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ABSTRACT 34 

The knowledge of the mechanical properties is the starting point to study the mechanobiology of 35 

mesenchymal stem cells and to understand the relationships linking biophysical stimuli to the cellular 36 

differentiation process. In experimental biology, Atomic Force Microscopy (AFM) is a common 37 

technique for measuring these mechanical properties. 38 

In this paper we present an alternative approach for extracting common mechanical parameters, such 39 

as the Young’s modulus of cell components, starting from AFM nanoindentation measurements 40 

conducted on human mesenchymal stem cells. In a virtual environment, a geometrical model of a 41 

stem cell was converted in a highly deformable Coarse-Grained Elastic Network Model (CG-ENM) 42 

to reproduce the real AFM experiment and retrieve the related force-indentation curve. An ad-hoc 43 

optimization algorithm perturbed the local stiffness values of the springs, subdivided in several 44 

functional regions, until the computed force-indentation curve replicated the experimental one. After 45 

this curve matching, the extraction of global Young’s moduli was performed for different stem cell 46 

samples. The algorithm was capable to distinguish the material properties of different subcellular 47 

components such as the cell cortex and the cytoskeleton. The numerical results predicted with the 48 

elastic network model were then compared to those obtained from hertzian contact theory and Finite 49 

Element Method (FEM) for the same case studies, showing an optimal agreement and a highly 50 

reduced computational cost. 51 

The proposed simulation flow seems to be an accurate, fast and stable method for understanding the 52 

mechanical behavior of soft biological materials, even for subcellular levels of detail. Moreover, the 53 

elastic network modelling allows shortening the computational times to approximately 33% of the 54 

time required by a traditional FEM simulation performed using elements with size comparable to that 55 

of springs.  56 

Keywords: Elastic Network Model, Atomic Force Microscopy, Cell Material Characterization, 57 

Meshless Methods  58 
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1. Introduction 59 

Stem cells are undifferentiated cells capable of differentiation towards specific cell 60 

phenotypes. The control of stem cells biology through mechanical factors remains a poorly 61 

understood topic and represents one of the main objectives of mechanobiology [1]. Mechanobiology 62 

is an interdisciplinary research area that integrates engineering and biology, exploiting the best 63 

computational and experimental techniques to investigate the interactions between external 64 

mechanical stimuli and internal adaptive response of living cells [2] and to understand the 65 

relationships linking forces acting on a cell and biophysical responses [3–5]. Computational 66 

mechanobiological models were recently developed to design biomaterials for bone tissue 67 

engineering applications [6–8].  68 

The starting point to investigate stem cell mechanobiology is the assessment of the mechanical 69 

properties and deformation characteristics of the cell and its subcellular components. One of the most 70 

commonly adopted techniques to measure these properties is the Atomic Force Microscopy (AFM) 71 

that is widely used in experimental biology for mechanical characterization of whole living cells [9–72 

11] as well as for subcellular components [12,13], and also for biological tissues in general [14–18]. 73 

It essentially consists in moving a spherical, conical or pyramidal nanoindenter fixed at the tip of a 74 

flexible cantilever of known stiffness into the surface of the material to investigate [19,20]. The tip 75 

displacement is detected and, based on the cantilever stiffness, is converted into force, in order to 76 

obtain a force-indentation curve that is strictly related to the stiffness of the material under 77 

examination. The effects of the AFM tip geometry and of the stress state acting on the nanoindented 78 

material were investigated in previous studies [21,22]. A common practice for assessing elastic 79 

properties of a biomaterial starting from force-indentation AFM curves exploits the hertzian contact 80 

theory [20,23]. The main hypotheses of this theory, in the particular case of a spherical indenter, are 81 

the following: (i) the strains in the nanoindented material are infinitesimal, (ii) the contact area is 82 

small, (iii) the nanoindented material has a linear elastic and uniform behavior, (iv) the nanoindented 83 
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material presents a perfectly flat surface with infinite dimensions, (v) the indenter is perfectly 84 

spherical. In a real AFM tip to living cell contact not all those conditions are satisfied and is 85 

impossible to distinguish, by using this theoretical framework, the single contributions to the overall 86 

stiffness of the several subcellular components [11,24], acting as a series-system composed by 87 

different stiffness values, but only retrieve an overall cell stiffness as a weighted average of the 88 

subcellular components stiffnesses. 89 

Nowadays computer simulations represent a powerful tool for studying physical phenomena 90 

presenting real conditions that are not reproducible in a laboratory [25]. A common numerical 91 

technique suitable for modelling deformable objects subjected to loads and constraints is the Finite 92 

Element Method (FEM) [26,27]. The main issues encountered in the finite element analysis of soft 93 

biological materials are the following: (i) the numerical convergence is problematic and often missing 94 

even for small imposed displacements due to very low Young’s moduli; (ii) the large local distortions 95 

induced in the mesh and the consequent need for numerical stabilization functions; (iii) the high 96 

computational resources required for modelling complex structures. The main goal of this study is to 97 

overcome the problems related to the large deformations and distortions imposed on mesh-based 98 

models in simulations of soft biological materials. A meshless approach is therefore proposed, 99 

characterized by much more compliant topologies, that have no continuity constraints on 100 

displacement fields and related deformations [28]. Some examples of meshless modelling of living 101 

cells are presented in the review paper by Ye et al. (2016) [29] where several particle-based 102 

simulations of red blood cells interacting with a viscous fluid flow are compared. Very interesting is 103 

also the work of Vassaux and Milan (2017) [30], who studied the effect of the curvature of substrate 104 

during the adhesion of stem cells through a particle-based approach. 105 

In this study, AFM nanoindentation measurements were first conducted on human 106 

mesenchymal stem cells. Then, a Coarse-Grained Elastic Network Modelling (CG-ENM) [31–33] 107 

was used to represent the stem cell and its subcellular components and to simulate the nanoindentation 108 

process. The pre-tensioning stress state acting on the cell due to the action of stress fibers that anchor 109 
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the cell to the substrate, was also simulated and the Young's moduli of different subcellular 110 

components, such as cytoskeleton and cortex, were extracted. The results obtained with the elastic 111 

network model were then compared to those computed with the Hertz contact theory and the Finite 112 

Element Method (FEM), showing a good agreement. We found that the proposed approach generally 113 

leads to a stable numerical modelling even for large deformations and to significantly smaller 114 

computational costs than those typically required in mesh-based numerical tools.  115 

 116 

2. Materials and methods 117 

2.1 Study overview 118 

Aiming at extracting a set of global Young’s moduli, a physical-mathematical scheme has 119 

been proposed (Fig. 1), implementing a reversed approach with respect to the classical 120 

characterization of new materials performed through tensile tests. In detail, the workflow includes 121 

the following steps and procedures (Fig. 1): 122 

(i) nanoindentation experiments;  123 

(ii) generation of a spring network model simulating the nanoindentation process of a stem 124 

cell and identification of the optimal local material properties through numerical fitting of real force-125 

indentation curves;  126 

(iii) transferring of the topology and of the optimized local material properties of the spring 127 

network model to a “monodimensional twin” model;  128 

(iv) extraction of the global elastic parameters through a second computer experiment 129 

simulating a common tensile test.  130 

The last step allowed the comparison of the obtained global Young’s moduli to the tabular 131 

data available in the literature. Each block illustrated in Fig. 1 was extensively described in the 132 

following sections.  133 



OPTIMIZATION (sect. 2.7)

GEOMETRICAL MODEL
(sect. 2.3)

SPRING NETWORK MODEL
(sect. 2.4 – 2.5)

SIMULATION (sect. 2.6)

Eloc,cor,optim
Eloc,cyt,optim

Ecor
Ecyt

AFM 
EXPERIMENTS 

(sect. 2.2)

GEOMETRICAL MODEL 
(sect. 2.8)

SPRING NETWORK MODEL
(sect. 2.8)

SIMULATION (sect. 2.8)

Fig. 1. Scheme of the workflow implemented to extract the stem cells mechanical properties.
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2.2 AFM experiments 134 

For AFM nanoindentation measurements, mesenchymal stem cells (MSCs) from human 135 

primary material were used, donated by the Professor Ho group from the Department of Medicine V, 136 

Heidelberg University and isolated as described in a previous study [34].  137 

After seeding of the mononuclear cell fraction evolving colonies were separated and MSC 138 

further expanded in plastic culture flasks. Cells were cultured in a sub-confluent monolayer in growth 139 

medium consisting of DMEM-LG supplemented with MCDB201 (40% (v/v), Sigma), L–glutamine 140 

(2 mM, Sigma), penicillin/streptomycin (100 U/mL, Lonza), insulin transferrin selenium (1% (v/v), 141 

Sigma), linoleic acid albumin from bovine serum albumin (1% (v/v), Sigma), dexamethasone (10 nm, 142 

Sigma), L-ascorbic acid-2-phosphate (0.1 mM, Sigma), PDGF subunit B (PDGF-BB), epidermal 143 

growth factor (EGF) (both 10 ng/mL; PreproTech, Rocky Hill, NJ, USA) and FCS (2% (v/v), 144 

HyClone, GE Healthcare). Medium was changed twice per week and early passages 3-5 were used.  145 

MSCs were detached with Accutase (Sigma Aldrich) from the flask and plated on glass cover 146 

slips (24×24 mm2; Menzel Gläser, Braunschweig, Germany), previously coated with 1 mg/mL of 147 

Fibronectin (Sigma) diluted in PBS. 20 nM of bone morphogenetic protein 2 (purchased from R&D 148 

Systems Inc. Minneapolis, MN, USA) has been added to the media to induce osteogenic 149 

differentiation of MSCs. The differentiation media was replaced once during the first week and just 150 

before the experiment. 151 

The cell indentation experiment was realized with an AFM (Nano Wizard, JPK Instruments, 152 

Berlin) combined with an inverted optical microscope (Zeiss Axiovert 200). Glass cover slips were 153 

mounted onto a stage (BiocellTM JPK) in differentiation medium, maintaining the temperature at 37 154 

°C. Chromium/gold-coated cantilevers (CP-qp-SCONTBSG from sQUBE) with a colloidal probe 155 

(radius R = 5 µm) made of borosilicate glass were used with a nominal spring constant k between k 156 

= 0.006 – 0.015 N/m, resonance frequency between 8 – 13 kHz and length around 125 µm. 157 

Nanoindentation was performed by lowering the AFM tip onto the cell surface. After the contact with 158 

the cell, the AFM tip exerts an indentation force F = k·D, being D the cantilever deflection, which is 159 



7 

 

registered for each position (Z) taken by the piezoelectric translator. The indentation (d) of the cell 160 

can hence be computed as d = Z-D.  161 

The stiffness of MSCs was tested one week after osteogenic induction via osteogenic media. 162 

Indentation curves were obtained along the cell body crossing the cellular soma. The AFM was set 163 

to have a maximal indentation value no larger than 200 nm to obtain forces applied by the cantilever 164 

to the sample always less than 5 nN. For the calculation of the cellular mechanical properties, we 165 

averaged five curves taken at the highest point of the cell (corresponding to the soma) and we repeated 166 

the measurements on ten different mesenchymal stem cells. In detail, before computing the average 167 

value, the five curves were aligned in correspondence of the point where the AFM tip comes in contact 168 

with the cell. The function interp1 available in Matlab was utilized to determine, for each 169 

experimental curve, the value of indentation force at specific indentation depths (query points). Then, 170 

the average force-indentation curve was determined, for each of the ten cells, by simply computing 171 

the average value of force in correspondence of these indentation depths and was implemented in the 172 

optimization algorithm described below in the Section 2.7. 173 

  174 

2.3 Geometrical modelling 175 

Stem cells belong to the category of eukaryotic cells and are characterized by a complex 176 

internal structure. The subcellular components that were hypothesized to be included in the stem cell 177 

model are: the nucleus, the cytoskeleton, a network of interconnected filaments [35], and the cell 178 

cortex. Stress fibers and focal adhesions, that guarantee the adhesion of the cell to the substrate where 179 

it lies, were also modelled. Focal adhesions are transmembrane receptors that establish the adhesion 180 

between the ventral side of the cell and the extracellular matrix [36–38]. Stress fibers are contractile 181 

bundles of actomyosin subjected to tensile stress, mechanically interacting with focal adhesions and 182 

additional cellular structures [39] – such as the neighboring stress fibers and the cell cortex – and 183 

exerting on them a traction force of 10 nN [40,41]. More in detail, three main types of stress fibers 184 
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exist, distributed in different regions and characterized by different lengths, from 10 to 100 µm: dorsal 185 

stress fibers, ventral stress fibers and transverse arcs [42]. 186 

The CAD model of the cell was developed in the Rhinoceros CAD software environment 187 

(Version 6, McNeel) integrated with the Grasshopper plugin. The main geometry is essentially a 188 

revolved surface (Fig. 2), with an overall size of 50 µm for diameter and 13 µm for height (Fig. 2c), 189 

which is consistent with the typical size of mesenchymal stem cells [43]. In order to reduce the 190 

computational effort and increase the resolution at the same time, only a quarter of the whole cell was 191 

modelled. Following previous studies [30,44,45], nine stress fibers were modelled in the quarter 192 

model: three arcs, three dorsal (i.e. two entire and one comprised of two halves) and three ventral 193 

stress fibers. This quarter model includes the following components (Fig. 2b):  194 

(i) the nucleus, represented by a sphere quarter of radius 5 µm, with the center placed at 6 µm 195 

from the bottom surface;  196 

(ii) 8 tensioning regions for dorsal stress fibers, 4 located in the medium-upper part of the cell 197 

cortex (representing the cell regions where the dorsal stress fibers apply traction forces in downward 198 

direction) and 4 at the bottom of the cell (representing the regions where the dorsal stress fibers are 199 

connected to the focal adhesions) (Fig. 2b); 200 

(iii) 4 tensioning regions for transverse arcs, located in the lower part of the cell cortex and 201 

connected to the dorsal stress fibers (Fig. 2b); 202 

(iv) 6 tensioning regions at the bottom of the cell where the ventral stress fibers are connected 203 

to the focal adhesions (Fig. 2b); 204 

(v) the cortex region that was separated from the cytoskeleton, thus obtaining a 200 nm thick 205 

membrane enclosing the whole cell (Fig. 2c). The value of the cell cortex thickness used in the model 206 

is consistent with that hypothesized in previous studies [11,19]; 207 

(vi) the cytoskeleton, resulting as the volume obtained by subtracting, from the initial volume 208 

of the whole cell, the previous volumes. 209 



(a)

(b)

nucleus

nanoindenter

tensioning
groups

cortex

cytoskeleton

dorsal
stress fibers

transverse
arcs

ventral
stress fibers

symmetry planes

(c)

Fig. 2. Exploiting the symmetry properties of the entire cell geometry (a), just one-quarter model was considered (b). (c) Principal dimensions in

micrometers of the model used in the study.

8 tensioning 
regions for 
dorsal stress 
fibers4 tensioning 

regions for 
transverse 
arcs

6 tensioning 
regions for 
ventral stress 
fibers



9 

 

The strategy of using tensioning regions allowed to distribute the traction force (which is a 210 

relatively intense force, having the same order of magnitude as the force exerted by the AFM tip on 211 

the whole cell) exerted by stress fibers on large-dimensioned regions, thus avoiding numerical issues. 212 

In fact, the application of the whole traction force on a single point would produce a deformation so 213 

large that any computational tool (including finite element method and coarse-grained elastic network 214 

model) would inevitably undergo non-convergence problems. Tensioning regions not only allow 215 

solving numerical issues, but also reproduce in a reasonably correct way the physics and the biology 216 

of the cell, where internal loads do not act on point-like regions with limited dimensions but on 217 

relatively wide regions, whose actual extensions are proportional to the force exerted to them [46–218 

48].  219 

 220 

2.4 Spring network generation 221 

The mathematical/physical approach used to model the stem cell, treated as a deformable 222 

object, is a coarse-grained elastic network modelling [31]. It consists of a uniform network of 223 

interconnected springs characterized by a single stiffness magnitude for the elements inside every 224 

single functional region, implementing an internal force field acting between pairs of coarse-grained 225 

lumped masses representing groups of atoms or molecules. The mutual connections between the 226 

different spring elements are spherical joints, thus enabling the maximum structural compliance, 227 

peculiar of a soft biological material. 228 

To implement this framework, the CAD model (Fig. 3a) was exported from Rhinoceros and 229 

given in input to the open source meshing software Gmsh (version 4.5.2). A tetrahedral volumetric 230 

mesh was then generated (Fig. 3b), appropriately selecting a refined Delaunay grid algorithm as a 231 

discretization rule, aiming at maximizing uniformity of spring lengths and isotropy in behavior. The 232 

average element size was set equal to 0.350 µm which is a sufficiently small and adequate dimension 233 

to satisfactorily solve the problem of variable contact between the nanoindenter and the upper region 234 

of the cell cortex. 235 



Fig. 3. The CAD model (a) generated in Rhinoceros was given in input to the open source meshing software Gmsh (version 4.5.2) where a tetrahedral volumetric mesh was

generated (b). The tetrahedral mesh was then converted into a spring network model (c). To generate the quarter model, a portion of the whole cell larger than the quarter portion

was initially considered (a-c). A clipping procedure was finally executed (d) to isolate the portion of the spring network model exactly corresponding to the quarter of the cell.

The aligned edges of tetrahedrons shown in (b) have been obtained at the intersection of the planes delimiting the model outer surface. The clipping procedure successively

carried out, allows having not aligned edges (and hence not aligned springs) on the axis along which the nanoindenter acts and consequently, an isotropic behavior of the model.
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The next operation was the transformation of the tetrahedral mesh into a spring network model 236 

(Fig. 3c). To do this, we converted the edges of the tetrahedrons generated in the meshing phase into 237 

springs and the vertices of the tetrahedrons into nodes where springs are interconnected. The 238 

information associated to nodes position and spring connectivity was processed by an ad hoc 239 

algorithm coded in the Grasshopper plugin, for the generation of the spring network into the CAD 240 

environment. The result of the conversion process is a pattern of springs arranged in a tetrahedral 241 

structure according to a refined Delaunay topology (Fig. 3c). The total number of springs was 887605 242 

and the average rest length of springs was 0.345 µm.  243 

To generate the quarter model, a portion of the whole cell larger than the quarter portion was 244 

initially considered (Figs. 3a-c). This portion was meshed and converted into the spring network 245 

model. A clipping procedure was finally executed (Fig. 3d) to isolate the portion of the spring network 246 

exactly corresponding to the quarter of the cell. With this strategy, we solved two main problems that 247 

arise when the quarter model is built directly using cutting planes exactly corresponding to the 248 

symmetry planes of the cell. The first problem is related to the isotropy of the model: the refined 249 

Delaunay algorithm, selected to build the tetrahedral mesh, populates the outer planar surfaces of the 250 

geometrical model with a quite regular triangular tessellation and so the density of nodes on these 251 

surfaces will be higher than that of any other plane crossing the model. This implies that if the outer 252 

planes of the geometrical model correspond to the symmetry planes, on those planes a larger density 253 

of nodes and hence a larger density of springs will result, and also this local distribution of springs 254 

will be perfectly planar, which contrasts the hypothesis of isotropy of the spring network. The second 255 

problem is related to the structural response of the nanoindented material. If the outer planes of the 256 

geometrical model correspond to the symmetry planes of the cell, at the intersection between the two 257 

planes, the refined Delaunay algorithm will build tetrahedrons with one of the edges aligned to the 258 

central axis around which the revolution of the cell model takes place. These edges will be converted 259 

into springs and due to their alignment with the central axis, which is also the direction along which 260 

the nanoindenter acts, the structural response of the cell model to the nanoindentation process will 261 
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mostly depend on those aligned springs. However, this contrasts the hypothesis of isotropic 262 

mechanical behavior of the model. The above-mentioned problems are overcome and solved with the 263 

described clipping procedures that allow, definitely, leaving a quarter of the cell with an isotropic and 264 

a more “natural and realistic” springs distribution, especially in the regions close to the symmetry 265 

planes. 266 

 267 

2.5 Definition of spring groups  268 

The next phase was the definition, into the CAD environment, of different spring groups 269 

functional to the subsequent simulation (Fig. 4). The spring groups that were defined are the 270 

following. (i) Nucleus – the central spherical region characterized by higher stiffness compared with 271 

that of the cytoskeleton. (ii) Tensioning groups – the regions of the cytoskeleton pulled downwards 272 

or upwards (in case of dorsal stress fibers) or pulled together (in case of transverse arcs). (iii) Cortex 273 

– the external surface surrounding the whole cell, characterized by a constant thickness. (iv) Base – 274 

the lowest layer of the cell, representing the flat surface adherent to a substrate. (v) Contact – the 275 

portion of the cell cortex that enters in contact with the spherical indenter. (vi) Free – the remaining 276 

unconstrained region mainly corresponding to the cytoskeleton, affected by the boundary conditions 277 

imposed by adjacent groups, always interconnected to it. 278 

 279 

2.6 Simulation 280 

All the geometrical entities composing the spring network model of the cell were then 281 

imported in Abaqus (version 6.14, Dassault Systèmes) where a spherical nanoindenter with a 5 µm 282 

radius – which is the same radius of the nanoindenter used in the experiments – was created and 283 

modelled as a rigid part aligned to the revolution axis of the cell model. 284 

The springs were modelled as truss elements, i.e. two-node elastic rods with a constant cross 285 

section A, set equal to 1 µm2, and a rest length L0 equal to the average dimension of the edges of the 286 

previously meshed tetrahedrons. The springs are capable of generating internal reaction forces acting 287 



nucleus

contact

cytoskeleton

base

cortex
tensioning
groups

Fig. 4. Spring groups defined in the model.

tensioning
groups
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only along the axis connecting the nodes. As the truss elements are connected one each other with 288 

spherical joints, that constraint only the relative positions, leaving free the relative rotations, no 289 

bending stiffness has been defined for this kind of elements. The extensional spring stiffness 𝐸𝑙𝑜𝑐𝐴/𝐿0 290 

was defined by setting a local Young’s modulus, one for cytoskeleton springs Eloc,cyt and one for 291 

cortex springs Eloc,cor, assuming for the nucleus region a local modulus Eloc,nuc one order of magnitude 292 

higher than the average stiffness of the cytoskeleton. Eloc,cor and Eloc,cyt were determined via the 293 

optimization algorithm outlined in the next section, that iteratively compares the numerical force-294 

indentation curve computed in the simulation with the same curve obtained in the nanoindentation 295 

measurements previously described. The choice of setting the value of the material properties for the 296 

nucleus and not to optimize it derives from the fact that, being the nucleus rather distant from the 297 

nanoindenter tip, the system is not sufficiently sensitive to “capture” the structural response of the 298 

nucleus and therefore to analyze its mechanical behavior. The same hypothesis was followed in a 299 

previous study [11].  300 

The contact between the nanoindenter and the upper region of the cell was assumed as 301 

frictionless and was solved by implementing the “hard contact” algorithm available in Abaqus.  302 

The simulation included two different steps: tensioning of the stress fibers and indentation, 303 

consisting in the rigid translation of the spherical indenter into the cell surface. Both steps were treated 304 

on a physical-mathematical level as incremental static problems, thus excluding all dynamic 305 

contributions (inertia, time-dependent effects, dissipations, etc.). The condition of “nonlinear 306 

geometry” was enabled in every simulation, in order to correctly map the large local deformation 307 

field in the contact region. 308 

The boundary and loading conditions acting on the model were the following (Fig. 5). (i) No 309 

displacement or rotation allowed for the base layer of the cell (encastre) for reproducing adhesion. 310 

(ii) 10 nN [40,41,46] forces imposed on every single tensioning group for stress fibers (for the 311 

tensioning groups crossing the symmetry planes a 5 nN force was applied in order to achieve a 10 nN 312 

force when mirroring the quarter model). The overall force in every group was distributed as 25% in 313 
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Fig. 5. Boundary and loading conditions imposed to the cell in the simulation environment. For the

sake of clarity only the forces acting on the visible tensioning groups are indicated and not those acting

on the internal ones.
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an outer shell and 75% in an inner half-sphere, in order to realize a sort of force gradient when moving 314 

from the highly-tensioned central region to the unloaded free elements neighboring the tensioning 315 

groups [46]. In order to implement such a condition, the force per node in the inner half-sphere region 316 

F1,inn was set equal to 2F1,out, the latter being the force per node for the nodes in the outer shell region 317 

(Fig. 6). With this strategy, a non-natural and non-physical sudden step-shaped magnitude change of 318 

the force acting on the tensioning groups was avoided, thus realizing a gradient for the force per node 319 

[46–48]. (iii) A 200 nm displacement imposed to the rigid spherical indenter in the second step. (iv) 320 

Symmetry constraints imposed on the symmetry planes delimiting the model. 321 

The measurement units used in the simulation were µm for linear dimensions and nN for 322 

forces; this combination has proved to be optimal to ensure the stability of the solver, thus avoiding 323 

under/overflow issues. 324 

 325 

2.7 Optimization 326 

An optimization algorithm was written in Matlab environment for iteratively comparing the 327 

force-indentation curves obtained as experimental AFM reports to those predicted in the numerical 328 

simulations (Fig. 7). In detail, in the optimization algorithm, the fmincon tool available in the 329 

optimization toolbox of Matlab, was implemented, that is devoted to find the minimum of constrained 330 

nonlinear multivariable functions. Starting from guess values for Eloc,cor and Eloc,cyt, defining the local 331 

spring stiffnesses for cortex and cytoskeleton respectively and perturbing them, different resulting 332 

curves were obtained as output from the numerical solver. Following a previous study [12], for each 333 

cell sample, optimization runs were started from five different sets of material properties previously 334 

randomly generated. Thanks to this strategy and to the large range of variability chosen for material 335 

parameters, the whole search space was covered, thus increasing the probability of finding the global 336 

optimum. The algorithm iterated this cycle until the least squared difference between experimental 337 

and numerical force-indentation curves was less than a pre-defined numerical threshold. The optimal 338 

values of Eloc,cyt,optim – for cytoskeleton – and of Eloc,cor,optim – for cortex – were then given in input to 339 



(a)

Fig. 6. The overall force in every group (a) was distributed as 25% in an outer shell and 75% in an inner half-sphere (b), in order to realize a sort of force 

gradient when moving from the highly-tensioned central region to the unloaded free elements neighboring the tensioning group. 
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a “monodimensional twin” model (sect. 2.8), that aimed at converting them in global Young’s moduli, 340 

comparable with those presented in classical engineering and scientific literature for materials. 341 

The optimization flow above described was executed to calculate the elastic parameters 342 

Eloc,cyt,optim and Eloc,cor,optim for ten different stem cell samples. In detail, for each nanoindented cell 343 

sample, five curves were experimentally retrieved by measuring force and displacement on the rigid 344 

nanoindenter. The optimization algorithm utilized as a reference experimental curve for each 345 

investigated stem cell sample, the curve averaged over the five measurements carried out on each 346 

single cell.   347 

 348 

2.8 Extraction of mechanical properties from the monodimensional twin model 349 

The same procedure previously described to build the model of the cell was replicated for a 350 

“monodimensional twin” model, i.e. a cylinder of approximately the same volume of the cell, 351 

presenting an overall height H1DT = 70 μm, a diameter D1DT = 14 μm and characterized, according to 352 

the UNI EN 10002-1 standard (Metallic materials - Tensile Testing) by an aspect ratio of height : 353 

diameter = 5 : 1. This cylinder was utilized to extract the global Young's moduli of cytoskeleton and 354 

cortex (Fig. 8). This second model presented the same geometrical (same spring network topology, 355 

cross sections and rest lengths) and structural (same local spring stiffnesses) characteristics of the 356 

cell. Also in this case, exploiting the symmetry of the problem, just one-quarter of the cylindrical 357 

volume was modelled and symmetry constraints were applied to the nodes lying on the symmetry 358 

planes. As in the cell model, outer planes of the geometrical model different from the symmetry 359 

planes were utilized to isolate a portion of the cylindrical volume larger than the quarter portion. 360 

Successively, a clipping procedure was utilized to isolate the portion of the spring network exactly 361 

delimited by the symmetry planes (Fig. 8). With this strategy, we guaranteed the isotropic structural 362 

response of the monodimensional twin model. 363 

For each of the ten stem cell samples, two optimal values were determined through the 364 

optimization algorithm above described (sect. 2.7): Eloc,cyt,optim, for the cytoskeleton and Eloc,cor,optim 365 
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Fig. 8. (a) Simulation setup for the monodimensional twin model (dimensions in micrometers); (b)

Magnified cross sectional view of the quarter model; c) Procedure for the extraction of global

Young’s moduli.
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for the cortex. These quantities were then used for defining the stiffness of the springs constituting 366 

the monodimensional twin model and hence a virtual tensile test to extract a typical force-367 

displacement curve was performed. In the simulations, constraints preventing all the displacements 368 

were imposed to the nodes lying on a flat base of the cylinder, while a displacement of δ5 = 5 µm was 369 

imposed to the nodes lying on the other flat base via a rigid plate that was utilized to easily retrieve 370 

the value of the reaction force. Therefore, for each cell sample, two force-displacement curves were 371 

traced, one was obtained by assigning to the springs the Young’s modulus Eloc,cyt,optim (for the 372 

cytoskeleton), the other by assigning the Young’s modulus Eloc,cor,optim (for the cortex). As in the 373 

common experimental practice, the slope of the curve was extracted for the calculation of the resulting 374 

global Young’s moduli Ecor and Ecyt, for cortex and for cytoskeleton, respectively. The value of force 375 

F1 registered for the displacement δ1 = 1 µm was utilized to determine the global Young’s modulus 376 

as (Fig. 8).  377 

Ecor (𝑜𝑟 Ecyt) =
4∙𝐹1∙𝐻1𝐷𝑇

𝜋∙𝐷1𝐷𝑇
2 ∙𝛿1

    (1) 378 

 379 

3. Results and Discussion 380 

The average experimental force-indentation curves were compared to those predicted 381 

numerically (as described in Sect. 2.7) and the optimization algorithm changed many times the elastic 382 

parameters of the spring network model of the stem cell, until the difference between the two curves 383 

was minimized (Table 1). The rather high values of the correlation coefficient R2, used as a metric 384 

for the detail level of the curve fitting, could be considered as a proof of the reasonably good adequacy 385 

of the model to reproduce the physics of the problem (Fig. 9, Table 2). Error bars were also 386 

superimposed to the average experimental force-indentation curves to show the dispersion of data at 387 

different indentation depths (Fig. 9).   388 

Through the procedure described in Sect. 2.8, the global Young’s moduli for cortex and 389 

cytoskeleton were then extracted from the monodimensional twin models and compared to those 390 



SAMPLE 1 SAMPLE 2

SAMPLE 3 SAMPLE 4

SAMPLE 5

Fig. 9. Experimental force-indentation curves registered for the ten stem cell samples and related

numerical curves predicted via the optimization algorithm. Error bars were superimposed to the

average experimental force-indentation curves to show the dispersion of data at different indentation

depths.

SAMPLE 6

SAMPLE 7 SAMPLE 8
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calculated in a previous study [24] implementing both a FEM model based on the Arruda-Boyce 391 

hyperelastic constitutive law [23,49] and an analytical model based on the Hertz contact theory [50] 392 

(Table 3).  393 

Table 1. Optimal local material properties predicted via the optimization algorithm. 394 

 
Coarse-Grained Elastic Network 

Sample N. Eloc,cyt,optim [Pa] Eloc,cor,optim [Pa] 

Sample 1 160 508 

Sample 2 252 490 

Sample 3 208 504 

Sample 4 110 470 

Sample 5 95 415 

Sample 6 127 485 

Sample 7 230 480 

Sample 8 221 507 

Sample 9 140 490 

Sample 10 120 470 

 395 

Table 2. Correlation coefficient R2 values related to the experimental-numerical curve fitting, 396 

computed for the proposed coarse-grained elastic network model versus the same coefficient values 397 

computed for the FEM model [24]. 398 

 R2 

Sample N. 
Coarse-Grained 
Elastic Network 

FEM  

Sample 1 0,9962 0,9825 

Sample 2 0,9836 0,9979 

Sample 3 0,9862 0,9984 

Sample 4 0,9776 0,9920 

Sample 5 0,9733 0,9947 

Sample 6 0,9746 0,9959 

Sample 7 0,9929 0,9936 

Sample 8 0,9893 0,9963 

Sample 9 0,9952 0,9833 

Sample 10 0,9949 0,9737 

 399 
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Table 3. Global material properties computed with the proposed coarse-grained elastic network 400 

model compared to those predicted via the FEM method and the Hertz contact theory [24] (applied 401 

to the experimental force-indentation data). 402 

 

Coarse-Grained 
Elastic Network 

Finite Element Method, 
Arruda-Boyce 

Hertzian Contact 
Theory 

Sample N. Ecyt [Pa] Ecor [Pa] Ecyt [Pa] Ecor [Pa] EHertz [Pa] 

Sample 1 2911 9216 3519 9754 4110 

Sample 2 4578 8898 5290 9687 6350 

Sample 3 3771 9144 4462 9671 5200 

Sample 4 1999 8352 2575 9738 3195 

Sample 5 1722 7531 2258 9645 2800 

Sample 6 2286 8751 2901 9570 3410 

Sample 7 4152 8666 4638 9807 5550 

Sample 8 3988 9161 4551 9729 5680 

Sample 9 2527 8845 3129 9555 3455 

Sample 10 2166 8484 2640 9618 3050 

 403 

In detail, the values of Ecyt and Ecor predicted through the Finite Element Method and listed in 404 

Table 3, were computed starting from the optimal hyperelastic parameters proper of the Arruda-405 

Boyce law, i.e. the shear moduli µ8chain,cyt (for cytoskeleton), and µ8chain,cor (for cortex) according to 406 

the following relationships: Ecor = 2(1+)µ8chain,cor, Ecyt = 2(1+)µ8chain,cyt where , the Poisson’s ratio, 407 

was set equal to 0.4999 to account for material incompressibility [12,19]. 408 

The proposed coarse-grained elastic network model has some limitations. First, the Poisson’s 409 

ratio is a non-controllable parameter [33], which directly depends on the discretization rule of the 410 

deformable volume, consisting in a nearly-regular and hence isotropic network of interconnected 411 

tetrahedrons. Second, the organelles residing into the cytoplasm were considered as a part of it and 412 

their material properties were “confused” with those of cytoskeleton. Third, even if the proposed 413 

model is capable of distinguishing, unlike the hertzian contact theory, the material properties of 414 

different subcellular components, in the current study a clear and direct experimental demonstration 415 

of the correctness of the model predictions is missing. Ideally, to demonstrate this, nanoindentation 416 
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measurements should first be carried out on cells, the proposed coarse-grained elastic network model 417 

should then be implemented to determine the material properties of different subcellular components. 418 

At this point, the different subcellular components should be physically isolated, nanoindented and 419 

analyzed, one by one, with the proposed model. If the model works correctly, the material properties 420 

predicted before and after the isolation should be the same. An intriguing procedure recently proposed 421 

[51] that can be adopted to separate the single contributions may consist in treating pharmacologically 422 

and selectively the single subcellular component. One should first nanoindent the cell and retrieve 423 

the force-indentation curve. Based on this curve, the proposed model should be implemented to 424 

determine the mechanical properties of the different subcellular components. At this point, a 425 

pharmacological treatment can be made to alter the mechanical properties of a specific subcellular 426 

component. Obviously, this leads to the alteration of the “global” force-indentation curve. We expect 427 

that by implementing the proposed framework to the altered force-indentation curve, the system will 428 

predict altered mechanical properties for the pharmacologically targeted component and the same 429 

mechanical properties - as those predicted in the cell before the pharmacological treatment - for the 430 

components not targeted. However, due to compensatory effect inside the cell, we believe that the 431 

selectivity of the pharmacological treatment could be an issue to investigate. For instance, the 432 

chromatin condensation in the nucleus with Trichostatin A (TSA) has been targeted in a previous 433 

work but that induced an unpredictable change in the stiffness of the nucleus that is cell-dependent 434 

and a slight stiffening of the cytoplasm as compensatory effect [51]. In the future, it will be interesting 435 

to address these aspects by engineering a synthetic eukaryote cell with a bottom-up approach and 436 

therefore isolating the influence of each component on the mechanical properties of the engineered 437 

cell, as a result of a multi-variable experimental plan. Fourth, hypothesizing to schematize the cell as 438 

a revolved surface, just one-quarter model was considered and symmetry constraints were applied on 439 

the symmetry planes. Indeed, symmetry constraints can give edge effects especially in the case where 440 

the extension of the constrained region is comparable to the extension of the unconstrained region. 441 

However, in the proposed model, the extension of the constrained region is much smaller than that of 442 
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the unconstrained region. Just to give an idea of this, we can state that the number of nodes where 443 

symmetry constraints act is the 5.97% of the total number of nodes. Preliminary analyses revealed 444 

that the generic force-indentation curve computed with the one-quarter model is practically 445 

overlapped to that predicted with the entire model. For instance, implementing Ecyt and Ecor computed 446 

for the cell sample 9 we found, for a 200 nm indentation depth, that the force predicted with the entire 447 

model differ from that predicted with the quarter model by less than 0.6%. This consideration allows 448 

us to conclude that the edge effects related to the use of symmetry constraints are negligible and hence 449 

the predictions of the one-quarter model are overlapping to those obtained with the entire model.            450 

However, in spite of these limitations, the predicted displacement fields appear consistent with 451 

the nanoindenter geometry and with the physics of the problem (Fig. 10 (a)) as well as the predictions 452 

of the proposed model are consistent with the experimental results reported in the literature. The 453 

predicted material properties, in fact, are in good agreement with those measured via atomic force 454 

microscopy and Hertz contact theory in other studies [52–54]. Interestingly, the material properties 455 

predicted through the coarse-grained elastic network model are consistent with those computed via 456 

the Finite Element Method and via the Hertz contact theory reported in a previous study [24]. It is 457 

also interesting to observe, and is a further proof of the correctness of the model predictions, that the 458 

values of the Young’s modulus EHertz computed with the Hertz contact theory falls – for each of the 459 

ten cell samples investigated and for both, coarse-grained elastic network model and FEM – within 460 

the interval [Ecyt; Ecor], and are closer to Ecyt. This result is consistent with the physics of the problem. 461 

Given the prevalence of the cytoskeleton volume with respect to the cortex volume, it is reasonably 462 

correct that the average material properties predicted by the coarse-grained elastic network model are 463 

closer to those of the most prevalent material. In order to make a coherent statistical comparison 464 

between the sets of Young’s moduli obtained with the coarse-grained elastic network model and with 465 

the finite element method, to the values computed via the Hertz contact theory, an equivalent Young’s 466 

modulus must be defined for the former cases. To this purpose, the following semi-quantitative 467 

procedure is therefore proposed. The action of the AFM tip on the nanoindented cell can be 468 



Fig. 10. (a) Normalized displacement field UZ/UZmax predicted by the coarse-grained elastic network model (CG-ENM). (b) Scheme of the AFM tip-cell contact adopted to 

determine the equivalent Young’s modulus. (c) Box plot of the equivalent Young’s moduli compared with the Young’s moduli computed via the Hertz contact theory. 

≈
 8

0
0

 n
m

Kcor

Kcyt

Keq

2
0

0
 n

m
6

0
0

 n
m

Indentation force 

F
Indentation force 

F
Indentation force

F

(b)

(c)

Normalized

displacement

UZ/UZ,max

0.0

1.0

Z

X

(a)



20 

 

schematized, according to a previous study [55], with a force acting on two springs disposed in series 469 

(Figure 10(b)). Other semi-empirical approaches have been recently proposed to describe the 470 

mechanics of the double layer on which the nanoindenter acts [56–58]. The first spring, having a 471 

length Lcor = 200 nm (i.e. the thickness of the cell cortex), a cross section Acor and an elastic constant 472 

Kcor = 
Ecor∙𝐴𝑐𝑜𝑟

𝐿𝑐𝑜𝑟
, is representative of the elastic response of the cell cortex; the second spring, having a 473 

length Lcyt = 600 nm (i.e. the height of the cytoskeletal region where non-zero stress values act during 474 

the 200 nm nanoindentation), a cross section Acyt and an elastic constant Kcyt = 
Ecyt∙𝐴𝑐𝑦𝑡

𝐿𝑐𝑦𝑡
, is 475 

representative of the elastic response of the cytoskeleton. Applying the classical relationships for 476 

springs disposed in series and following the hypothesis that Acor = Acyt it can be easily demonstrated 477 

that the equivalent Young’s modulus Eeq of the spring that describes the elastic response of the two 478 

springs having Kcor and Kcyt as stiffnesses, can be expressed as: 479 

Eeq = (𝐿𝑐𝑜𝑟 + 𝐿𝑐𝑦𝑡) ∙
Ecor∙Ecyt

Ecyt∙𝐿𝑐𝑜𝑟+Ecor∙𝐿𝑐𝑦𝑡
                             (2) 480 

 481 

Applying the Eq. (2), for each cell sample, and setting the values Ecor and Ecyt obtained with both, the 482 

coarse-grained elastic network model (CG-ENM) and the FEM (Table 3), we determined the 483 

equivalent Young’s moduli and compared them with those computed via the Hertz contact theory 484 

(Fig. 10(c)). To make statistical inferences, we started to enquire whether data followed a normal 485 

distribution. We used the Shapiro-Wilk normality test, AS R94 algorithm, on all Young’s moduli sets 486 

(i.e. the set of equivalent Young’s moduli computed for coarse-grained elastic network model, the set 487 

of equivalent Young’s moduli computed for FEM and the set of Young’s moduli computed via the 488 

Hertz contact theory). All the three sets passed the normality test (EHertz: W=0.886, p-value=0.155; 489 

Eeq_CG-ENM: W=0.914, p-value=0.312; Eeq_FEM: W=0.917, p-value=0.335). To evaluate the 490 

homoscedasticity, we applied the Levene test, that revealed that samples were homoscedastic (F(2, 491 

27)= 0.467, p-value=0.632). Given these preliminary results, we performed ANOVA to compare the 492 
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three Young’s moduli distributions. It revealed that there is not a statistically significant difference 493 

between the distributions of the equivalent Young’s moduli and the Young’s moduli obtained with 494 

the Hertz theory (F(2, 27)=1.149, p-value=0.332).   495 

For all samples, the R2 values were close to 1 (Table 2), which means that the assumptions 496 

made on discretization topology (refined Delaunay algorithm for tetrahedrons and an adequate high 497 

spring density for the considered deformations) and on spring behavior (linear elastic) were 498 

reasonably correct for this analysis. R2 values computed for the FEM are slightly higher than those 499 

obtained through the coarse-grained elastic network modelling. However, it is worthy to note that the 500 

correlation coefficient computed with the FEM method derives from an optimization process 501 

performed by managing four design variables, (µ8chain for cytoskeleton and cortex, and λL for 502 

cytoskeleton and cortex) while that computed with the coarse-grained elastic network model derives 503 

from an optimization process including only two design variables (Eloc,cor and Eloc,cyt). In other words, 504 

we can conclude that a 2-parameter model (coarse-grained elastic network model) provided a 505 

reasonably good and fast approximation of the results of a 4-parameter model (FEM, Arruda-Boyce). 506 

An articulated model of the cell was introduced and described with a reasonable but arbitrary 507 

number of design hypotheses. Preliminary analyses were conducted to evaluate the impact of these 508 

hypotheses on the obtained results. For instance, the quarter model of the cell was hypothesized to 509 

include nine stress fibers. We evaluated how the cell mechanical properties change for a variable 510 

number of stress fibers: fifteen, nine, four, one, or for the case of stress fibers absent. Fig. 11 shows, 511 

for instance, the force-indentation curves obtained for the same material properties (i.e Eloc,cor,optim and 512 

Eloc,cyt,optim computed for cell sample 9, Table 1) and for different numbers of stress fibers. It can be 513 

seen that reducing the number of stress fibers leads, for the same nanoindentation depth, to increasing 514 

values of force that the cell opposes to the AFM nanoindenter. This result can be justified with the 515 

“qualitative” argument that the stress fibers create a tensile stress state on the cellular region in contact 516 

with the AFM tip that favors the tip penetration into the cell. As the number of stress fibers decreases, 517 

the entity of the tensile stress acting on the cell decreases too and consequently the nanoindenter 518 



Fig. 11. Force-indentation curves computed by the model for the same material properties (i.e.

Eloc,cor,optim and Eloc,cyt,optim of sample 9) and for a variable number of stress fibers. The activated (in

red) and the disabled (blue) stress fibers simulated in the model are shown in the figures above the

diagram.

9 stress fibers

4 stress fibers 1 stress fiber

stress fibers absent

15 stress fibers
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experiences an increasing reaction force that the cell opposes to its penetration. The global material 519 

properties predicted via the proposed coarse-grained elastic network model decrease for decreasing 520 

numbers of stress fibers. Table 4 lists, for instance, Ecyt and Ecor computed for the cell sample 9. 521 

However, the percent difference – with respect to the model including nine stress fibers – never 522 

exceeds 4.03% in the case of the cytoskeleton and 1.00% in the case of the cortex. These results lead 523 

us to conclude that, in view of a simpler description of the cell, a sort of reasonable result can be 524 

achieved even without stress fibers. However, the model should consider the effect of stress fibers 525 

especially in the case of cells including a large number of them.  526 

Table 4. Global material properties computed for the cell sample 9 and for different 527 

numbers of stress fibers. 528 

 

Optimal global properties Percent difference 
cytoskeleton 

Percent 
difference cortex 

# of stress 
fibers 

Ecyt [Pa] Ecor [Pa] [%] 
 

15 2594 8759 2.65 -0.97 

9 2527 8845 - - 

4 2497 8815 -1.18 -0.34 

1 2448 8770 -3.13 -0.85 

0 2425 8756 -4.03 -1.00 

      529 

The nucleus stiffness was set as a constant value and not as a design variable to optimize. Its 530 

value, according to previous studies [11,59] was set one order of magnitude higher than the average 531 

stiffness of the cytoskeleton. Nevertheless, recent literature has pointed out that this is not necessarily 532 

the case [51]. To evaluate the effect of the hypothesized nucleus material properties on the predicted 533 

values of Ecyt and Ecor, preliminary analyses were carried out with different values of Eloc,nuc. Figure 534 

12 shows, for instance, the force-indentation curves obtained implementing Eloc,cyt,optim and Eloc,cor,optim 535 

predicted for the cell sample 9 and three different values of the nucleus material properties Eloc,nuc:  536 

- Eloc,nuc with the same order of magnitude as the average stiffness of the cytoskeleton;  537 



Fig. 12. Force-indentation curves computed by the model for the same material properties (i.e.

Eloc,cor,optim and Eloc,cyt,optim computed for sample 9) and for variable values of Eloc,nuc.
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- Eloc,nuc one order of magnitude higher than the average stiffness of the cytoskeleton (design 538 

hypothesis); 539 

- Eloc,nuc two orders of magnitude higher the average stiffness of the cytoskeleton.  540 

The force-indentation curves obtained with Eloc,nuc with one or two orders of magnitude higher than 541 

the average stiffness of cytoskeleton are practically overlapped. Larger differences can be seen 542 

instead, in the case of Eloc,nuc with the same order of magnitude as the average stiffness of the 543 

cytoskeleton. The global material properties predicted with the proposed coarse-grained elastic 544 

network model increase for decreasing values of Eloc,nuc. Table 5 lists, for instance, the values of Ecyt 545 

and Ecor predicted by the optimization algorithm for the three values of Eloc,nuc as well as the percent 546 

difference – computed with respect to the model with Eloc,nuc one order of magnitude higher than the 547 

average stiffness of the cytoskeleton – of the predicted values of Ecyt and Ecor. It can be seen that the 548 

highest value of this difference was predicted in the case of the cytoskeleton and does not exceed 549 

5.18%.     550 

Table 5. Global material properties computed for the cell sample 9, for different nucleus material 551 

properties Eloc,nuc 552 

 

Optimal global properties Percent difference 
cytoskeleton 

Percent 
difference cortex 

Eloc,nuc Ecyt [Pa] Ecor [Pa] [%] 
 

One order of 
magnitude higher 

(design hypothesis) 
2527 8845 - - 

Two orders of 
magnitude higher 

2523 8833 -0.16 -0.13 

Same order of 
magnitude 

2658 8971 5.18 1.42 

 553 

The global material properties were computed by implementing a monodimensional twin 554 

model with a cylindrical shape. It would be very interesting knowing how the utilized geometry 555 

affects the predicted material properties. To investigate this issue, two further (in addition to the main 556 
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one) monodimensional twin models were built (Fig. 13(a)) with the same aspect ratio 5 : 1 and having 557 

volumes equal to 10% of the original volume. Interestingly, implementing Eloc,cyt,optim and Eloc,cor,optim 558 

predicted for the cell sample 9 and subjecting the models to a tensile test, the obtained stress/strain 559 

curves were very close one each other (Fig. 13(b) and (c)). The global material properties predicted 560 

with these two monodimensional twin models differ – with respect to the original monodimensional 561 

twin model – by very small quantities never exceeding, in absolute value, 0.32% (Table 6).  562 

 563 

Table 6. Global material properties computed for the cell sample 9, for different geometries of the 564 

monodimensional model 565 

 

Optimal global properties Percent difference 
cytoskeleton 

Percent 
difference cortex 

Volume Ecyt [Pa] Ecor [Pa] [%] 
 

Original Volume V 2527 8845 - - 

0.9×V 2519 8818 -0.32 -0.31 

1.1×V 2529 8853 0.08 0.09 

 566 

The most interesting feature of the proposed workflow is the intrinsic compliance of the spring 567 

network, due to the missing constraints for spring rotations at nodes. This is ensured by modelling 568 

the spring connections as internal spherical hinges, thus decoupling every pair of springs and not 569 

allowing bending moment transmission, but only axial forces. From a physical point of view, such a 570 

model can be regarded as an attempt to a micromechanical representation of weak and non-directional 571 

bonds in biological materials [30]. The associated mathematical description can generally consist in 572 

a series of simply linear systems in the form Ax=B for solving the static problem of a single 573 

incremental deformation, thus leading to a stable and fast formulation of the whole static problem of 574 

large deformation. Furthermore, it is not necessary to perform numerical interpolation on a continuum 575 

volumetric domain to compute expressions for displacement, deformation and other field variables 576 

as in finite element analysis. To demonstrate these features, as a proof of large deformation capability 577 



Fig. 13. (a) Monodimensional twin models utilized to assess the effect of the geometry on the predicted material properties. Stress-strain curves

obtained with the models with different geometry implementing Eloc,cyt,optim (b) and Eloc,cor,optim (c) computed for cell sample 9 (Table 1). Only

markers are represented (and not lines) to better visualize the very small differences between the three models.

diameter Ø 14.00 micron
height 70.00 micron 

diameter Ø 14.45 micron
height 72.26 micron 

diameter Ø 13.52 micron
height 67.58 micron 

(a)

(b) (c)

VOLUME = VVOLUME = 0,9 × V VOLUME = 1,1 × V
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in Fig. 14 (a) and (c) are presented undeformed and related deformed configurations for two 578 

monodimensional twin models built, one with the FEM method the other with a spring network. Both 579 

the models were hypothesized to be linear elastic. A flat base of the cylinder was constrained while a 580 

sufficiently large displacement was imposed to the other flat base via a rigid plate to understand until 581 

which extent the two models guarantee numerical convergence. In the FEM model, the value of the 582 

material properties implemented is Ecor determined for sample 1, whereas in the spring network model 583 

the value of Eloc,cor,optim (directly computed by the optimization process for the cell sample 1) was 584 

utilized. Interestingly, the spring network showed larger deformation than FEM until reaching the 585 

numerical non-convergence condition and thus the end of the analysis (Fig. 14b). The two curves 586 

presented the same tangent and were practically overlapped for small values of displacement but 587 

tended to diverge, due to the intrinsic different characteristics of the two models, for very large values 588 

of displacement. 589 

Another remarkable result to point out is the comparison between the computation times 590 

necessary to complete the simulation. Generally, the duration of each analysis on a spring network 591 

model is about 1/3 of the time necessary to complete a FEM analysis with a comparable density of 592 

elements. 593 

 594 

4. Conclusions 595 

This paper describes a physical/mathematical method for extracting Young’s moduli of a 596 

deformable solid structure. The study focused on nanoindented human mesenchymal stem cells and 597 

reproduced through a coarse-grained elastic network a real AFM experiment. An optimization 598 

algorithm iterated a loop until a satisfactory fit between real and simulated force-indentation curves 599 

was reached. The topological and behavioral characteristics of the simulated cells were then 600 

transferred to a monodimensional twin model and the Young’s moduli for subcellular components 601 

were extracted through a virtual tensile test. 602 



CG-ENM -- undeformed configuration

CG-ENM-- deformed configuration

FEM -- undeformed configuration

FEM - deformed configuration

(a)

(c)

FEM

(b)

Fig. 14. (a) 3D view of virtual tensile tests performed through coarse-grained elastic network model (CG-ENM) and FEM. (b) An example of force-

displacement curves obtained with CG-ENM compared to that obtained with FEM. (c) Comparison between undeformed and deformed

configurations of CG-ENM and FEM models.
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The resulting Young’s moduli showed good agreement with the corresponding moduli 603 

resulting from a previous study, performed using the Finite Element Method, and also presented the 604 

same order of magnitude as the elastic moduli predicted by hertzian contact theory and related 605 

literature.  606 

The proposed approach can be considered as a useful and fast tool to study the mechanical 607 

behavior of biological soft materials. As a general rule, in a coarse-grained elastic network model, 608 

the time required to complete the simulation is about 33% of the time required to run the same 609 

simulation with a FEM model presenting the same discretization density for the elements. 610 

Remarkable numerical stability and computational speed make this method comparable to a 611 

traditional FEM analysis and even preferable in the case of large displacements and deformations of 612 

soft materials. 613 
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Figure Legends 805 

 806 

Fig. 1. Scheme of the workflow implemented to extract the stem cells material properties. 807 

 808 

Fig. 2. Exploiting the symmetry properties of the entire cell geometry (a), just one-quarter model was 809 

considered (b). (c) Principal dimensions in micrometers of the model used in the study. 810 

 811 

Fig. 3. The CAD model (a) generated in Rhinoceros was given in input to the open source meshing 812 

software Gmsh (version 4.5.2) where a tetrahedral volumetric mesh was generated (b). The 813 

tetrahedral mesh was then converted into a spring network model (c). To generate the quarter model, 814 

a portion of the whole cell larger than the quarter portion was initially considered (a-c). A clipping 815 

procedure was finally executed (d) to isolate the portion of the spring network model exactly 816 

corresponding to the quarter of the cell. The aligned edges of tetrahedrons shown in (b) have been 817 

obtained at the intersection of the planes delimiting the model outer surface. The clipping procedure 818 

successively carried out, allows having not aligned edges (and hence not aligned springs) on the axis 819 

along which the nanoindenter acts and consequently, an isotropic behavior of the model. 820 

 821 

Fig. 4. Spring groups defined in the model. 822 

 823 

Fig. 5. Boundary and loading conditions imposed to the cell in the simulation environment. For the 824 

sake of clarity only the forces acting on the visible tensioning groups are indicated and not those 825 

acting on the internal ones.  826 

 827 
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Fig. 6. The overall force in every group (a) was distributed as 25% in an outer shell and 75% in an 828 

inner half-sphere (b), in order to realize a sort of force gradient when moving from the highly-829 

tensioned central region to the unloaded free elements neighboring the tensioning group. 830 

 831 

Fig. 7. Scheme of the optimization algorithm implemented to determine the optimal local material 832 

properties for cytoskeleton and cortex. 833 

 834 

Fig. 8. (a) Simulation setup for the monodimensional twin model (dimensions in micrometers); (b) 835 

Magnified cross-sectional view of the model; c) Procedure for the extraction of global Young’s 836 

moduli.  837 

 838 

Fig. 9. Experimental force-indentation curves registered for the ten stem cell samples and related 839 

numerical curves predicted via the optimization algorithm. Error bars were superimposed to the 840 

average experimental force-indentation curves to show the dispersion of data at different indentation 841 

depths. 842 

 843 

Fig. 10. (a) Normalized displacement field UZ/UZmax predicted by the coarse-grained elastic network 844 

model (CG-ENM). (b) Scheme of the AFM tip-cell contact adopted to determine the equivalent 845 

Young’s modulus. (c) Box plot of the equivalent Young’s moduli compared with the Young’s moduli 846 

computed via the Hertz contact theory.  847 

   848 

Fig. 11. Force-indentation curves computed by the model for the same material properties (i.e. 849 

Eloc,cor,optim and Eloc,cyt,optim of sample 9) and for a variable number of stress fibers. The activated (in 850 

red) and the disabled (blue) stress fibers simulated in the model are shown in the figures above the 851 

diagram.  852 
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Fig. 12. Force-indentation curves computed by the model for the same material properties (i.e. 853 

Eloc,cor,optim and Eloc,cyt,optim computed for sample 9) and for variable values of Eloc,nuc.  854 

 855 

Fig. 13. (a) Monodimensional twin models utilized to assess the effect of the geometry on the 856 

predicted material properties. Stress-strain curves obtained with the models with different geometry 857 

implementing Eloc,cyt,optim (b) and Eloc,cor,optim (c) computed for cell sample 9 (Table 1). Only markers 858 

are represented (and not lines) to better visualize the very small differences between the three models. 859 

 860 

Fig. 14. (a) 3D view of virtual tensile tests performed through coarse-grained elastic network model 861 

(CG-ENM) and FEM. (b) An example of force-displacement curves obtained with CG-ENM 862 

compared to that obtained with FEM. (c) Comparison between undeformed and deformed 863 

configurations of CG-ENM and FEM models. 864 

 865 

 866 


