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ABSTRACT2

Hidden Markov models (HMMs) are being widely used in the field of ecological modelling, however3

determining the number of underlying states in an HMM remains a challenge. Here we examine4

a special case of partially observed capture-recapture models for open populations, where some5

animals are observed but it is not possible to ascertain their state (partial observations), whilst6

the other animals’ states are assigned without error (complete observations). We propose7

a mixture test of the underlying state structure generating the partial observations, which8

assesses whether they are compatible with the set of states directly observed in the complete9

observationscapture-recapture experiment. We demonstrate the good performance of the test10

using simulation and through application to a data set of Canada Geese. This paper provides a11

novel method to offer practical insight to a large class of HMM applications.12

Keywords: Multievent model, Capture-recapture, Partial observations, Mixture of multinomials13

1 INTRODUCTION

Besides its known use for the estimation of the size of a closed population (Bartolucci and Pennoni, 2007;14

Yang and Chao, 2005; Pledger, 2000) originating in the work of Otis et al (1978), capture-recapture is also a15
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widely used technique to follow the dynamics of open animal populations :(Cormack, 1964; Williams et al,16

2002). The protocol remains the same: animals are uniquely marked, then released and resighted/recaptured17

at subsequent sampling occasions. In athe multi-state framework (Lebreton et al, 2009), at each occasion,18

individual animals’ states are recorded upon resighting; if an animal is not seen at a given occasion, this19

is denoted by a 0. If it is seen, a code, commonly a number, specifies the state (see example data set20

in supplementary material). Hence, the data resulting from a multi-state capture-recapture experiment21

consists of individual encounter histories, formed by the series of records made for each animal. Multi-state22

models allow the estimation of the survival and transition probabilities of animals between the states, whilst23

accounting for imperfect detection. However, Within this modelling framework, states are assumed to be24

assigned without error (Kendall, 2004). However, this assumption can be unrealistic in certain situations25

such as the assessment of sex in a monomorphic species or of health status when biological testing is not26

possible in the field. Pradel (2005) developed multievent models , which belong to the family of Hidden27

Markov Models (Zucchini et al, 2016) to account for the uncertainty in state assignment. These models28

belong to the family of Hidden Markov Models (Zucchini et al, 2016) and distinguish the events, which are29

observed, from the states, which are underlying. In this framework, events are observed whilst the states30

are underlying. The process governing the transitions between states is Markovian (generally assumed of31

order 1) and the events are generated by the states. Multievent models have a structural absorbing state32

(death). Transitions are almost systematically time-dependent, which precludes the consideration that the33

system has reached an equilibrium. Also, because the chance that an individual is missed is state dependent,34

non-observations cannot be considered as data missing at random. They are informative events like any35

other outcome of the experiment.36

In this paper we focus on a special case of multievent models, where, at a given occasion, the state37

cannot be ascertained for a proportion of the observed animals, leading to partial observations, whilst38

the underlying states are directly observable for the other observed animals (complete observations). In39

analysing this type of data, it is usually assumed that the range of potential states is limited to the set40

of states observed directlyin the complete observations (see Figure 1). However, some states may not41

be directly observable, yet capable of generating partial observations (see Figure 2). We propose a new42

diagnostic tool to assess whether the partial observations are consistent with being generated only by the43

directly observable states (H0) or whether partial observations may be generated by at least one additional44

unidentified state never directly observed (H1). For instance, in a study of movements, animals may45

move between the set of monitored sites, where observations are made, and an additional unmonitored46

site (see scenarios 2PO and 3PO of the Canada geese example below). This is useful for defining the set47

of underlying states for the multievent model: are the directly observed states sufficient or do additional48
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latent states need to be defined? Such a test is currently lacking in the literature and pragmatic approaches49

need to be taken, see for example Pohle et al (2017).50

Our test builds on the approach used by Pradel et al (2003) to construct a mixture test for the multi-51

state framework, as well as the sufficient statistics and likelihood components developed by King and52

McCrea (2014) for the special case of partial observations. Indeed, we show that if partial observations53

are generated only by the directly observable states, the number of animals previously released, partially54

observed at a given occasion i and re-observed later in a known state, follows a conditional multinomial55

distribution, which is a mixture of the conditional multinomial distributions followed by the number of56

animals released at occasion i in the observable states. Based on this mixture property, we then use usual57

goodness-of-fit measures to assess the fit of a model where only the directly observable states generate the58

partial observations.59

We use simulation to empirically assess the test and apply it to a Canada Geese, Branta canadensis,60

dataset (Hestbeck et al, 1991), in which we artificially create partial observations. This demonstrates that61

the test can work well under practical settings and sample size.62

2 PARTIALLY OBSERVED CAPTURE-RECAPTURE DATA AND MIXTURE

PROPERTIES

Consider a capture-recapture experiment with T sampling occasions and R live states. If individuals are63

assigned to state r upon capture, this is done with certainty and the corresponding event is denoted by r:64

“observed in state r”. When an individual’s state cannot be determined, the corresponding event, a partial65

observation, is denoted by U : “observed with state unknown” and the animal can be in any one of the66

underlying R states.67

The state and time-dependent parameters of the partial observation capture-recapture model (King and68

McCrea, 2014) are defined by:69

• φrt is the probability an individual in state r at time t survives until t + 1, for t = 1, . . . , T − 1 and70

r = 1, . . . , R.71

• prt is the probability of recapture at time t for an individual in state r, for t = 2, . . . , T .72

• ψr,s
t is the probability an individual is in state s at time t+ 1 given that it was in state r at time t and is73

alive at t+ 1, for t = 1, . . . , T − 1, r = 1, . . . , R and s = 1, . . . , R.74

• αr
t is the probability an individual is assigned to state r given it was recaptured at time t and in state75

r at that time, for t = 2, . . . , T and r = 1, . . . , R. βrt = 1 − αr
t is then defined as the probability an76

individual is assigned as unknown (U) at time t given the individual is recaptured, and in state r at this77
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time, for t = 2, . . . , T and r = 1, . . . , R. An animal is either assigned to the correct state or unassigned78

but there are no assignment error.79

• πrt is the initial state probability of individuals in an unknown state when first observed. This80

corresponds to the probability an individual is in state r at time t, given it was first observed in81

U at t, for t = 1, . . . , T−1.82

The sufficient statistics are based on partitioning the encounter histories (EH) into the following pieces:83

the EH between observations in two known states; the EH between first observation in unknown state and84

first re-observation in a known state; the EH following the last observation in a known state; and the EH85

following the first observation in an unknown state, for animals who are never seen in a known state (Table86

1 provides examples). We define the following sufficient statistics:87

• n
r,z(t1+1):(t2)

,s

t1,t2+1 denotes the number of animals observed at time t1 in known state r, next observed in88

known state s at t2 + 1 with partial capture history z(t1+1):(t2) between these two time points. Note89

that when t1 = t2, z(t1+1):(t2) is denoted by −.90

• w
U,z(t1+1):(t2)

,s

t1,t2+1 denotes the number of animals observed for the first time at t1 in an unknown state,91

re-observed for the first time in known state s at time t2 + 1 with partial capture history z(t1+1):(t2)92

between these two time points.93

• vrt1 is the number of animals observed in known state r at t1 and never seen again in a known state (i.e.94

never seen again or only ever re-observed in an unknown state).95

• bUt1 is the number of animals first observed in an unknown state at t1 and never seen again in a known96

state.97

Building upon the notation and probabilities introduced in the previous section, we will demonstrate98

that the number of animals partially observed at time i and later seen again in a known state, follows a99

multinomial distribution which is a mixture of the multinomial distributions of the animals released in a100

known state at time i and seen again in a known state later. The multinomial cells correspond to the time101

and state of the first re-observation in a known state after time i.102

The mixture property is illustrated for a simple example in Table 2 for occasion i = 2 of a T = 4 occasion103

capture-recapture study with two live states A and B. The number of animals released in state A at occasion104

1 first re-captured in a known state at the different occasions, and those never seen again in a known state,105

follow a multinomial distribution (row 1). Similarly for those released in state B at occasion 1 (row 2), and106

those first released in an unknown state at occasion 1 (row 3) and at occasion 2 (row 4).107

When the number of sampling occasions increases, capture histories are long and there are a great number108

of possible intermediate capture histories, formed of combinations of 0s and Us, before the first observation109
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in a known state appears. In order to lower the chances of a sparse table, we opt to build the multinomials110

based on the time and state of the first known re-observed state, thus pooling over all possible intermediate111

capture histories.112

In supplementary material Section 2 we show that the number of animals previously released in a known113

state r, partially observed at occasion i and re-observed later in a known state, follows a conditional114

multinomial distribution, which is a mixture of the conditional multinomial distributions followed by the115

animals released at occasion i in the observable states. We also show that the number of animals first116

released before i or at i in an unknown state, partially observed at occasion i and re-observed later in a117

known state, follows a conditional multinomial distribution (denoted in blue in Table 1), which is a mixture118

of the conditional multinomial distributions followed by the animals released at i in the observable states119

(denoted in red in Table 1).120

Using the following property cited from Pradel et al (2003): “if B1 and B2 are mutually independent121

stochastic vectors, which are multinomially distributed, and if M1 and M2 are mutually independent122

stochastic vectors whose distributions are separately mixtures of the distributions of B1 and B2, then the123

distribution ofM1+M2 is itself a mixture of the distributions ofB1 andB2”, the conditional multinomials124

of the animals released in a known state or first released in an unknown state before or at i, and partially125

observed at i can be pooled as shown in Table 3. Thus, the table used to test the mixture property of partial126

observations at occasion i is given in Table 3.127

3 TESTING THE UNDERLYING STATE STRUCTURE GENERATING THE PARTIAL

OBSERVATIONS

Based on the mixture property of partial observations at a given occasion demonstrated in the previous128

section, we use the Multinomial Maximum Likelihood Mixture approach (MMLM) developed by Yantis et129

al (1991) to assess the goodness-of-fit of a model where the partial observations are generated only by the130

directly observable states. The MMLM approach is targeted to mixtures of multinomial distributions and131

is used when independent samples are available from both the mixtures and their associated components.132

This approach consists of two steps: first estimating the cell probabilities of the mixture components and133

the mixing weights via maximum-likelihood, then assessing the goodness-of-fit of the hypothesised model134

structure (mixtures and associated components) using a classical measure of comparison between observed135

and expected frequencies.136

Hence, based on the mixture property of the partial observations demonstrated in the supplementary137

material and reported in Section 2, there is no need to estimate the numerous capture-recapture parameters138
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for the purpose of the test, the information needed is summarised in simpler terms: one parameter per139

component-cell and the mixing weights as illustrated in Table 4.140

For the goodness-of-fit assessment, various statistics based on the distance between expected values141

under the model and observed values may be considered: Pearson’s χ2, the log-likelihood ratio statistic142

G2 (Cressie and Read, 1988, p. 10); and more generally, due to the different properties of these statistics143

depending on the alternatives or sparseness of the table, the power-divergence family of statistics (Cressie144

and Read, 1988), which encompasses G2 and χ2 as special cases. Within this paper, we present the results145

obtained with Pearson’s χ2 as all the various statistics used gave similar results.146

147

Under the null hypothesis, animals partially observed at i and re-observed later in a known state are148

consistent with being a mixture of animals observed in the directly observable states at i and re-observed149

in the same conditions: the partial observations are generated solely by the observable states (Figure 1).150

Using the usual H0 notation for the null hypothesis and H1 for the alternative, H1 = H̄0. A large array151

of situations come under the alternative hypothesis: from the partial observations being generated by the152

directly observable states and another state which is never directly observable (Figure 2) to the most153

extreme case of partial observations all being generated only by one (or more) states which are never154

directly observable.155

Under the null hypothesis, the Pearson goodness-of-fit statistic presented above follows a χ2 distribution156

(Cressie and Read, 1984) with K − p− 1 degrees of freedom (Moore, 1986, p. 66) where K denotes the157

number of observed frequencies and p denotes the number of parameters in the model. In order for the158

asymptotic distributions to hold, expected frequencies in each cell should be at least 2 for a level α = 0.05159

(Moore, 1986, p. 71).160

The tables used at each occasion i condition on known states. Therefore, the test-statistics obtained at161

each occasion are independent and a global test-statistic can be computed by summing up the tests for each162

occasion. This global test-statistic follows, under the null hypothesis, a chi-square distribution with the163

number of degrees of freedom being the sum of the degrees of freedom of the test-statistics per occasion.164

4 APPLICATIONS

4.1 Simulation results165

In order to minimise the chances of sparse data and verify that the test works as expected in theory, we166

first used simulation with very large sample size (N=25,000 animals newly released at each occasion),167

whilst also focusing on an extreme case of the alternative hypothesis (results not presented here). We168

then simulated the same scenarios under more realistic settings as detailed below. First, we present169

This is a provisional file, not the final typeset article 6



Jeyam et al. Determining underlying state-structure

simulations for two-state capture-recapture data under the null hypothesis, arising from two directly170

observable states, with K = 5 sampling occasions, under two sample size settings: N=5000 and N=1000171

animals newly released per occasion. The capture, survival and transition probabilities, are respectively172

set as pA = pB = 0.6, φA = 0.6, φB = 0.9, ψAB = 0.8, ψBA = 0.7. This scenario is denoted by 2S. In173

order to introduce partial observations, we set to unknown at random a varying percentage of the observed174

statesobservations as missing completely at random (MCAR). More specifically, we ran a binomial on175

each observed state in scenario 2S to decide whether it should be kept as ’observed in the relevant known176

state’ or changed to ‘observed in unknown state’. We also simulated data under the alternative hypothesis,177

where the partial observations are not generated by either of the two directly observable states, but by a178

third state C which is never directly observable, this scenario is denoted by 3S. Using standard multievent179

notation (see for example Pradel, 2005), the survival matrix is denoted by Φt with the diagonal terms180

being the probability that an animal in state r at time t survives until t+ 1 and the last column being the181

probability of dying,182

Φt =



A B C Dead

A 0.7 0 0 0.3

B 0 0.8 0 0.2

C 0 0 0.9 0.1

Dead 0 0 0 1


for t = 1, . . . , 4; the transition matrix with the (r, s)th element being ψr,s

t , the probability that an animal is

in state s at time t+ 1, given it was in state r at t and that it is alive at t+ 1, is denoted by

Ψt =



A B C Dead

A 0.1 0.3 0.6 0

B 0.3 0.15 0.55 0

C 0.4 0.4 0.2 0

Dead 0 0 0 1


183

for t = 1, . . . , 4 and finally, the event matrix with the (r, e)th element being the probability of observing184

event e for an animal in state r at time t is denoted by185
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Bt =



0 A B U

A 0.45 0.55 0 0

B 0.45 0 0.55 0

C 0.45 0 0 0.55

Dead 1 0 0 0


186

for t = 1, . . . , 5. Here the events (corresponding to the columns) are, not observed, observed in state A,187

observed in state B and observed in unknown state denoted by U.188

We examine this scenario for the following numbers of animals newly released at each occasion: N=100,189

N=250, N=500, and N=1000, N=2500 and N=5000. We simulate 600 datasets for each scenario. If any190

of the expected values are lower than two, the corresponding test is deemed Non Applicable (NA). Since191

sparse data were extremely likely to arise for the smaller sample sizes, we automatically applied pooling192

strategies before performing the maximum likelihood test: pooling across columns while the number of193

columns is greater than the number of components plus one, and across the lines: all the mixtures are pooled194

together to form just one mixture. The results obtained are given in terms of percentage of significant test195

results out of the number of applicable tests, at a 5% level, in Table 5.196

In order to examine how the test would perform in the more challenging situation where some partial197

observations are generated by the observable states, we also examined for the sample size N=1000 a variant198

of the 3S scenario where, in addition to the partial observations corresponding to state C, 30% of the199

observations generated by the observable states A and B are set to partial at random (unknown state).200

The simulation results show that for the datasets simulated under the null hypothesis (scenario 2S), the201

Type I error rate is close to 5%, whatever the percentage of partial observations. Importantly, the test202

showed good power for the datasets simulated under an alternative hypothesis (scenario 3S), with close to203

50% of tests being significant for a sample size as small as 100 animals newly released per occasion (i.e.204

500 animals altogether) and close to 100% of the global test being significant for 250 animals released205

per occasion. The simulation results show that the test reacts as expected from the derivation made in the206

previous sections, when the partial observations are not generated by the directly observable states, and207

that it can work well for realistic sample sizes. When part of the partial observations are generated by the208

observable states, the test is not as powerful as could be expected but nonetheless rejects H0.209

4.2 Canada Geese210

We have shown theoretically and empirically that our test has the ability to assess whether partial211

observations can be adequately modelled as stemming solely from the directly observable states in a212
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capture-recapture experiment. In this section, we apply the test to an ecological dataset, chosen so that the213

underlying state structure is actually known.214

We use the Canada geese dataset from Hestbeck et al (1991) which consists of 21,435 migrant geese215

individually marked with neck-bands and re-observed at their wintering locations each year, between 1984216

and 1989 (Hestbeck et al, 1991; Rouan et al, 2009). These wintering sites constituted the states in the217

capture-recapture experiment: mid-Atlantic (New York, Pennsylvania, New Jersey), Chesapeake (Delaware,218

Maryland, Virginia), and Carolinas (North and South Carolina). Since the tables needed for the test were219

quite sparse, we therefore used the following pooling strategy: on the columns, pooled to the maximum220

until there was one degree of freedom left for the test (the column with the minimal sum is pooled with the221

column with the second minimal sum and so on) whilst on the rows, all the rows corresponding to mixtures222

are pooled so that there is just one mixture left to test for.223

We examine the Canada geese dataset under both the null and alternative hypotheses by artificially creating224

these situations within the data. First, in order to create partial observations generated by the observable225

states (H0), we set some a varying percentage of the observed geese’s states to unknown (MCAR). We226

considered varying percentages to see how the test reacts to the amount of partial observations: 15%,227

25% and 45%, so that the partial observations are generated only by the observable states (H0). These228

situations are respectively denoted by MCAR15, MCAR25 and MCAR45 in Table 6. Then we examine229

situations that come under the alternative hypotheses (H1) by setting all of the observations from a230

particular state to “unknown” so that this particular state becomes unobservable while the states remaining231

observable do not generate any partial observations. We considered 2 situations: all observations in state232

2 are set to “unknown” (situation 2PO), or all those in state 3 are set to “unknown” (situation 3PO).233

Eventually, we considered the hybrid situation where, in addition to the partial observations generated by234

the unobservable state 3 as in scenario 3PO, 25% then 45% of the observations generated by state 2 are also235

set to partial: scenarios Hyb25 and Hyb45. Hence, for situations 2PO and 3PO the partial observations236

stem, respectively, only from states 2 and 3. Note that the state set to “unknown” is never directly observed237

in each of these situations. This allows us to test the performance of the test as we know that all unknown238

events correspond to a different state from the ones “observed”.239

The p-values obtained from applying the mixture test to all these configurations of the geese dataset are240

given in Table 6. These results are very promising, with the test reacting as it should under the different241

configurations examined. Under all the null hypothesis configurations, the directly observable states as sole242

underlying states for the partial observations, there is insufficient evidence to reject the null hypothesis.243

For the configurations under the alternative, the null hypothesis is strongly rejected, with p<0.001 for244

almost all of the tests examined (by occasion and global). The non-significant test at occasion 2 under245
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scenario 3PO is due to the small number of individuals captured in state 3 at this occasion, resulting in246

insufficient power to detect the different properties of that state. Hence, the results from configurations 2PO247

and 3 PO lead to the conclusion that the directly observable states do not provide an adequate underlying248

state-structure for the partial observations. When some partial observations are generated by the observable249

states (Hyb25 and Hyb45), there is a clear loss of statistical power. The global tests are still very close250

to significance at the 5% level, but more than 5 years of study would have been necessary to detect the251

presence of the third unmonitored location.252

5 DISCUSSION

We have derived a mixture test that assesses whether partial observations in a capture-recapture study are253

generated solely from the directly observable states. This test is based on distributional properties which254

we have demonstrated. It has been shown to perform well in theory, through simulation and for real-data255

applications. Regarding the interpretation of the test, if the null hypothesis is not rejected, the observable256

states provide an adequate underlying structure for the partial observations. However, similarly to classical257

goodness-of-fit tests, the interpretation of a significant test result is not as straightforward as the range of258

alternatives to be considered is quite large. For example, if the set of observable states are inadequate, it259

is not known how many additional states should be considered for the underlying structure and how the260

partial observations should be modelled. Both of these questions do not have obvious answers at this stage261

and constitute an area of future research.262

Partial observations might also stem from alternatives less extreme than those considered in our263

applications: they could be generated by one of the directly observable states and an additional state264

that is never observable directly. Going further, they may also stem from all the observable states and265

another state which is never observable directly. In theory, the test will react to this situation too. However,266

in practice, we surmise that the other state would have to present different enough properties from the267

directly observable states for the test to be powerful enough to detect it.268

Finally, determining a minimum sample size for which the test is powerful enough is more complex269

than usual in this framework, as it is not only the total sample size which matters but also the proportion270

of partial observations, which will depend on combinations of the parameter values. From a modelling271

perspective, we would recommend fitting a model with one additional state when the test is found to be272

significant.273

This new test has sound theoretical basis, we showed it can work well even with small sample sizes, and274

we believe that it will be useful in a multi-state capture-recapture model, in statistical ecology and also275

other areas of application. Hidden Markov models are used for a range of purposes in capture-recapture276
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modelling, (see for example Langrock and King (2013); Zhou et al (2019); Worthington et al (2019)), and277

the work of this paper will considerably contribute to the theoretical tools available for a wide range of278

applications. It will enable practitioners to consider better fitting models and will also give practical insight279

as to the existence of at least one state where the animals go, that is different from those directly observed.280

Clearly it is desirable to consider whether the approach presented in this paper can be extended to other281

applications of HMMs in ecology, for example in application to movement models (Langrock et al, 2012),282

and beyond, and this is a current area of research.283
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FIGURES AND TABLES

† State 1 State 2

Start

Not 
observed

Observed
in state 1

Observed
in state 2

Observed
state 

unknown

Figure 1. Diagram of the capture recapture multievent model for partial observations with two observable
live states under the null hypothesis. The state ‘dead’ is represented by †. Four events are generated by the
three states: ‘Not observed’, which is obligatory for the state ‘dead’; two complete observations, ‘Observed
in state 1’ and ‘Observed in state 2’; and the partial observation ‘Observed state unknown’, which may be
generated by either live state.

347
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† State 1 State 2

Start

Not 
observed

Observed
in state 1

Observed
in state 2

State 3

Observed
state 

unknown

Figure 2. Diagram of the capture recapture multievent model for partial observations with two observable
live states under the alternative hypothesis where there is one additional non-observable live state (state 3).
This last state is never recognized upon observation. See Figure 1 for more details

Table 1. Illustrating how example individual capture histories contribute to the sufficient statistic terms,
for a capture-recapture experiment with two observable states A, B and five sampling occasions. Partial
observations are denoted by U. The elements of capture history determining the indices within the statistics
are denoted in bold.

Capture History sufficient statistic

U A U U B wU,−,A
1,2 , nA,UU,B

2,5

A U U U A nA,UUU,A
1,5

A U 0 U 0 vA1

U U U U B wU,UUU,B
1,5

0 0 U 0 1 wU,0,1
3,5

0 A B U U nA,−,B
2,3 , vB3

0 U 0 U U bU2
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Table 2. The sufficient statistics for multinomial distributions corresponding to individuals released before
or at i = 2 in an capture-recapture experiment with 4 occasions where individuals can be in any of 2 live
states: sufficient-statistic terms. At each time for each individual, one of 4 events occurs: the individual
is not encountered (code 0), the individual is encountered but its state is not recognized (event U ), the
individual is encountered and recognized to be in state A (code A), the individual is encountered and
recognized to be in stateB (codeB). In the electronic version of the paper the terms constitutive of mixtures
are denoted in blue whilst those constituting components are denoted in red. The terms in black will be
conditioned upon. bUi -terms are the counts of animals with a first partial observation at i (initial event U )
that are never completely observed. wU,h,S

i,j -terms are the counts of animals with a first partial observation
at i and a first complete observation at j in state S with intervening capture history h (- stands for the
empty capture history). nR,h,S

i,j -terms are the counts of animals with two successive complete observations
respectively at times i and j in states R and S with intervening capture history h. vSi -terms are the counts
of animals observed completely for the last time at i in state S.

nA,-,A
1,2 nA,-,B

1,2 nA,0,A
1,3 . . . nA,0U,B

1,4 nA,U,A
1,3 nA,U,B

1,3 nA,U0,A
1,4 nA,U0,B

1,4 nA,UU,A
1,4 nA,UU,B

1,4 vA1

nB,-,A
1,2 nB,-,B

1,2 nB,0,A
1,3 . . . nB,0U,B

1,4 nB,U,A
1,3 nB,U,B

13 nB,U0,A
14 nB,U0,B

14 nB,UU,A
14 nB,UU,B

14 vB1

wU,-,A
12 wU,-,B

12 wU,0,A
13 . . . wU,0U,B

14 wU,U,A
13 wU,U,B

13 wU,U0,A
14 wU,U0,B

14 wU,UU,A
14 wU,UU,B

14 bU1

wU,-,A
23 wU,-,B

23 wU,0,A
24 wU,0,B

24 wU,U,A
24 wU,U,B

24 bU2

- - - - - nA,-,A
23 nA,-,B

23 nA0A
24 nA0B

24 nAUA
24 nAUB

24 vA2

- - - - - nB,-,A
23 nB,-,B

23 nB,0,A
24 nB,0,B

24 nB,U,A
24 nB,U,B

24 vB2
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Table 3. Table used for testing the mixture property of partial observations at occasion i in a capture-
recapture experiment with T occasions where individuals can be in any of R live states. Notations are as in
Table 2. The columns correspond to the circumstances (time and state) of the first reobservation in a known
state after i. They are pooled over the different intervening partial histories (. notation), h(i) = U denotes
that the animals are seen in U at i. For individuals seen in U at i, the rows are pooled by last recognized
state at last release (first R rows) and when there are no certaincomplete observations prior to i+1 (row
R+1). For instance, the first row is for animals seen in U at i and with A as their last recognized state; the
summation is over the timing of this last previous complete observation.
j = i+ 1 . . . T

s = A . . . R . . . A . . . R

∑i−1
f=1 n

A,.,A,h(i)=U
f,i+1 . . .

∑i−1
f=1 n

A,.,R,h(i)=U
f,i+1 . . .

∑i−1
f=1 n

A,.,A,h(i)=U
f,T . . .

∑i−1
f=1 n

A,.,R,h(i)=U
f,T

...
...

...
...

...
...

...∑i−1
f=1 n

R,.,A,h(i)=U
f,i+1 . . .

∑i−1
f=1 n

R,.,R,h(i)=U
f,i+1 . . .

∑i−1
f=1 n

R,.,A,h(i)=U
f,T . . .

∑i−1
f=1 n

R,.,R,h(i)=U
f,T∑i

f=1w
U,.,A,h(i)=U
f,i+1 . . .

∑i
f=1w

U,.,R,h(i)=U
f,i+1 . . .

∑i
f=1w

U,.,A,h(i)=U
f,T . . .

∑i
f=1w

U,.,R,h(i)=U
f,T

nA,A
i,i+1 . . . nA,R

i,i+1 . . . nA,.,A
i,T . . . nA,.,R

i,T

...
...

...
...

...
...

...
nR,A
i,i+1 . . . nR,R

i,i+1 . . . nR,.,A
i,T . . . nR,.,R

i,T
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Table 4. Simple model structure of mixtures and associated components used to test the mixture property.
In the electronic version of the paper the mixing weights are denoted in blue and the component cell-
probabilities in red. Br is the basis corresponding to animals released at i in state r, r = 1, . . . , R. Mr is
the mixture corresponding to animals partially observed at i and most lately completely observed in state r,
r = 1, . . . , R. Only animals completely reobserved at some point after i are used in the bases and mixtures.
The cells of the multinomials correspond to the time and state of the first complete observation after i. They
are ordered by states within times for a total of R× (T − i) cells. pBr

i is the probability associated to cell i
of basis Br, i = 1, . . . , R × (T − i), r = 1, . . . , R. γr, r = 1, . . . , R, are the mixing weights for M1. πr,
r = 1, . . . , R, are the mixing weights for MR.

j = i+ 1 . . . T

s = A . . . R . . . A . . . R

γ1p
B1
1 + . . .+γRp

BR
1 . . . . . . . . . . . . . . . γ1p

B1
R×(T−i)

+ . . . + γRp
BR
R×(T−i)

M1
...

...
...

...
...

...
...

...
π1p

B1
1 + . . .+πRp

BR
1 . . . . . . . . . . . . . . . π1p

B1
R×(T−i)+ . . .+πRp

BR
R×(T−i)

MR

pB1
1 . . . . . . . . . . . . . . . pB1

R×(T−i)
B1

...
...

...
...

...
...

...
...

pBR
1 . . . . . . . . . . . . . . . pBR

R×(T−i)
BR
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Table 5. Testing the mixture property of partial observations: simulation results. For H0, we generated
2-state capture histories (scenario 2S) examining 2 sample sizes (1000 and 5000 animals newly released per
occasion) and 2 percentages of observations rendered partial by setting the state to unknown (%MCAR).
Different values of the binomial parameter were considered. For H1, we generated 3-state capture histories
(scenario 3S) examining 4 sample sizes: 2 states were fully observable while the third, never observed, gave
rise to all the partial observations. Values of the detection, survival, and transition parameters for scenarios
2S and 3S are given in section 4.1. Under a variant of scenario 3S with the largest sample size, 30% of
the observations generated by the 2 observable states are also made partial at random. In all cases, 600
replicates were simulated. Results are given as percentage of significant test results out of the number of
applicable tests (all expected values ≥ 2). G denotes the global test, i the sampling occasion and %MCAR
the percentage of observations set to “Unknown” and N denotes the number of applicable tests. The
sample size examined is indicated next to the relevant scenario - When 50% or more of the test-results
were significant, this is indicated in bold.

Scenario sample size % MCAR i χ2(%) N (non NA)

45
2 4.83 600
3 3.33 600
G 5.00 600

5000

25
2 3.50 600
3 4.17 600
G 4.50 600

45
2 4.77 600
3 3.63 600
G 4.93 600

3S H1

100
- 2 26.44 435
- 3 45.84 373
- G 42.73 550

250
- 2 52.75 582
- 3 92.60 581
- G 94.33 600

500
- 2 83.47 599
- 3 99.83 600
- G 100.00 600

1000

- 2 96.50 600
- 3 100.00 600
- G 100.00 600

30
2 76.30 600
3 97.50 600
G 99.80 600
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Table 6. Using different configurations of the Canada geese dataset to assess the performance of the new
mixture test for assessing the underlying state structure of partial observations, under real-life conditions.
Starting from an original data set where individually identified Canada geese have been observed at 3
locations during 6 consecutive wintering seasons, we artificially generated 3 scenarios under H0 by setting
15%, 25%, and 45% of the observed geese’s locations to unknown : scenarios MCAR15, MCAR25,
MCAR45 respectively, and 2 scenarios under H1 by setting all the observations at location 2 (resp. 3)
to unknown: scenarios 2PO (resp. 3PO). The p-value obtained at each occasion i is presented and the
associated global tests are denoted by G.

Configuration i p-value dfdof

H0

MCAR15
2 0.14 1
3 0.14 1
4 0.60 1
G 0.21 3

MCAR25
2 0.57 1
3 0.09 1
4 0.85 1
G 0.35 3

MCAR45
2 0.84 1
3 0.82 1
4 0.85 1
G 0.99 3

H1

2PO
2 <0.001 1
3 <0.001 1
4 <0.001 1
G <0.001 3

3PO
2 0.13 1
3 <0.001 1
4 <0.001 1
G <0.001 3

Hyb25
2 0.25 1
3 0.28 1
4 0.04 1
G 0.07 3

Hyb45
2 0.37 1
3 0.08 1
4 0.07 1
G 0.06 3
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