440 
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data learned by generative models as a starting input of various tasks, such as 441 

recombination, demography or selection inference  or yet unknown tasks. 442 

 443 

Although there are currently some limitations, generative models will most likely 444 

become prominent for genetic research in the near future with many promising 445 

applications. In this work, we demonstrated the first possible implementations and use 446 

of AGs, particularly to be used as realistic surrogates of real genomes which can be 447 

accessed publicly without privacy concerns.   448 
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Materials & Methods 449 

Data: 450 

We used 2504 individual genomes from 1000 Genomes Project (1000 Genomes 451 

Project Consortium 2015) and 1000 individuals from Estonian Biobank (26) to create 452 

artificial genomes (AGs). Additional 2000 Estonian genomes were used as a test 453 

dataset. Another Estonian dataset consisting of 8678 individuals which were not used 454 

in training were used for imputation via Impute2 software (32). Analyses were applied 455 

to a highly differentiated 805 SNPs selected as a subset from (25), 3348 SNPs 456 

dispersed over the whole chromosome 15 and a dense 10000 SNP range/region from 457 

chromosome 15. In the data format we used, rows are individuals/haplotypes 458 

(instances) and columns are positions/SNPs (features). Each allele at each position is 459 

represented either by 0 or 1. In the case of phased data (haplotypes), each column is 460 

one position whereas in the case of unphased data, each two column corresponds to 461 

a single position with alleles from two chromosomes. Genomes from Estonian Biobank 462 

were accessed with Approval Number 285/T-13 obtained on 17/09/2018 by the 463 

University of Tartu Ethics Committee. 464 

 465 

GAN model: 466 

We implemented the GAN model using python-3.6, Keras 2.2.4 deep learning library 467 

with TensorFlow backend (58), pandas 0.23.4 (59) and numpy 1.16.4 (60). We 468 

implemented a fully-connected generator network consisting of an input layer with the 469 

size of the latent vector size 600, one hidden layer with size proportional to the number 470 

of SNPs as SNP_number/1.2 rounded, another hidden layer with size proportional to 471 

the number of SNPs as SNP_number/1.1 rounded and an output layer with the size of 472 

the number of SNPs. The latent vector is drawn from a Gaussian distribution with zero-473 
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mean and unit-variance. The discriminator is also a fully-connected network including 474 

an input layer with the size of the number of SNPs, one hidden layer with size 475 

proportional to the number of SNPs as SNP_number/2 rounded, another hidden layer 476 

with size proportional to the number of SNPs as SNP_number/3 rounded and an 477 

output layer of size 1. All layer outputs except for output layers have LeakyReLU 478 

activation functions with leaky_alpha parameter 0.01 and L2 regularization parameter 479 

0.0001. The generator output layer activation function is tanh and discriminator output 480 

layer activation function is sigmoid. Both discriminator and combined GAN were 481 

trained thanks to the Adam optimization algorithm with binary cross entropy loss 482 

function. We set the discriminator learning rate as 0.0008 and combined GAN learning 483 

rate as 0.0001. For 5000 SNP data, the discriminator learning rate was set to 0.00008 484 

and the combined GAN learning rate was set to 0.00001. The training to test dataset 485 

ratio was 3:1. We used batch size of 32 and trained all datasets up to 20000 epochs. 486 

We also investigated stopping the training based on AATS scores. The score was 487 

calculated at 200 epoch intervals. For 805 SNP data, AATS converged very quickly close 488 

to optimum 0.5 score. However, the difference between AA truth and AAsyn scores 489 

indicates possible overfitting to multiple data points so it was difficult to define a 490 

stopping point. For 10K SNP data, convergence was observed after ~30K epochs (to 491 

around 0.75) and reduced the number of fixed alleles in AGs but the gain was very 492 

minimal (Supplementary Figure 22). Additionally, GAN was prone to mode collapse 493 

especially after 20K epochs which resulted in multiple failed training attempts. 494 

Therefore, this study presents results for AGs generated at 20k epochs, since the first 495 

two PCs of AGs combined with real genomes were visually coherent for all targeted 496 

datasets (Figure 1, Supplementary Figure 5). Note that it could be possible to utilize 497 

AGs before or after the 20K epoch point. During each batch in the training, when only 498 
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the discriminator is trained, we applied smoothing to the real labels [1] by vectoral 499 

addition of random uniform distribution via numpy.random.uniform with lower bound 0 500 

and upper bound 0.1. Elements of the generated outputs were rounded to 0 or 1. After 501 

the training is complete, it is possible to generate as many AGs as desired. The code 502 

is available at “https://gitlab.inria.fr/ml_genetics/public/artificial_genomes”. 503 

 504 

RBM model: 505 

The RBM model consists of one visible layer of size Nv and one hidden layer of size 506 

Nh coupled by a weight matrix W. It is a probabilistic model of the joint distribution of 507 

visible {𝑣𝑖 , 𝑖 = 1, … 𝑁𝑣} and hidden variables {ℎ𝑗 , 𝑗 = 1, … 𝑁ℎ} of the form 508 

𝑃(𝑣, ℎ) = 𝑒−𝐸(𝑣,ℎ) 509 

with 510 

𝐸(𝑣, ℎ) = ∑ 𝑊𝑖𝑗𝑣𝑖ℎ𝑗

𝑖𝑗

 +  𝑏𝑖𝑎𝑠 𝑡𝑒𝑟𝑚𝑠 511 

Visible variables here are 0,1 as they represent reference/alternative alleles, while the 512 

hidden variable type depends on the chosen activation function (sigmoid or RELU). 513 

They are there to build dependencies among visible variables which by default are 514 

independent, via the interaction strength W. The weight matrix can be used in two 515 

different manners to interpret the learned model: 516 

 1. feature wise: for each hidden variable j the vector {𝑊𝑖𝑗 , 𝑖 = 1, … 𝑁𝑣} 517 

represents a certain combination of SNPs which, if activated, will contribute to activate 518 

or inhibit this feature j. These features are expected to be characteristic of the data 519 

structure (such as the population structure) and the vector of feature activations should 520 

provide a suitable representation of individuals. If 𝑁𝑣 < 𝑁ℎ this corresponds to 521 

compressing the input representation. 522 
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 2. direction wise: the SVD decomposition of W provides two sets of singular 523 

vectors with one corresponding to the visible space (visible axes) and the other one to 524 

the hidden representation (hidden axes). The vectors associated to the largest singular 525 

values offer the possibility to project the data in a low dimensional space. Dominant 526 

visible axes are expected to be similar to the principal component axes while dominant 527 

hidden axes are expected to produce more separable datapoints due to non-linear 528 

activation mechanisms. We used the latter (i.e. the projection into the hidden space) 529 

to perform our non-linear dimension reduction of the 1000 Genomes data (see 530 

Supplementary Figure 13). 531 

 532 

The RBM was coded in Julia (61), and all the algorithm for the training has been done 533 

by the authors. The part of the algorithm involving linear algebra used the standard 534 

package provided by Julia. Two versions of the RBM were considered. In both 535 

versions, the visible nodes were encoded using Bernoulli random variables {0,1}, and 536 

the size of the visible layer was the same size as the considered input. Two different 537 

types of hidden layers were considered. First with a sigmoid activation function (hence 538 

having discrete {0,1} hidden variables), second with ReLu (Rectified Linear unit) 539 

activations in which case the hidden variables were positive and continuous (there are 540 

distributed according to a truncated gaussian distribution when conditioning on the 541 

values of the visible variables). Results with sigmoid activation function were worse 542 

compared to ReLu so we used ReLu for all the analyses (Supplementary Figure 23). 543 

The number of hidden nodes considered for the experiment was Nh=100 for the 805 544 

SNP dataset and Nh=500 for the 10k one. There is no canonical way of fixing the 545 

number of hidden nodes, in practice we checked that the number of eigenvalues learnt 546 

by the model was smaller than the number of hidden nodes, and that by adding more 547 
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hidden nodes no improvement were observed during the learning. The learning in 548 

general is quite stable, in order to have a smooth learning curve, the learning rate was 549 

set between 0.001 and 0.0001 and we used batch size of 32. The negative term of the 550 

gradient of the likelihood function was approximated using the PCDk method (62), with 551 

k=10 and 100 of persistent chains. As a stopping criterion, we looked at when the AATS 552 

score converges to the ideal value of 0.5 when sampling the learned distribution. When 553 

dealing with large and sparse datasets for selection tests, RBM model did not manage 554 

to provide reasonable AATS scores because the sampling is intrinsically difficult for 555 

large systems with strong correlation. In that case, we used visually coherent PCA 556 

results as a stopping criterion. Once the RBM is trained over the dataset, it is possible, 557 

in order to avoid running a very long Monte Carlo Markov Chain, to initialize the chain 558 

on the training set. However, in the case of the large dataset (Estonian), we observe 559 

that the RBM is overfitting the dataset and therefore, starting from the training dataset 560 

makes the overfitting even worse. In order to prevent this effect as much as possible, 561 

we used another independent dataset of Estonian individuals (denoted sampling set) 562 

to start the Monte Carlo Markov Chain. With this trick, we observe that the AATS score 563 

exhibits less overfitting than when the Markov Chain was started on the training 564 

dataset. We measure the privacy scores for both training and sampling sets compared 565 

to a test set. Similar to the GAN, it is possible to generate as many AGs as wanted 566 

after training. The relevant RBM code is available at 567 

“https://gitlab.inria.fr/ml_genetics/public/artificial_genomes”. 568 

 569 

Bernoulli distribution model: 570 
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We used python-3.6, pandas 0.23.4 and numpy 1.16.4 for the Bernoulli distribution 571 

model code. Each allele at a given position was randomly drawn given the derived 572 

allele frequency in the real population.  573 

  574 

Markov chain model: 575 

We used python-3.6, pandas 0.23.4 and numpy 1.16.4 for the Markov chain model 576 

code. For each generated sample alleles were drawn from left (position 0) to right. At 577 

the initial position the allele was set by drawing from a Bernoulli distribution 578 

parameterized with the real frequency. At a given position p the allele hp was drawn in 579 

{0,1} according to its probability given the previous sequence window of size w, P(hp | 580 

hp-w, …, hp-1). This probability is computed from the observed haplotype frequencies 581 

in real data. After the initial position, the sequence window size increased 582 

incrementally up to a predefined window size (5 or 10 SNPs). The relevant code is 583 

available at “https://gitlab.inria.fr/ml_genetics/public/artificial_genomes”. 584 

 585 

HAPGEN2: 586 

We used HAPGEN2 (35) to generate our targeted region of chromosome 15  for as 587 

many individuals as in the original dataset. We provided the training dataset (e.g. 588 

either 1000 Genomes or Estonian) and a recombination map (37) of the region as 589 

input. We sampled only control individuals and no cases. All other parameters were 590 

set to default. 591 

 592 

Coalescent simulations: 593 

We used stdpopsim (38) with the command line “stdpopsim HomSap -c chr15 -o 594 

CEU_chr15.trees -g HapMapII_GRCh37 -d OutOfAfrica_3G09 0 2000 0” to generate 595 
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2000 CEU haplotypes based on the demographic parameters inferred by Gutenkunst 596 

et al. 2009 (36). We then selected the genome region corresponding to one targeted 597 

when generating AGs. 598 

 599 

Summary statistics: 600 

We define here the statistics that are not commonly used in population genetics. The 601 

3-point scores measure the correlation patterns for SNP triplets. The 3-point 602 

correlation for SNPs i, j, and k is defined as (63): 603 

cijk(a,b,c) = fijk(a,b,c) - fij(a,b) fk(c) - fik(a,c) fj(b) - fjk(b,c) fi(a) + 2 fi(a) fj(b) fk(c) , 604 

where the alleles (a,b,c) ∈ {0,1}3, fi(a) is the frequency of allele a at SNP i, fij(a,b) is the 605 

frequency of the combination of allele a at SNP i and b at SNP j, and finally fijk(a,b,c) is 606 

the frequency of the combination (a,b,c) at SNPs (i,j,k). We computed the 3-point 607 

correlations for 8,000 randomly-picked triplets under different conditions (SNPs 608 

separated by  1, 4, 16, 64, 256, 512 or 1024 SNPs, as well as SNPs chosen at random) 609 

in each dataset. 610 

 611 

PCA were computed on all datasets combined (e.g. Figure 1) as well as on “pairs” of 612 

datasets (the combination of real and a single type of generated data). 2D-613 

Wasserstein distances for these paired PCA representations were computed based 614 

on the entropic regularized optimal transport problem with square euclidean distances 615 

computed from PCs 1 and 2 and a regularization parameter set to 0.001 (POT  library, 616 

(64)). 617 

 618 

To have reference values regarding the best achievable distances or correlations 619 

between real and generated summary statistics we split randomly the 1000Genomes 620 
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dataset in two and considered half of it as the real dataset and half as a “perfectly 621 

generated” dataset (called test). 622 

 623 

Chromosome painting: 624 

We compared the haplotype sharing distribution between real and artificial 625 

chromosomes through ChromoPainter (27). In detail, we have painted 100 randomly 626 

selected “real” and “artificial” Estonians (recipients) against all the 1000 Genome 627 

Project phased data (donors). The nuisance parameters -n (348.57) and -M (0.00027), 628 

were estimated running 10 iterations of the expectation-maximization algorithm on a 629 

subset of 3,800 donor haplotypes.  630 

 631 

Haplostrips: 632 

We used Haplostrips (28) to visualize the haplotype structure of real and artificial 633 

genomes. We extracted 500 individuals from each sample set (Real, GAN AGs, RBM 634 

AGs) and considered them as different populations. Black dots represent derived 635 

alleles, white dots represent ancestral alleles. The plotted SNPs were filtered for a 636 

population specific minor allele frequency >5%; haplotypes were clustered and sorted 637 

for distance against the consensus haplotype from the real set. See the application 638 

article for further details about the method.  639 

 640 

Nearest Neighbour Adversarial Accuracy (AATS) and privacy loss 641 

We used the following equations for calculating AATS and privacy loss scores (29) :  642 

𝐴𝐴𝑡𝑟𝑢𝑡ℎ =  
1

𝑛
∑ 𝟏(𝑑𝑇𝑆(𝑖) > 𝑑𝑇𝑇

𝑛

𝑖=1

(𝑖))  643 
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𝐴𝐴𝑠𝑦𝑛 =  
1

𝑛
∑ 𝟏(𝑑𝑆𝑇(𝑖) > 𝑑𝑆𝑆

𝑛

𝑖=1

(𝑖)) 644 

𝐴𝐴𝑇𝑆 =  
1

2
(𝐴𝐴𝑡𝑟𝑢𝑡ℎ + 𝐴𝐴𝑠𝑦𝑛) 645 

𝑃𝑟𝑖𝑣𝑎𝑐𝑦 𝐿𝑜𝑠𝑠 =  𝑇𝑒𝑠𝑡 𝐴𝐴𝑇𝑆 − 𝑇𝑟𝑎𝑖𝑛 𝐴𝐴𝑇𝑆 646 

 647 
where n is the number of real samples as well as of artificial samples; 1 is a function 648 

which takes the value 1 if the argument is true and 0 if the argument is false; dTS(i) is 649 

the distance between the real genome indexed by i and its nearest neighbour in the 650 

artificial genome dataset; dST(i) is the distance between the artificial genome indexed 651 

by i and its nearest neighbour in the real genome dataset; dTT(i) is the distance of the 652 

real genome indexed by i to its nearest neighbour in the real genome dataset; dSS(i) 653 

is the distance of the artificial genome indexed by i to its nearest neighbour in the 654 

artificial genome dataset. An AATS score of 0.5 is optimal whereas lower values indicate 655 

overfitting and higher values indicate underfitting. For a better resolution for the 656 

detection of overfitting, we also provided AAtruth and AAsyn metrics identified in the general 657 

equation of AATS. If AATS 0.5 but AAtruth  0 and AAsyn  1, this means that the model is not 658 

overfitting in terms of a single data point but multiple ones. In other words, the model 659 

might be focusing on small batches of similar real genomes to create artificial genomes 660 

clustered at the center of each batch. Privacy loss is the difference of AATS score of 661 

AGs calculated against the training samples set and a different real test set which was 662 

not used in training. 663 

 664 

Selection tests: 665 

We used scikit-allel package for XP-EHH (65) and PBS (66) tests. We used 1000 666 

Estonian individuals (2000 haplotypes) with 3348 SNPs which were homogenously 667 
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dispersed over chromosome 15 (spanning the whole chromosome with similar 668 

distance between SNPs)  for the training of GAN and RBM models. For XP-EHH, 669 

Yoruban (YRI, 216 haplotypes) population from 1000 Genomes data was used as the 670 

complementary population. For PBS, Yoruban (YRI, 216 haplotypes) and Japanese 671 

(JPT, 208 haplotypes) populations from 1000 Genomes data were used as 672 

complementary populations. PBS window size was 10 and step size was 5, resulting 673 

in 668 windows. 216 real and 216 AG haplotypes were compared for the analyses. 674 

  675 
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Figure Legends 676 

Figure 1. The six first axes of a single PCA applied to real (gray) and artificial genomes 677 

(AGs) generated via Bernoulli (green), Markov chain (purple), GAN (blue) and RBM 678 

(red) models. There are 5000 haplotypes for each AG dataset and 5008 (2504 679 

genomes) for the real dataset from 1000 Genomes spanning 805 informative SNPs. 680 

See Materials & Methods for detailed explanation of the generation procedures. 681 

Figure 2. Linkage disequilibrium (LD) analysis on real and artificial Estonian genomes. 682 

a) Correlation (r2) matrices of SNPs. Lower triangular parts are SNP pairwise 683 

correlation in real genomes and upper triangular parts are SNP pairwise correlation in 684 

artificial genomes. b) LD as a function of SNP distance after removing sites that are 685 

fixed in at least in one dataset. Pairwise SNP distances were stratified into 50 bins and 686 

for each distance bin, the correlation was averaged over all pairs of SNPs belonging 687 

to the bin. 688 

Figure 3. Selection tests on chromosome 15. a) Standardized XP-EHH scores of real 689 

and artificial Estonian genomes using 1000 Genomes Yoruba population (YRI) as the 690 

complementary population. Correlation coefficient between real and GAN XP-EHH 691 

score is 0.902, between real and RBM XP-EHH score is 0.887. b) PBS scores of real 692 

and artificial Estonian genomes using 1000 Genomes Yoruba (YRI) and Japanese 693 

(JPT) populations as the complementary populations. PBS window size is 10 and step 694 

size is 5. Dotted black line corresponds to the 99 th percentile. Correlation coefficient 695 

between real and GAN PBS score is 0.923, between real and RBM PBS score is 696 

0.755. Highest peaks are marked by an asterisk. 697 

Figure 4. Imputation evaluation of three different reference panels based on Impute2 698 

software’s info metric. Imputation was performed on 8678 Estonian individuals (which 699 

were not used in training of GAN and RBM models) using only 1000 Genomes panel 700 
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(gray), combined 1000 Genomes and Estonian genomes used in training (green), 701 

combined 1000 Genomes and GAN artificial genomes panel (blue) and combined 702 

1000 Genomes and RBM artificial genomes panel (red). SNPs were divided into 10 703 

MAF bins, from 0.05 to 0.5, after which mean info metric values were calculated. Grey 704 

bars show the percentage of SNPs which belong to each bin. 705 

  706 
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Figure 1.  707 

  708 
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Figure 2.  709 

  710 
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Figure 3.  711 

 712 

  713 
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Figure 4.  714 

  715 
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Supporting Information Legends 716 

Supplementary Figure 1. Generative adversarial network (GAN) scheme. 717 

Supplementary Figure 2. Restricted Boltzmann machine (RBM) scheme. 718 

Supplementary Figure 3. Uniform manifold approximation and projection (UMAP) of real 719 

genomes from 1000 Genomes data spanning 805 SNPs along with artificial genome 720 

counterparts created via a) Bernoulli, b) Markov chain (with 10 window length), c) GAN and 721 

d) RBM models. 722 

Supplementary Figure 4. Distribution of haplotypic pairwise difference within (left) and 723 

between (right) datasets of real genomes from 1000 Genomes data spanning 805 SNPs and 724 

artificial genome counterparts generated using different models. 725 

Supplementary Figure 5. PCA of real genomes (gray) from a) 1000 Genomes data and b) 726 

Estonian Biobank spanning 10K SNPs along with artificial genome counterparts generated 727 

using GAN (blue) and RBM (red) models.  728 

Supplementary Figure 6. Distribution of haplotypic pairwise difference within (left) and 729 

between (right) datasets of real genomes from a) 1000 Genomes data and b) Estonian 730 

Biobank spanning 10K SNPs and artificial genome counterparts generated using GAN and 731 

RBM models. 732 

Supplementary Figure 7. Allele frequency comparison of corresponding SNPs between 733 

real genomes from Estonian Biobank spanning 10K SNPs and artificial genome counterparts 734 

generated using GAN and RBM models as a) the whole range and b) zoomed to low 735 

frequencies. Clustering below the diagonal in the low frequency section for the GAN plot 736 

indicates insufficient representation of rare alleles in artificial genomes. 737 

Supplementary Figure 8. Distribution of minimum distance to the closest neighbour for real 738 

genomes from a) 1000 Genomes data and b) Estonian Biobank spanning 10K SNPs along 739 

with artificial genome counterparts generated via GAN and RBM models.  740 

Supplementary Figure 9. LD comparison of real (Estonian) vs generated datasets. 741 
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Supplementary Figure 10. 3-point correlation statistics for SNPs separated by different 742 

distances. 743 

Supplementary Figure 11. Haplostrips showing the mixed nature of haplotype structures for 744 

real Estonian (gray rows) along with GAN (blue rows) and RBM (red rows) haplotypes.  745 

Supplementary Figure 12. Chromosome painting of two a) real Estonian genomes, b) GAN 746 

and c) RBM artificial Estonian genomes with 1000 Genomes donors colored based on super 747 

population codes. EUR – European, EAS – East Asian, AMR – Admixed American, SAS – 748 

South Asian, AFR – African. 749 

Supplementary Figure 13. a) Nearest neighbour adversarial accuracy (AATS) scores of 750 

artificial genomes generated from Estonian Biobank. Black line indicates the 751 

optimum value whereas values below the line indicate overfitting and values above 752 

the line indicate underfitting. b) Privacy loss. Test1 is a separate set of real Estonian 753 

genomes. Positive values indicate information leakage, hence overfitting. 754 

Supplementary Figure 14. AATS and privacy loss change of RBM AGs over epochs. 755 

Supplementary Table. Genotype/phenotype contingency table for real and artificial 756 

Estonian genomes (AG). Ancestral allele “A” is associated with brown eye color and derived 757 

allele “G” is associated with blue eye color phenotype. 758 

Supplementary Text. Preliminary analysis on generating artificial genomes with 759 

corresponding phenotypes. 760 

Supplementary Figure 15. Comparison of PCA (right column) and non-linear dimension 761 

reduction via RBM (left column) for real genomes from 1000 Genomes data spanning 805 762 

SNPs. The RBM reduction was obtained by projecting the real data into the hidden space of 763 

the RBM (see Materials & Methods). Population codes are as defined by the 1000 Genomes 764 

Project. 765 

Supplementary Figure 16. Activations of each of the 100 nodes belonging to the RBM 766 

hidden layer when applied to the real genomes from 1000 Genomes data spanning 805 767 

SNPs. For each hidden node the X-axis corresponds to the real haplotypes and Y-axis to the 768 
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activation of the node by a single haplotype. On the X-axis, haplotypes are ordered by region 769 

(Africa, America, East Asia, European, East Asia) and colored by population. Because this 770 

RBM activation function is a ReLU with threshold 0 (by design), all values are positive and a 771 

zero-value indicates that the node is not activated by a given haplotype. The ordering of 772 

nodes has no specific meaning. 773 

Supplementary Figure 17. Analyses of artificial genomes generated by HAPGEN2 showing 774 

a) PCA of generated (green) performed with real Estonian genomes (grey) and b) 775 

distribution of minimum distance to the closest neighbour displaying real Estonian genomes 776 

(grey), HAPGEN2 (green), GAN (blue) and RBM (red) artificial genomes. 777 

Supplementary Figure 18. a) PCA of real (Estonian) and artificial genomes simulated via 778 

coalescent approach using stdpopsim (CEU). b) Allele frequency quantiles of real (Estonian) 779 

vs artificial genomes simulated via coalescent approach using stdpopsim (CEU). 780 

Supplementary Figure 19. a) LD as a function of SNP distance after removing sites that are 781 

fixed in at least one dataset and removing alleles below 0.1 frequency from all datasets. 782 

Pairwise SNP distances were stratified into 50 bins and for each distance bin, the correlation 783 

was averaged over all pairs of SNPs belonging to the bin. Allele frequency quantiles of real 784 

(Estonian) vs b) GAN Estonian artificial genomes, c) RBM Estonian artificial genomes and 785 

d) artificial genomes simulated via coalescent approach using stdpopsim (CEU). 786 

Supplementary Figure 20. Comparison of sites which are polymorphic in real genomes 787 

from Estonian Biobank but fixed in artificial genome counterparts generated via GAN and 788 

RBM models. 789 

Supplementary Figure 21. Sensitivity tests for a) AATS (scores over 0.5 indicate underfitting 790 

and below 0.5 indicate overfitting) and b) privacy scores (orange and red lines to mark the 791 

difference between RBM trained up to 350 and 690 epochs). All datasets consist of 2000 792 

samples. Test1 and Test2 are real Estonian individuals who were not used in training. 793 

Mixed1 dataset has 1 real individual from the training dataset, Mixed2 has 10, Mixed3 has 794 

50, Mixed4 has 100, Mixed5 has 500 and Mixed6 has 1000 individuals.  795 
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Supplementary Figure 22. Evaluation of AATS scores of the GAN model for artificial 796 

Estonian genomes spanning a) 805 highly informative SNPs and b) dense 10K SNPs along 797 

with the total fixed sites for the outputs of epochs at 200 intervals. 798 

Supplementary Figure 23. Comparison of a) AATS score and b) linkage disequilibrium of 799 

artificial genomes created via RBM model with sigmoid and ReLu activation functions.  800 
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