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Abstract

The Canonical Polyadic (CP) tensor decomposition has become an attractive

mathematical tool in several fields during the last ten years. This decomposi-

tion is very powerful for representing and analyzing multidimensional data. The

most attractive feature of the CP decomposition is its uniqueness, contrary to

rank-revealing matrix decompositions, where the problem of rotational invari-

ance remains. This paper presents the performance analysis of iterative descent

algorithms for calculating the CP decomposition of tensors when columns of

factor matrices are almost collinear – i.e. swamp problems arise. We propose in

this paper a new and efficient proximal algorithm based on the Forward Back-

ward splitting method. More precisely, the existence of the best low-rank tensor

approximation is ensured thanks to a coherence constraint implemented via a

logarithmic regularized barrier. Computer experiments demonstrate the effi-

ciency and stability of the proposed algorithm in comparison to other iterative

algorithms in the literature for the normal case, and also producing significant

results even in difficult situations.
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1. INTRODUCTION

In numerous applications, signals or data may depend on several quantities

such as spatial coordinates, velocity, time, frequency, temperature, etc. And are

therefore naturally represented by higher-order arrays of numerical values, which5

are generally known as tensors. Basically, a tensor is considered as a mathe-

matical object that possesses the properties of multi-linearity when changing the

coordinate system [1]. For our purposes, it will be sufficient to see a tensor of

order N as a multi-dimensional array in which every element is accessed via N

indices. For instance, a first-order tensor is a vector, which is simply a column10

of numbers, a second-order tensor is a matrix, a third-order tensor appears as

numbers arranged in a rectangular box (or a cube, if all modes have the same

dimension), etc. Tensors of order higher than two possess properties that are

not enjoyed by matrices and vectors.

We shall mainly focus on the so-called Canonical Polyadic (CP) decompo-15

sition of tensors [2]. Because of a rediscovery forty years later, it received other

names such as Parafac [3] [4] or Candecomp [5]. The acronym ”CP” can smartly

stand for either “Canonical Polyadic” or “Candecomp/Parafac”, as pointed out

in [6] [7]. We shall assume this terminology. The CP decomposition has been

already used in various fields [8] [9] [10] [11] [12] [13] [14]. The main interest in20

using the CP decomposition lies in its uniqueness, under rather mild hypotheses

[15] [16]. Other tensor decompositions exist, but permit only compression and

not parameter identification since they are not unique [17][18] [19].

Various CP decomposition algorithms can encounter problems of slowness or

sometimes lack of convergence; such cases may be due to tensor degeneracies.25

These situations have been well categorized by Richard Harshman [20] into

the following three cases: Bottleneck when two or more factors in one of the

modes are almost collinear [21], Swamp when all modes have at least two quasi-

collinear factors [21] [22] [23] – a general case of bottleneck, and CP-degeneracies
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when some of the factors diverge to infinity while tend to cancelling each other,30

producing a better data fit [24] [25].

The traditional algorithm to compute the CP decomposition is ALS (Alter-

nating Least Squares), which was initially proposed in [5]. Basically, the ALS is

an iterative algorithm that progressively updates each unknown parameter indi-

vidually in an alternating fashion starting from an initial guess. ALS continues35

until it can no longer improve the solution, or it reaches the allowed maximum

number of iterations. As a result, the system to be solved is then turned into

three simple least squares (LS) problems. The ALS algorithm converges towards

a local minimum under mild conditions [26]. However, its convergence towards

the global minimum can sometimes be slow, if ever reached. Furthermore, the40

convergence of the algorithm may, in certain cases, fall in swamps [22], where

the convergence rate is very low and the error between two successive iterations

remains unchanged.

Various solutions have been proposed to face the slowness of convergence

of the ALS algorithm, for instance [27] [28] [12]. The idea is to produce a45

good initialization via a Generalized Eigenvalue Decomposition (GEVD) of two

tensor slices. But such an initialization assumes that the two factor matrices

are of full rank, and that the third one doesn’t contain zero elements. Another

way to increase the ALS convergence speed is to compress the tensor via a

Tucker3 decomposition [29] [30]. In [12], the Tucker3 compression is applied as50

well as an initialization based on the proper analysis; this process has become a

common practice to reduce the computational burden [7]. Other tricks to speed-

up convergence include the Enhanced Line Search (ELS) method [21], which has

demonstrated its effectiveness in cases of tensor affected by degenerative factors

(Factor degeneracies), or to reduce ALS sensitivity to initialization [31].55

The above algorithms enhance the convergence speed of the ALS algorithm

but are still unable to handle swamp phenomenon. Recent studies [13] [32]

[33] have shown that the introduction of coherence constraints overcome these

phenomena. The solution proposed in [33] is a direct adaptation of ALS using

the Dykstra projection algorithm over all correlation matrices. In the proposals60
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[13] [32], which consist in estimating the factor matrices in a simultaneous way,

such methods have not only proved to be efficient and stable for calculating

the CP decomposition in the normal case, but also in difficult cases, where the

estimated factors are close to collinear.

This document presents a performance evaluation of the iterative descent65

algorithms for calculating CP decomposition such as the unconstrained gradi-

ent descent algorithm [11], the constrained gradient descent algorithm [13], the

proximal gradient descent algorithm [32] and the accelerated proximal gradient

descent algorithm [32] and where we propose another new algorithm links the

logarithmic barrier function with proximal methods [34], which are now reliable70

and powerful optimization tools, leading to a variety of proximal algorithms,

such as the Proximal Point algorithm, the Proximal Gradient algorithm, the

Forward Backward algorithm, and several others including linearization and/or

splitting [35]. We shall be particularly interested in Forward Backward algo-

rithms, since they meet the assumptions of the novel CP decomposition formu-75

lation.

The paper is organized as follows. The section 2 states notation and basic

properties of tensors. In section 3, formulation and conditions of CP approxi-

mation under coherence constraint are explained. In Section 4 we present the

novel formulation for CP Decomposition as well as our new optimization algo-80

rithm. In Section 5 we report computer experiments, and eventually conclude

in Section 6.

2. Preliminaries

2.1. Tensor notations

Outer (tensor) product. Given two vectors u ∈ CI and v ∈ CJ their outer

(tensor) product u⊗v is defined as the I × J matrix:

M = u⊗ v = uvT .
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A third-order decomposable tensor T ∈ CI×J×K with entries Tijk can be ex-

pressed as [36] [37] [38]:

Tijk = uivjwk.

Using outer (tensor) product notation, such a decomposable tensor takes the

form:

T = u⊗ v⊗w, (1)

where u ∈ CI ,v ∈ CJ and w ∈ CK . Above, ⊗ denotes the so-called tensor85

(outer) product. In view of the CP decomposition that will be introduced next,

a decomposable tensor has a rank equal to 1, hence its alternative name is rank-1

tensor.

Frobenius norm . The Frobenius norm of a tensor is defined as:

‖T ‖2F = 〈T , T 〉 =
∑
i,j,k

| Tijk |2 . (2)

We shall subsequently use ‖X − Y‖F as a distance between two tensors.

Vectorization. Let T ∈ CI×J×K be a tensor, then vec{T } ∈ CIJK×1 represents

the column vector defined by :[
vec{T }

]
i+(j−1)I+(k−1)IJ = Tijk (3)

2.2. Tensor decomposition90

For our purposes, the word tensor will just designate a three-dimensional

array of complex numbers, but the generalization to Nth-order tensors, N ≥ 3,

is quite straightforward.

CP decomposition. Any tensor T can be written as a sum of decomposable

tensors. When the number of such decomposable terms is minimal, such a

decomposition is called Canonical Polyadic (CP), and the number R of terms

is called tensor rank. Hence a third-order tensor T , of size I × J ×K, admits a

CP decomposition taking the form:

T =

R∑
r=1

λrD(r), (4)
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where coefficients λr can always be chosen to be real positive, and decomposable

tensors D(r) to have unit norm.

Using Definition (1), the CP decomposition of T can also be written as:

T =

R∑
r=1

λr(ar ⊗ br ⊗ cr), (5)

It will be useful to use as a compact notation λ = [λ1, λ2, ..., λR], the vec-

tor containing the scaling factors λr. Moreover, we define three matrices A=

[a1,a2, ...,aR] ∈ CI×R, B= [b1,b2, ...,bR] ∈ CJ×R and C= [c1, c2, ..., cR] ∈

CK×R, which are often referred to as factor matrices. Note that (5) can be

rewritten in terms of tensor entries as:

Tijk =

R∑
r=1

λr airbircir. (6)

Uniqueness. The CP decomposition (5) can be guaranteed to be unique un-

der various sufficient conditions, all imposing an upper bound on tensor rank.

Among them one involves the coherences of factor matrices [39]. However, when

R ≤ K, the condition below [40] is less restrictive:

R(R− 1) ≤ I(I − 1)J(J − 1) (7)

Uniqueness signifies that there is only one set of decomposable tensors D(r)

whose linear combination exactly equals tensor T in (4) [41] [38]. However, be-95

cause permuting the terms {λr;ar,br, cr} does not change the sum (5), columns

in matrices A, B and C may be permuted. In addition, decomposable tensors

are not defined in a unique way with three vectors, but up to scaling factors

because a⊗b⊗c = αa⊗βb⊗γc, as long as αβγ = 1. That is why the product

of the norms of the three vectors, λ, may be pulled outside the product as in100

(5); but this does not completely fix the scaling indeterminacy due to the sign

ambiguous [11].
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3. Tensor Approximation

3.1. Low rank

The problem we want to solve is the following: given a third-order tensor

X ∈ CI×J×K , compute its best approximation of rank R. In other words, for a

given R, the goal is to minimize an objective function f of the form:

f(A,B,C;λ) =
∥∥∥X − X̂∥∥∥2

F

=

∥∥∥∥∥X −
R∑
r=1

λr (ar ⊗ br ⊗ cr)

∥∥∥∥∥
2

F

.

(8)

As an alternative, we can also write the minimization of (8) using the vector-

ization defined in (3) with x = vec{X} as:

min
x̂
f(x̂) = min

x̂
‖x− x̂‖2F

= min
A,B,C,λ

∥∥∥∥∥x−
R∑
r=1

λr(ar � br � cr)

∥∥∥∥∥
2

F

,

(9)

where symbol � represents the Kronecker product [42]. The above mentioned105

minimization is generally an ill-posed problem, but according to [38], con-

sider a coherence constraint in the minimization (9) helps to overcome this

ill-posedness.

3.2. Coherence of a matrix

One of the key concepts that we will use later in the conditioning of our

problem is the coherence. It can be found in the literature under various sig-

nifications [43] [44] [45]; the definition we shall assume is close to [46], and has

been primarily utilized as a measure of the capability of algorithms - such as

matching pursuit and basis pursuit - to precisely estimate the representation

of a sparse signal. The coherence of a matrix A is defined as the maximum

absolute value of the cross-correlations between its unit-norm columns:

µ(A) = max
i 6=j
|aHi aj | (10)
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The coherence enjoys the following properties: (a) 0 ≤ µ(A) ≤ 1, (b) µ(A) = 0110

if and only if a1, ...,aR are orthonormal, and (c) µ(A) = 1 if and only if A

contains at least two collinear vectors, i.e. ∃i 6= j, λ 6= 0 : ai = λaj . Because

the L∞ norm may be bounded by the L2p for large p:

‖t‖∞ = max
t
{tk} ≤ ‖t‖2p =

(∑
k

t2pk
) 1

2p ,∀tk ∈ R+,∀p ≥ 1, (11)

the coherence then admits a differentiable upper-bound:

µ(A) ≤ µp(A)
def
=
(∑
i 6=j

|aHi aj |2p
) 1

2p (12)

3.3. Conditioning

Contrary to matrices, which can be decomposed into a sum of rank-1 terms115

in several ways, that unfortunately are not unique except if strong constraints

such as non-negativity or orthogonality are imposed, the CP decomposition

(4) of tensors with order higher than two, N > 2, is often unique under mild

assumptions [3] [42][12]; this constitutes one of the attractive properties of the

CP decomposition.120

In [11], it has been proposed to fix the scaling factor λ so as to properly

control the conditioning of the problem. More precisely, for given matrices

A, B and C, the optimal value λo minimizing the error f is determined by

cancelling the gradient of (8) w.r.t. λ, which results in the linear system:

Gλo = s, (13)

where G is the Gram matrix of size R×R defined by: Gpq = aHp aq b
H
p bq c

H
p cq

and s is the R-dimensional vector defined by: sr = ΣijkTijkAirBjrCkr. It can

hence be concluded that coherences appear in the expression of G, which reveals

that coherence plays a key role in the problem conditioning.

3.4. Existence of the best approximation125

It was shown in [39] that the optimization problem (8) is generally ill-posed.

But under the constraint below

µ(A)µ(B)µ(C) ≤ 1

R− 1
, (14)

8



the best rank-R approximation exists and the infimum of (8) is attained. This

is because error (8) becomes coercive once condition (14) is satisfied [39], and

since it is continuous, it must reach its minimum. Note that condition (14) is

sufficient but not necessary. Moreover, it is not differentiable because of the

presence of max operators, and this might be a difficulty in some numerical

algorithms. To overcome this difficulty, the idea is to use an L2p norm defined

in (12) instead of L∞. In fact, not only ‖x‖∞ ≤ ‖x‖2p, ∀p > 0, but also ‖x‖2p
becomes a good approximation of ‖x‖∞ for large p [13]. This leads us to assume

the constraints:

Cp(x)
def
= 1−R+

1

µp(A)µp(B)µp(C)
> 0 (15)

4. Proposed Method

4.1. Problem formulation

For the sake of simplicity of writing, we will stack factor matrices in a single

vector defined as: x = vec{[AT ,BT ,CT ]}, and note that in this article, we

have chosen to define the function g as the logarithmic term −ln(Cp(x)) of130

the coherence constraint Cp(x). Formally, we face a constrained optimization

problem of the form:

min
x
f(x)

s.t. g(x)≥ 0. (16)

This optimization problem with inequality constraint can be solved by con-

verting it to an unconstrained optimization problem with an appropriate penalty,

thanks to Barrier’s functions [47], which form a one-sided penalty function.135

The cost function to be minimized at this point is composed of a sum of two

terms, one of which concerns data fidelity – denoted by f – and the other one

relates to a priori information on the target parameters which is in our case the
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sufficient condition defined in (15) – denoted by g. This leads to:

minimize
x∈RN

f(x)︸︷︷︸
datafidelity

+ η g(x)︸︷︷︸
constraint

, (17)

where the function g acts as a barrier in the interior point methods [48] and η140

is the penalty positive barrier parameter which decreases through iterations.

One of the approaches to estimate a solution of (17) when it is difficult to

evaluate directly, or when it requires numerous iterations and more computing

time to converge, is to introduce an intermediate variable which results in sub-

problems that take a particular form called proximal operators.145

Various methods to solve problems of the form (17) have been proposed

in the literature based on proximal operators. Formally, let assume that h be

a proper lower semi-continuous function which is bounded from below. The

proximal operator proxh : RN 7→ RN of h is defined by :

proxh(v) = arg min
x

(h(x) +
1

2ρ
‖x− v‖22),

which admits a unique solution for every v ∈ RN [34].150

Principally, our objective function is explicitly written as follows:

minimize
x̂∈RN

F(x̂) = ‖x− x̂‖2F − η ln(Cp(x̂)) (18)

Here, we propose to use the Forward Backward method [35] [49] to solve the

problem described by (18). The general principle of our method is described in

the following paragraph and is summarized in Algorithm 1.155

Among non-convex splitting methods, one can find the works of [50] [51],

where a monotonous descent of the objective value is imposed to ensure conver-

gence, while on the other hand, there are some recent works [49] [52] that intro-

duce a generic method for non-convex non-smooth problems based on Kurdyka-

Lojasiewicz theory.160
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In our case, coercivity assumption verified in Section 3.4 with simple mon-

itoring that imposes a monotonous descent of the objective value would be

sufficient to ensure convergence. It can be demonstrated in [53] that the prob-

lem to be addressed (18) has at least one solution and that, for any µ ∈ ]0,+∞[,

its solutions are determined by the fixed point equation:165

x(k+1) ← proxρ(k)η g︸ ︷︷ ︸
Backward step

(x(k) − ρ(k)∇f(x(k)))︸ ︷︷ ︸
Forward step

(19)

It is clear from (19) that the Forward Backward method consists of solving

two main sub-problems, which can be rewritten as:

(sp1) y(k+1) ← x(k) − ρ(k)∇f(x(k))

(sp2) x(k+1) ← arg min
x

(η g(x) +
1

2ρ(k)
‖x− y(k+1)‖22)

The forward step addresses sub-problem (sp1) and the backward step sub-

problem (sp2). We now describe in more details the algorithm outlined above.

4.2. Forward Step170

This step yields an approximate solution, by only fitting the data - indepen-

dently of the constraint. This step also involves two stages.

4.2.1. Descent

In this stage, a gradient steepest descent is executed in direction d(k):

d(k) = −∇f(A(k),B(k),C(k)) = −∇f(x(k)) (20)

The gradient expressions needed to obtain the descent direction d(k) take the

form:
∂f

∂A
= 2AMA − 2NA

with

MA
pq

def
= ΣjkλpBjpCkpC

∗
kqB

∗
jqλ
∗
q

NA
ip
def
= ΣjkTijkB

∗
jpC

∗
kpλ
∗
p
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The gradient expressions with respect to B and C can be obtained similarly

to A.175

One should note that, although the gradient method may suffer from a

slow convergence, particularly for large datasets [54], these shortcomings will

be alleviated by the next ”Backward” step that adjusts the search orientation

based on the proximal operator of the coherence function g.180

4.2.2. Backtracking

The second stage of the forward part consists of calculating the appropriate

step-size ρ(k) according to the previously calculated direction d(k). It is fun-

damental to adopt a good step-size strategy as it has an important influence

on the convergence properties of the algorithm. It is possible to use a fixed185

step-size throughout the iterations, but this choice may be synonymous with

low convergence speed if the step-size is chosen to be too small. Moreover, if a

too large step-size is chosen, the optimization algorithm may diverge and one

will be unable to correctly estimate the factor matrices.

On the other hand, the calculation of the step-size can be made in an exact190

way. The determination of the exact step-size of a function f corresponds to

the Cauchy rule (21). It allows, as its name indicates, to determine the step-size

that minimizes at most the function f at each step k, according to the calculated

direction d(k) as:

ρ(k) = arg min
ρ∈R+

{f(x(k) + ρd(k))}. (21)

However, the exact resolution may require too much computing time, and195

cannot be done with infinite precision anyway. Moreover, the additional effi-

ciency that may be gained to the algorithm by an exact step rarely compensates

the time spent to determine such a step.

Consequently, the usual strategies for the calculation of the step-size are

often based on the verification of less restrictive conditions, which nevertheless200

guarantee the convergence of the algorithms. Among various methods searching
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for the approached step-size, a simple and effective one is called Backtracking.

This method produces a good approximation of the step-size ρ(k) at a lower cost,

where it depends on two constants α and β, with 0 < α < 0.5 and 0 < β < 1.

This method is called Backtracking [55] as it starts with a large step-size ρ(k)205

at the beginning, then this value is decreased by a factor β so that ρ ← ρ ∗ β

until the following sufficient descent condition [56] is verified:

f(x(k) + ρ(k)d(k)) < f(x(k)) + αρ(k)∇f(x(k))Td(k) (22)

Finally, the Forward step can be computed as:

y(k+1) = x(k) + ρ(k)d(k). (23)

4.3. Backward Step

This step represents the strength of the proposed algorithm. While the

previous step focused on the function f related to data fidelity, this ”Backward”210

step permits to better adjust the descent direction based on the function g

associated with the coherence constraint. This is ensured firstly by applying

the proximal operator to the final outcome of the previous ”Forward” Step, i.e.

y(k+1), as:

z(k+1) = proxρ(k)η g(x
(k) + ρ(k)d(k)) = proxρ(k)η g(y

(k+1))

= arg min
x

(η g(x) +
1

2ρ(k)
‖x− y(k+1)‖22)︸ ︷︷ ︸

H(x)

(24)

The solution of the proximal proxg(y
(k+1)) allows us to benefit both from215

the minimization of function g as well as to be close to y(k+1), this can be

intuitively interpreted as a projection of y(k+1) on the feasible set.

Our constraint function g is differentiable. This will allow us to calculate an

approximation of the proximal operator of g through three main stages.
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4.3.1. Gradient of H220

The gradient of H takes the form:

∇H(x) = ∇ η g(x) +
1

ρ(k)
(x− y(k+1)), (25)

in which the gradient ∇g(X) is computed as:

∂g

∂A
=
−1

Cp
LApA[(AHA)� ΩA − I], (26)

where � denotes the Hadamard entry-wise product,

LAp
def
= (Σp<q|aHp aq|2p)

−1
2p −1ρ(B, p)−1ρ(C, p)−1,

and ΩApq
def
= |aHq ap|2p−2. Expressions for B and C are similar.

It is important to note that the minimization process is interrupted once

we first encounter a better candidate improving y(k+1), meaning that the new

iterate x(k+1) ensures the minimization of function g while remaining in a neigh-225

borhood of y(k+1).

4.3.2. Relaxation

The Forward Backward (FB) offers some flexibility in the choice of x(k+1)

through a relaxation parameter τ (k) ∈ [ε, 1], that acts as an interpolation of the

current point z(k+1) and the previous point x(k) as:230

xk+1 = xk + τ (k)(proxρ(k)η g(y
(k+1))− xk)

= xk + τ (k)(z(k+1) − xk),
(27)

4.3.3. Descent control

The Forward Backward (FB) is not a monotonous algorithm [57]. This may

have an impact on the general minimization problem (18), which may possibly

yield a value F(xk+1) larger than F(xk). To avoid this problem we append a

descent validity test:235

xk+1 =

xk+1 if F(xk+1) < F(xk)

yk+1 otherwise.

(28)
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The monitoring described above allows for an easy migration to the gradient

algorithm in case of failure of the ”Backward” step to find a better candidate

that improves the general direction of minimization.
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Algorithm 1: Forward Backward (FB) algorithm to minimize (18)

1 Choose R satisfying (7);

2 Initialize (A0,B0,C0) to matrices with unit-norm columns, τ (k),η, ρ ;

3 Calculate the optimal scaling factor λ∗ by solving (13): G0λ
∗ = f0 ;

4 for k ≥ 1 and subject to a stopping criterion, do

1. Forward Step

(a) Compute the descent direction d(k) as the

gradient according to (20) w.r.t. xk:

d(k) = −∇f(xk)

(b) Calculate a step-size ρk using the backtracking method such:

f(xk + ρkd
(k)) < f(xk)

(c) Update

yk+1 = xk + ρkd
(k)

2. Backward Step

(a) Compute the approximate proximal operator

of g at yk+1 using (24) such as:

zk+1 = proxρkη g(yk+1)

(b) Relaxation

xk+1 = xk + τ (k)(zk+1 − xk)

(c) Monitoring

xk+1 =

xk+1 if F(xk+1) < F(xk)

yk+1 otherwise.

3. Extract the three blocks of xk+1: Ak+1, Bk+1

and Ck+1

4. Normalize the columns of Ak+1, Bk+1 and Ck+1

5. calculation of the optimal scaling factor λ∗

using (13) such as: Gλ∗ = S

5 end for 16



5. RESULTS AND DISCUSSIONS

In this section, we compare various algorithms based on computer experi-240

ments performed under two scenarios: (i) the first one, which is is a concrete

example in which it is necessary to deal with the swamp phenomenon, i.e. where

the factor matrices are highly correlated in all three modes and the constraint is

not satisfied (Cp ≤ 0) at convergence, and (ii) the second scenario addresses the

normal case of the CP decomposition, where the limit point lies in the admis-245

sible region, i.e. when the constraint is satisfied (Cp ≥ 0) at convergence, note

also that in this second scenario we have provided three examples of tensors

with different tensor sizes.

To see the interest of our proposed algorithm, we compare it to other CPD250

algorithms: i) The unconstrained gradient (UG) descent algorithm ii) The con-

strained gradient (CG) descent algorithm [13], iii) The constrained proximal

gradient algorithm (PG) [32], iv) The constrained accelerated proximal gradi-

ent algorithm (APG)[32].

To illustrate the behaviour of our FB implementation, we evaluate the per-255

formance of each algorithm in terms of three criteria, namely accuracy, CPU

time and congruence.

The best congruence sum requires finding the best permutation σ among the

factor matrix columns, defined as:

max
σ

=

R∑
r=1

|aHr âσ(r)|
‖ar‖‖âσ(r)‖

|bHr b̂σ(r)|
‖br‖‖b̂σ(r)‖

|cHr ĉσ(r)|
‖cr‖‖ĉσ(r)‖

(29)

Note that all algorithms are initialized at each simulation with the same260

starting points, where data sets are generated by normally distributed random

numbers with zero mean and unit variance, and all algorithms share the follow-

ing common stopping criteria:

(i) The maximum number of iterations is fixed at 103.

(ii) The reconstruction error level, subsequently called accuracy, which is the265

17



distance between the current tensor and the original tensor, for the best per-

mutation σ.

The simulations were performed in Matlab on a computer with Intel i5 CPU

(2.6GHz) and 10GB memory running 64bit Mac OS, and the results are obtained

by averaging results of 100 executions for all three examples.270

5.1. Scenario 1

In this first scenario, we generate a random CP model of size 4 × 3 × 10

with rank 5 and with coherences µ(A) = µ(B) = µ(C) = 0.97, which implies

that µ(A)µ(B)µ(C) = 0.91 is larger than 1/(R − 1) = 1/2. This configuration

addresses the problem of swamp, where all factor matrices are almost co-linear.275

In this experiment, η is initialized to 1, and is divided by 10 when f(x) is reduced

by less than 10−4 and the relaxation parameter τ (k) is fixed to 0.3 thus allowing

a tolerance of 30% for this relaxation. Figure 1 presents the estimation errors of

the matrix as a function of SNR. From these results obtained with 100 different

starting points, one can clearly observe that the unconstrained gradient (UG)280

algorithm produces less accurate results in all factor matrices compared to other

algorithms, this explains the impact of the coherence constraint on the accuracy

of the algorithms. On the other hand, it can also be observed that the proposed

FB algorithm is more accurate than both the constrained gradient (CG) and

the proximal gradient (PG) algorithms, while the accelerated proximal gradient285

(APG) algorithm remains the most accurate of all algorithms especially at a

high noise level.

Figure 2 illustrates the best sum of congruences as a function of SNR. It

can be seen that with the same initialization point, the results of the proposed

FB algorithm and the APG algorithm are much more convincing, however, the290

APG algorithm performs slightly better than the FB algorithm particularly

for high noise level. In addition, both the CG and PG algorithms produce

comparable results, while the UG algorithm yields lower performance compared

to all algorithms when overcoming the swamp phenomenon.

Figure 3 indicates that the UG algorithm produces average results in which295
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(c) Matrix C

Figure 1: Matrix estimation errors, with a random tensor of size 4× 3× 10 and rank 4.
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Figure 2: Congruence versus SNR results, µ(A) = µ(B) = µ(C) = 0.97 up to an accuracy of

10−8 and results with 100 random initializations at each SNR.
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Figure 3: Reconstruction error (8) as a function of the number of iterations. For a tensor of

size 4× 3× 10 and rank 4.

it only reaches an accuracy of 10−8, whereas the proposed FB algorithm and

the APG algorithm still performed much better than both the CG and PG

algorithms as they converge faster in terms of number of iterations (especially

to reach a precision of 10−9), except that the APG achieves this accuracy in a

few iterations compared to the FB algorithm. As a result, the APG algorithm300

still remains the preferred choice for the difficult case of CP decomposition.

This convergence speed result is also clearly presented in the Table 1, which

lists the CPU time required for each algorithm to reach an accuracy of 10−8 and

where we can notice a significant point in comparison to the previous results

indicating that the PG algorithm is faster than the UG algorithm in terms305

of machine time, a deep inspection also reveals that the proximal algorithms

present a high convergence speed, especially to address the problem of swamps.

5.2. Scenario 2

In this second scenario, we address the normal case of the CP decomposi-

tion through three different tensor sizes, for which the limit point lies in the310

admissible region, i.e. when the constraint is satisfied (Cp ≥ 0) at convergence.

It should be noted that the relaxation parameter τ (k) is fixed to 0.7 for all ex-

amples of this scenario, thus allowing a tolerance of 70% for this relaxation, It

should also be noted that this choice is made through a series of simulations for

20



SNR (dB)

Algorithm 0 10 20 30 40

UG 2.45 1.78 1.66 0.96 0.62

CG 2.04 1.52 1.23 0.72 0.54

PG 1.80 1.21 1.10 0.68 0.50

APG 1.59 0.95 0.84 0.47 0.44

FB 1.75 1.09 0.91 0.52 0.48

Table 1: CPU time (in seconds) versus SNR results, µ(A) = µ(B) = µ(C) = 0.97 up to an

accuracy of 10−8. These are averaged results over 100 random initializations at each SNR.

that parameter.315

5.2.1. Example 1

In this first example, we generate a random CP model of size 2× 2× 2 with

rank 2, η is initialized to 0.1, and is divided by 100 when f(x) is reduced by

less than 10−4. Figure 4 represents the reconstruction error as a function of the

number of iterations, from these results, we clearly observe the impact of the320

constraint on the performance of the algorithms in which we understand that

the UG takes much iteration to achieve only an accuracy of 10−11. In addition,

we can also notice that the three proximal algorithms are more efficient than the

CG with the advantage of the proposed FB algorithm that reaches an accuracy

of 10−14 in 120 iterations compared to the APG that needs more iterations to325

reach the same accuracy.

In order to make a more accurate comparison, we evaluated the CPU time

of these algorithms. By analysing the results of Table 2, we can clearly see that

the proposed FB algorithm proves its efficiency in terms of both accuracy and

CPU time compared to other algorithms.330
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Figure 4: Reconstruction error (8) as a function of the number of iterations. For a tensor of

size 2× 2× 2 and rank 2.

UG CG PG APG FB

2.07 1.88 1.65 1.58 1.47

Table 2: CPU time (in seconds). For a tensor of size 2× 2× 2 and rank 2 up to an accuracy

of 10−8 and results with 100 random initializations.

5.2.2. Example 2

In this second example, we generate a random CP model of size 4× 3× 10

with rank 4, η is initialized to 0.1, and is divided by 100 when f(x) is reduced

by less than 10−4. Figure 5 reveals that the proposed FB algorithm requires less

than 230 iterations to achieve an accuracy of 10−14 followed by APG algorithm335

that takes more than 300 iterations to achieve the same accuracy. We can also

notice that although the CG algorithm produces good results compared to the

PG algorithm in terms of accuracy, this performance is a little costly in terms

of CPU time for these two algorithms as the Table 4 shows. On the other side,

results in Table 4 still proves the efficiency of the proposed algorithm in terms340

of CPU time compared to other algorithms.
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Figure 5: Reconstruction error (8) as a function of the number of iterations. For a tensor of

size 4× 3× 10 and rank 4.

UG CG PG APG FB

2.17 1.78 1.73 1.64 1.57

Table 3: CPU time (in seconds). For a tensor of size 4× 3× 10 and rank 4 up to an accuracy

of 10−12 and results with 100 random initializations.

5.2.3. Example 3

In this third example, we generate a random CP model of size 40× 40× 40

with rank 4, η is initialized to 0.5, and is divided by 100 when f(x) is reduced345

by less than 10−4. Figure 6 and Table 4 show that with tensors larger than the

previous examples the unconstrained algorithm still requires more iterations

and more CPU time to achieve an accuracy of 10−11. On the other hand, the

proposed FB algorithm significantly exceeds the UG and PG algorithms in terms

of the number of iterations and also in terms of machine time. Furthermore,350

this improvement is slightly significant compared to the APG algorithm.

According to these simulation results, it is easy to see the impact of the

coherence constraint in the accuracy of the results, and it is also observed that

with different tensor sizes, the efficiency of the proposed algorithm is perceived.

This makes the proposed algorithm a better choice to ensure both the accuracy355

and the convergence speed of the CP decomposition in the normal case.
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Figure 6: Reconstruction error (8) as a function of the number of iterations. For a tensor of

size 40× 40× 40 and rank 4.

UG CG PG APG FB

2.29 1.92 1.68 1.40 1.46

Table 4: CPU time (in seconds). For a tensor of size 40×40×40 and rank 4 up to an accuracy

of 10−10 and average results with 100 random initializations.

6. Conclusions

We have provided a novel formulation for the CP decomposition related to

the logarithmic barrier function. We also described a new method to compute

this decomposition for both normal and difficult cases, i.e. when the problem360

of swamp arises. This method is based on the Forward Backward splitting al-

gorithm, with a simple and effective monitoring strategy capable of calculating

the minimal CP decomposition of three-way arrays. We performed a complete

comparison based on computer experiments, which emphasized the excellent

performances of the proposed FB algorithm in terms of accuracy and conver-365

gence speed, compared to other iterative algorithms in the literature for the

normal case. On the other hand, in more difficult cases, the accelerated proxi-

mal gradient remains the preferred choice to overcome the swamp phenomenon.
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