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Improvement of Cumulant-based 

Parameter estimation 
Denis Kouamk, Jean-Marc Girault 

LUSSI, GIP Ultrasons Tours, France 

Abstmct- This paper presents a improvement of high or- 

der cumulant-based parameter estimation using delta oper- 

ator applied to instrumental variable algorithm. It is based 

gate a d-operator high order statistics recursive instrumen- 

tal variable method. 

on a modification of the classical least squares estimation 11. PRELIMINARIES 
and the utilization of the delta operator and the introduc- 

tion of an additional term in the parameter estimates. Com- 

puter simulation results are given to illustrate the behavior 

of this method. 

The following notations will be used. 3: denotes a vec- 

tor, ~ ( n )  denotes the nth(time) element of 3:. Uppercase 

( X )  denotes a matrix. The finite difference S-operator is 

I. INTRODUCTION 

defined by: S 5 ( n )  = z ( n ) - z ( n - l )  - 1-q 
T - -5;-3:(n), where T is 

the (normalized) sampling period of the process 2. q is the 

ECOND order statistics (SOS) parameter estima- delay operator that is, for an integer i, qiz(n) = z(n - i). 

1+ ...+( - 1)'q' S tion, using of a 6-operator has shown advantages Thus, we define Siz(n) = w 3 : ( n )  = T' 4.1. 
over the classical q-operator, in terms of numerical abil- m-order cumulant of z is denoted by Cmz(tl, ...tm-l). Con- 

ity and ill-conditions processing. Moreover, it has been sider a real discrete time process, 

shown that the least squares estimation convergence rate 

Concern- 

P 

.(n) = a(IC)z(n - k )  + u(n),  y(n) = z (n)  + w ( n )  (1) 
can be improved [1]- [3] using a d-operator . k= 1 

ing high order statistics (HOS), the major problems are where U(.) is an independent input excitation, y(n) the 

the convergence rate and the fluctuations of parameter es- observed output, and w(n) a zero-mean gaussian colored 

timation when the algorithms, particularly the Recursive noise (which can be an MA process). Here, we consider the 

Instrumental Variable (RIV), work on short-length data, problem of estimating the AR parameter, a ( k ) ,  IC = 1, . . . , p ,  

[4]-[6]. To this day, no &operator type algorithm applica- 

ble to  HOS is available. Such an algorithm, by using the 

properties of &operator, could lead to an improvement of 

classical algorithms. The aim of this paper is to investi- 

using recursive instrumental variable transversal structure. 

This problem has been thoroughly covered in many papers, 

e.g.[?]. The Instrumental Variable (IV) estimation of the 

AR. part of (1) uses a process z ( n )  referred to as instru- 
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mental varianie, wnicn will ne aiscussea neiow. we aenne 111. r w w s w  H L ~ ~ O H I ' I H M  

4T(n)  = [y(n-l),"*?l(n-p)l,$T(a) = [z(n-l),.. 'z(n-p)l Now consider the extension of motje] (1) using the 6- 

operator, which can be written as: and BT = [a(l)  ... u ( p ) ] .  The process z ( n ) ,  assumed to be un- 

correlated to the additive noise tu(.), asymptotically yields 

the ( p  + 1) rank matrix 

P 
A(S)z(n) = ~ ( n ) ;  w i t h  A ( @  == c ~ ( i ) B ~  ( 5 )  

z=o 

n 
F ( n )  = 'c A"-"(k)@(k) (2) Define: 

k=O 

Equation ( 2 )  gives the classical correlation-based estimate eT = [ -a (p  - 1) ... - 4 0 ) ]  ( 6 )  

$F(n) = [ S ( P - l ) z ( n )  ... 44.  ( 7 )  for z ( n )  = y(n). In this case, the parameter estimates 

can be obtained via the Recursive Least Squares (RLS) y(n) = S ( P ) z ( n )  + w(n) 

method. To overcome R.LS limitations, classically z ( n )  is 

chosen so that P(n)  is an m-order cumulant matrix (m > 

2). Typical choices e.g. [4] are: 

z ( n )  = y(n)y(n f no); this leads to  estimates based on 

1D slice C3y(k, k + no). Generally no is set to  zero and 

z (n )  = yz(n) and then estimates are based on the diagonal 

slice of the 3Td-~rder  cumulants of y. 

t+V(n) = [ b ( p - - 1 ) z ( n )  ... z ( n ) ]  (9) 

Remark 1 : Relations between general model (5) (say a(n) )  

and (l),(saY a(.)) come immediately by expanding (5), for 

example 

8(1) = 2 + TB(1);8(2) = -1 - $1) + TG(2) 

. ~ ( n )  = y3(n) - 3a2y(n), with u 2  = ~ ~ ~ ( 0 ) ;  this leads It is well known that the methodology in developing IV es- 

elements of p to be sample estimates of c4y(k, k, k) the 

diagonal slice of the 4th-oder cumulant of y. 

timates is based on modification of least squares covariance 

matrix so that the observations are not correlated to  the 

Here, we consider the case of estimation using m-order noise, through introduction of an instrumental process [7] .  

cumulant(m > 2 ) .  The classical q-operator Recursive In- 

strumental Variable algorithm is then given by : 

Following this methodology, the 6-operator RIV estimates 

are dervived. Using g(n) = e'(n) - e'(n - 1) and initial cu- 

mulant matrix Po, the orthogonality condition [7] leads to  

with 0 < A 5 1 This algorithm suffers from high fluctua- 

tions related to the use of High Order Cumulants (HOC) 

when applied to short-length data. 
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\----- 

J n \ K )  uses tne Iorgetting factor A to account Ior slow van- compute o q n )  eq. ti~), ana rtn) using tne aennition 

ations of the parameters. Parameter estimates are then 

given by : 

of 6P(n) as specified in section 11. 

compute 6 ( n )  eq. (12) and i (n )  using the definition of 

n &(n) as specified in section 11. 
;(n) = ~ ( n )  fn(/c)q(/c) [ ~ ( k )  - 4~(r~)i?(n - 111 

the algorithm ends here if the model used is (5); k=O 
r n 1-1 

Unlike the classical algorithm, here, the case without for- 

getting factor corresponds to x = 0. 1.5 

For convenience, in the following parts we assume, without 

lost of generality, that T = 1. From these definitions, using 

similar derivations as in [8 ] ,  the &operator RIV estimates 

1 

0.5 

g o  
E 
g -0.5 

- . . - . - . - . - . - . - . -  

are obtained by: -1 

&n) = ~(n){~;ldi(n - 1) + t,i(n)[jj(n) - $T(n>5(n - I)]) 
-1.5 

-2 

0 50 100 150 200 250 300 350 400 450 
(12) -2.5 

1 P ( n ) d ( n ) 4 T ( 4 m  } (13) samples 

SP(n) = -(XP(n) - 
1 - X  1 + p(n )P(n )q (n )  

Fig. 1. 
In practice, Po initial cumulant marix is chosen by setting 

0 

Parameter estimate with classical RIV algorithm. Theo- 

retical values (dash dot) and estimated values (solid lines) 

with a single realization 

Po = y I ,  where y is a scalar and I the identity matrix. 

Here, one can notice that equations (12) and (13), by using 

an additional term P(n)PG1S8(n - 1) and by estimating 

the finite difference of parameters and cumulant matrix, 

differ from equations (3) and (4). This algorithm, first 

results in the reduction of parameter estimates fluctuations 

and thus accelerates convergence speed. Secondly, it takes The counterpart of this algorithm is the computation of 

advantage of good numerical properties of the &operator the additional term and finite differences. But this is 

[1],[3]. The algorithm can be summarized by : 

choose initial values of P (e.g. Po = 71 with I the iden- 

tity matrix and y a positive constant) and e(0) 

For n=1,2, ... 

compute @(n) &n); y(n); GT(n) eqs. (6)-(9); 

a small price to pay compared to  the improvement in 

terms of fluctuations reduction. To illustrate this, we con- 

sider for the purpose of a computer simulation the pro- 

cess : s(n) - 0.6z(n - 1) - 0.27z(n - 2) = u(n); with 

w(n) = -0.49w(n - 2) + e(n); y(n) = z(n) + w ( n )  where 
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111 estimate : lhearelical 

I 1  I 
a(2) : 

0.5 

p o  
E 
I -0 .5  

-1 

aistinguisn Detween tne two parameter estimates Decause 

of the high fluctuations. 

IV. CONCLUSJON 

In this paper we have presented a new parameter estima- 

tion algorithm which has been applied to  HOC . This algo- 

a(1) : rithm is based on the modification of the classical approach 

by i using a &operator. It allows reduction of parameter -2 

as shown by computer simulation. 
Fig. 2. 
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