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Spectral Correlation of the embolic blood
Doppler signal

Jean-Marc Girault, Member, IEEE, Mathieu Biard*, Denis Kouamé, Member, IEEE, 
Aurore Bleuzen*, and François Tranquart*

Abstract— In a previous study we have shown that take
into account the quasi-cyclostationary properties of the
blood Doppler signal is useful to detect embolus (red blood
cell aggregates). In this latter approach, we have first con-
sidered a simple "off-line" synchronous detector. As results
were very interesting, we have thought that the correlation
spectrum could be an interesting alternative to the syn-
chronous detection. As the correlation spectrum of in vivo

signal seems to be too complicated, we propose here to elu-
cidate this apparent complexity by analytically computing
the correlation spectrum of Doppler signal model with or
without embolus.

Keywords— Doppler, ultrasound, emboli detection, spec-
tral correlation, cyclostationarity.

I. INTRODUCTION

CE rebral vascular accidents, particularly cerebral em-
bolisms, represent more than two thirds of all ischemic

strokes. Indeed, several insoluble bodies (fat, red cell ag-
gregation, clots ...) foreign to blood composition, called
emboli, can move into intracranial arteries and can even
block them. An illustration is given in figure(1). Tran-
sCranial Doppler ultrasound (TCD) systems have for sev-
eral years been the most commonly used techniques in de-
tecting and counting emboli. Detection of micro-emboli
[1], [2], [3] (small size emboli) is important for several rea-
sons such as preventing cerebrovascular accidents, finding
the cause of embolism and validating the effectiveness of
treatment. The underlying phenomenon of the embolism
explains that the embolic Doppler signature is an unpre-
dicted high intensity transient signal (HITS) superimposed
on the Doppler signal backscattered by the blood. The in-
formation on which embolus detection must be based can
therefore be the energy. This involves the combined use of
an energy estimator and an energy detector. The standard
techniques implemented in TCD systems seem to be suffi-
cient to detect most of micro-embolic events. Nevertheless
during clinical examinations, it sometimes happens that a
medical expert observes micro-embolic signatures not de-
tected by the system. This concern has led our team to
analyze the signals in another way. By assuming that the
Doppler signal is cyclostationary, we hypothesize that en-
ergy is statistically periodic. If we periodically take and
compare the values of energy at different time points in
the cardiac cycle, we can therefore detect the presence of
non-periodic events such as micro-emboli. In a previous
study [4] we have shown that we can considerably improve
micro-emboli detection by using a synchronous detector.
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Fig. 1.

Sketch of a solid embolus in the sample volume.

We think that informative parameter extracted from the
correlation spectrum can improve the embolus detection
compare to the synchronous detector. This technique could
be thus an interesting alternative to the synchronous de-
tector. At first sight, the correlation spectrum of in vivo
blood Doppler signal seems to be too complex to permit any
informative parameters identification. In order to reach
our goal, we propose an analytical modeling of the blood
Doppler signal (with and without embolus). From this an-
alytical model we analytically calculate the corresponding
cyclic spectrum. The spectral correlation has proved its
interest in another field like in gear faults diagnosis [5] but
also in engine vibration analysis [6].

II. ANALYTICAL MODELING OF THE

EMBOLIC BLOOD DOPPLER SIGNAL

A. Analytical modeling of the blood Doppler signal

The simplest and most common manner to model the
blood Doppler signal is to consider that this latter corre-
sponds to a narrow band filtered stochastic process. For
example, in the case of the mean cerebral artery, the cen-
tral Doppler frequency is around 450 Hz, the minimum
and maximum frequencies are close to 250 HZ and 650
Hz, respectively. This non-stationary stochastic process,
synchronized with the heart beating is both modulated in
amplitude and in frequency. For the sake of simplicity, we
consider that the blood Doppler signal is a deterministic
signal. This simplification is equivalent to consider this
random process in a average point of view.

For neophyte, notice that the mean frequency of the
Doppler signal corresponds to the mean velocity of the
blood flaw. The blood velocity is time varying with the
cardiac beating. This implies that the blood Doppler sig-
nal is a frequency modulation signal. As the mean Doppler



frequency is quasi-cyclic, we can calculate a Fourier series.
A simple case, illustrated in the figure (2), is to consider
the frequency modulation as a sinus law. The spectral com-
plexity, i.e. the number of harmonics depends of the vas-
cular observed site. For the mean cerebral artery, a reason-
able number to well describe the mean Doppler frequency
is around 4 harmonics. In a previous study [4], we have
shown that the mean cardiac cycle for healthy patients is
near of one second with a standard deviation around 20%.
Here we assume that mean Doppler frequency is periodic,
involving that the Doppler signal is purely cyclostationary.

Here, we propose that the analytical modeling of the
Doppler signal y(t) is a combination of three components:

y(t) = A(t)B(t)C(t). (1)

The first component A(t), named "carrier", is a monofre-
quency signal:

A(t) = ejωdt, (2)

where ωd is the mean Doppler frequency.
The second term B(t) modulates the amplitude the first

component. This amplitude modulation term is periodic
(cardiac cycle) and can be expressed as a Fourier series:

B(t) =

∞
∑

k=0

akejkωct, (3)

where ωc is the cyclic fundamental frequency and where
ak are the amplitudes of the different harmonics, a0 = 1.
These amplitude coefficients play the role of amplitude
modulation indexes.

The third component modulates the frequency of the last
two terms. This frequency modulation term is periodic
(cardiac cycle) and can be expressed as a Fourier series:

C(t) = ej
∑

∞

k=1
aksin(kωct), (4)

where ωc is the cyclic fondamental frequency and where
ak are the amplitudes of the different harmonics, a0 = 1.
These amplitude coefficients play the role of modulation
frequency indexes. Note that the frequency modulation
term can also be expressed by a Fourier series:

eja1sin(ωct) =
∞
∑

u=−∞

Ju(a1)e
juωct,

where Ju(a1) is the first kind of the Bessel function of order
u. We can rewrite the component C(t) as followed:

C(t) =

∞
∏

k=1

+∞
∑

u=−∞

Jk,u(ak)ejkuωct, (5)

where Jk,u(ak) is a first kind of Bessel function of order u
of the harmonic k.

B. Analytical modeling of the embolic blood Doppler signal

The finite dimension of the insonified sample volume im-
plies that the embolic signature is limited in time. Its du-
ration is inversely proportional to the speed of the blood
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Fig. 2.

Some representations of the simulated embolic Doppler
signal.a) Time representation. b) Wigner-Ville

representation. c) Fourier spectrum

flow. Furthermore the energy scattered by the embolus is
much more higher than the one scattered by red blood cell.
This is simply justified by indicating that the embolus size
is much higher than red blood cells. A simple way to take
into account the presence of an embolus in the insonified
area is to superimpose to the blood Doppler signal a higher
amplitude of limited duration:

z(t) = y(t)D(t), (6)

where
D(t) = 1 + γE(t), (7)

and where E(t) is a function of limited duration as for
example a rectangular signal or a Hamming function. γ is
a weighted coefficient indicating the over-intensity.

As an illustration, we have reported in the figure (2) a
simulated blood embolic Doppler signal. We can see both
the amplitude and frequency modulations and the high in-
tensity signature due to the embolus presence.

Having indicated the analytical relationships of the em-
bolic Doppler signal, focus now to its corresponding corre-
lation spectrum.

III. CORRELATION SPECTRUM OF THE

EMBOLIC BLOOD DOPPLER SIGNAL

To a better understanding of the cyclic spectrum of the
embolic Doppler signal, we propose to calculate the cyclic
spectrum in several steps.

First of all, we recall the definition of the correlation
spectrum of a signal y(t) [7]:

Sy
α
f =

∫ ∫

y(t + τ/2)y∗(t − τ/2)e−j2π(fτ+αt)dτdt. (8)

This 2D representation corresponding to this correlation
spectrum shows how is distributed the energy for different
value of frequency and cyclic frequency.



A. Correlation spectrum of A(t)

The correlation spectrum of the "carrier" term A(t), by
using (2) and (8) becomes:

SA
α
f = δα

f−fd
. (9)

This correlation spectrum is a simple Dirac function cen-
tered at α = 0 and f = fd. This cyclic spectrum is depicted
in the figure (3a). Note that this signal is not cyclostation-
ary because its cyclic spectrum does not have cyclic com-
ponents for α "= 0. The cyclic spectrum of A(t) is strictly
equals to its Fourier spectrum: SA

α
f = SA(f) = δ(f − fd).

B. Correlation spectrum of B(t)

The cyclic spectrum of the amplitude modulation term
B(t) (see equation (3)) can be expressed by:

SB
α
f =

+∞
∑

m=0

+∞
∑

n=0

amanδ
α−(m−n)fc

f−(n+m)fc/2. (10)

As this correlation spectrum has got non zero components
for α "= 0, B(t) is a cyclostationary signal. The cyclic spec-
trum points out links between each harmonics components.
As an example, assume that the Fourier series is composed
of only one term (N = 1, m = 0, 1 and n = 0, 1 in (10)),
the corresponding cyclic spectrum is:

SB
α
f = δα

f + a1δ
α+fc

f−fc/2 + a1δ
α−fc

f−fc/2 + a2
1δ

α
f−fc

.

B(t) is a modulated signal centered around the carrier fre-
quency fc. For α = 0, we recognize the classical spectrum
of an amplitude modulation signal. This cyclic spectrum
is represented in the figure (3b). We can verify that each
cyclic component (Dirac function) are spaced by fc while
each frequency component are spaced by fc/2. Note also
that the four components are weighted differently.

C. Correlation spectrum of C(t)

The cyclic spectrum of the frequency modulation term
C(t) (see equation (5)) can be expressed by:

SC
α
f =

∞
∏

k=1

+∞
∑

u=−∞

+∞
∑

v=−∞

Jk,u(ak)Jk,v(ak)δ
α+k(u−v)fc

f−k(u+v)fc/2.

(11)
As an example, assume that the Fourier series is composed
of only one term (N = 1, k = 1 in (11)), the corresponding
cyclic spectrum is:

SC
α
f =

+∞
∑

u=−∞

+∞
∑

v=−∞

J1,u(a1)J1,v(a1)δ
α+(u−v)fc

f−(u+v)fc/2.

As for a classical Fourier spectrum, the number of compo-
nents is directly related to the frequency modulation index
a1. Each spectral lines, spaced by fc in the cyclic axis
and fc/2 in the frequency axis, are weighted by the Bessel
function. An illustration is given in figure (3c).
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Fig. 3.

Correlation spectrum for the four elementary signals.
Fe = 1, fd = 0.25, fc = 0.01, a1 = 2.

D. Correlation spectrum of D(t)

The cyclic spectrum of the embolic signature (see (7))
can be expressed by :

SD
α
f = δα

f + γ2SE
α
f + γEα

f+α/2 + γE∗α
f−α/2. (12)

The cyclic spectrum is composed of four terms. The first is
equivalent to a "continuous" component. The second term
SE

α
f is the correlation spectrum of E(t). In the last two

terms, the frequency components depend linearly on the
cyclic frequency. Consequently, the last two terms repre-
sented by a croze correspond to two straight lines passing
by zero and having a slope ±α/2. These lines are mod-
ulated in amplitude by the Fourier spectrum E(f). For
example, if E(t) = RectT (t), the corresponding spectral
correlation and the Fourier spectrum can be written re-
spectively by:

SE
α
f =

e−2πjαT/2

−2πjα

(

δ(f − α)e−jπα + δ(f + α)ejπα
)

,

E(f) = Tsinc(πfT ).

An illustration is given in figure (3d). Finally, the presence
of an embolus appears in the correlation spectrum by a
croze centered over each Dirac.

E. Correlation spectrum of the blood Doppler signal

The spectral correlation of the blood Doppler signal be-
comes:

Sy
α
f = SA

α
f ∗f,α SB

α
f ∗f,α SC

α
f , (13)

where ∗f,α denotes the double convolution over f and α.
From the relationships (9), (10), (11), (12), the cyclic spec-
trum becomes:



Sy
α
f =

∞
∏

k=1

+∞
∑

u=−∞

+∞
∑

v=−∞

Jk,u(ak)Jk,v(ak) (14)





+∞
∑

m=0

+∞
∑

n=0

amanδ
α+(k(u−v)+(m−n))fc

f−(fd+(k(u+v)+(m+n))fc/2)



 .

For example, by limiting the harmonics number to N = 1
(k = 1 in (14)), the corresponding cyclic spectrum is:

Syα
f =

+∞
∑

u=−∞

+∞
∑

v=−∞

J1,u(a1)J1,v(a1)δ
α−(u−v)fc

f−(fd+(u+v) fc
2

)
(15)

+a2
1J1,u(a1)J1,v(a1)δ

α−(u−v)fc

f−(fd+(2+u+v) fc
2

)

+a1J1,u(a1)J1,v(a1)δ
α−((1+u−v)fc)

f−(fd+(1+u+v) fc
2

)

+a1J1,u(a1)J1,v(a1)δ
α+((1+v−u)fc)

f−(fd+(1+u+v) fc
2

)
.

To illustrate, we have reported the correlation spectrum of
a simulated blood Doppler signal in the figure (4a).

F. Correlation spectrum of the blood embolic Doppler sig-
nal

The correlation spectrum of the embolic blood Doppler
signal is finally:

Sz
α
f = Sy

α
f ∗f,α SD

α
f . (16)

Each cyclic spectral components of the blood Doppler sig-
nal are "corrupted" by straight lines coming from the em-
bolic signature.

Sz
α
f =

∞
∏

k=1

+∞
∑

u=−∞

+∞
∑

v=−∞

Jk,u(ak)Jk,v(ak)
+∞
∑

m=0

+∞
∑

n=0

aman (17)

(δ
α+(k(u−v)+(m−n))fc

f−(fd+k(u+v)+(m+n))fc/2

+γ2amanSE
α+(k(u−v)+(m−n))fc

f−(fd+k(u+v)+(m+n))fc/2

+γamanE
α+(k(u−v)+(m−n))fc

f−(fd+α/2+k(u+v)+(m+n))fc/2

+amanE
∗α+(k(u−v)+(m−n))fc

f−(fd+α/2+k(u+v)+(m+n))fc/2).

To illustrate, we have reported the correlation spectrum
of a simulated embolic blood Doppler signal in the figure
(4b). As forecasted, the correlation spectrum is a spectrum
line centered around α = 0, f = fd as for the example de-
picted in figure (3b). Note the presence of crozes convolves
at each Dirac functions.

It seems that a good way to be followed, to detect the
presence of embolic signature is to identify straight lines
in the cyclic spectrum. An interesting alternative would
be to detect the presence of linear frequency modulation in
the dual space of the cyclic spectrum, as for evaluating a
signal from the spectrogram. In this case, its seems that
the fractional Fourier transform could be a good candidate
tool to reach our goal.
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Fig. 4.

Correlation spectrum of the simulated blood Doppler
signal without embolus (a) and with embolus (b). Fe = 1,

fc = 0.01, fd = 0.25, a1 = 2.

IV. CONCLUSION

In this study we have proposed an analytical determin-
istic model of the blood embolic Doppler signal. We have
evaluated the correlation spectrum of the analytical model
of the blood Doppler signal without or with an embolus.
This study permits to better understand the different spec-
tral components of the Doppler correlation spectrum. It
seems that an attractive way to detect the presence of an
embolus is to detect the cyclo-frequential straight lines or
the "linear frequency modulation" in the dual representa-
tion.
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