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ABSTRACT 

This paper deals with multifractal characterization of skin 

cancer in ultrasound images. The proposed method 

establishes a multifractal analysis framework of such images 

based on a new multiresolution indicator, called the 

maximum wavelet coefficient, derived from the wavelet 

leaders. 

Two main contributions are brought up: first, it proposes a 

method for the estimation of multifractal features. Second, it 

reveals the potential of multifractal features to characterize 

skin melanoma. 

In order to study the efficiency of our maximum coefficient 

estimator, we compare its results on a simulated image 

against wavelet leaders based estimator. We then apply the 

approach on various samples from different skin images. 

Results show that the extracted features make a promising 

quantitative indicator to distinguish between different 

tissues. 

Index Terms— Multifractal analysis, wavelet, 

ultrasound imaging, melanoma, tissue characterization.

1. INTRODUCTION

Melanoma is a serious and increasingly growing form of 

skin cancer. Its early diagnosis has been recognized as a 

fundamental issue for public health policy. This requires an 

accurate and reliable detection procedure that allows 

dermatologists to distinguish skin tumors from inherently 

complex skin structures. Biopsy is the gold standard for 

existing diagnostic approaches, which are mostly invasive 

and relatively expensive. Ultrasound imaging is a useful, 

convenient and safe diagnosis modality of skin pathologies.  

Unfortunately, this type of images suffer from a high 

speckle noise, due to the interference of back scattered 

signals. This noise degrades the image quality (in terms of 

resolution and contrast), and makes the characterization 

difficult even for experienced clinicians.   

A large number of research studies have addressed the 

identification of pathological tissues in ultrasound images. 

The fractality of the speckle is one of the explored 

approaches. 

The idea of studying statistical scaling laws of the speckle in 

order to extract underlying features is not recent. One way 

to describe such a law (or self similarity) is to calculate its 

fractal dimension [1]. Fractal and multifractal analyses have, 

indeed, been already used to characterize the speckle and 

segment abnormal regions from ultrasound imaging [2]. 

Guyot [3] studied the mathematical correlation between a 

fractional Brownian motion and speckle patterns, in optical 

imaging and used successfully the diffusion equation to 

characterize skin psoriasis infections. 

In [4], Chen et al. estimate the fractal dimension of an 

ultrasound image of breast lesions, also, using the fractal 

Brownian motion and integrate this estimation in a computer 

aided diagnosis to classify the lesions as benign or malign.  

Lee et al. [5] describe the feasibility of selecting a fractal 

features vector based on M-band wavelet transform, and use 

it to classify ultrasonic liver images as normal, cirrhosis or 

heapatoma. They noticed, from experimental results, that the 

fractal dimension is a determinant parameter for the 

classifier. In [6], the same authors developed an 

unsupervised segmentation algorithm based on these 

multiresolution fractal features vector.  

The major limitation of the reviewed methods comes from 

the systematic monofractal analysis adopted to compute the 

fractal dimension. This cannot account for the complexity of 

skin melanoma images. 

To date, few studies have investigated the multifractal 

analysis of ultrasound images. One of the attempts [7] was 

to detect boundaries of abnormal regions in ultrasound 

breast images. 

In this paper, we investigate the efficiency of multifractal 

analysis for ultrasound skin tissue characterization. We 

show that multifractal attributes can separate two 

populations of tissues. To our knowledge, this is the first 

attempt to use this technique in ultrasound skin images. 

The paper is organized as follows: In section 2, we first 

review concepts related to multifractal analysis based on 

hierarchical multiresolution parameters. We then present our 

maximum wavelet coefficient and the proposed estimator, 

and briefly discuss its complexity. We study its 

performance, in section 3, while presenting and discussing 



the experimental results on a set of in vivo ultrasound skin 

images. Section 4 concludes and outlines perspectives for 

future investigations.  

2. METHOD

2.1. Related work 

The multifractal analysis, considered as a model of scale 

invariance, is a standard tool to describe the variation of 

local regularity in a given function or data. This description 

is made through the singularities spectrum . This

spectrum represents the Hausdorff dimension of Holder 

exponents  in each point [8].

The estimation of from a single finite observation is an

important and difficult practical question, which can be 

addressed only through the multifractal formalism.  

In order to implement such formalism, it is necessary to use 

multiresolution parameters which link with the properties of 

regularity. It is usually put in practice using wavelet 

transform modulus maxima (WTMM) [9] and more recently 

the wavelet leaders [8, 10].  

WTMM is based on the skeleton of a continuous wavelet 

transform in 2D. However, their averred efficiency is 

hindered by their very high computational cost. The 

coefficient leaders, derived from discrete 2D wavelet 

coefficients, try to remedy this problem as explained below.  

Let be the analyzed image and 

 the coefficients of the 2D discrete

wavelet transform [11]; where  are the

coordinates of a position  at the resolution j.  Let

 be the dyadic square indexing that represents the

index of all discrete coefficients for different scales at 

 :

   (1)

The union of nine such neighbor intervals is denoted as: 

(2)

We define: 

 (3) 

    

The wavelet leader [8, 10] is defined as follows: 

 (4) 

The basic result underlying the use of wavelet leaders for 

multifractal analysis is that: If  has Holder exponent   at

point , then it can be approximated by the wavelet leader

as [10]: 

    (5) 

These coefficients represent monotone increasing quantities 

through scales. However, despite their good performance in 

estimating multifractal attributes, they become instable for 

large statistical moments, leading to significant bias. Their 

computation time is not as high as WTMM, but still 

significant. 

2.2. The proposed method 

These limitations have been the main motivating factor for 

establishing our maximum wavelet coefficient based 

estimator, described as follows. 

Given 

 (6) 

We define the maximum wavelet coefficient from the 

wavelet leaders as: 

 (7) 

Empirically, we have established that  verify [12]:

             (8)

As a consequence of this property, we define our estimator 

of Holder exponent in the subsequent manner.  

Let  be the structure functions, representing the

spatial average of wavelet coefficients (of q order) at a given 

scale :

 (9) 

It has been shown that functions  exhibit power law

behavior with respect to the analysis scale , in the limit of

small scales  [9]:

 (10) 

Where , and

 (11) 

The  are termed the scaling exponents. This power law

behavior establishes a clear connection between the concept 

of scale invariance and multifractal analysis. 

Finally, the Holder exponent h and the multifractal spectrum 

can be estimated from  using Chhabra et al. [13].

The maximum wavelet coefficients which have been shown 

to reproduce the behavior of scaling laws estimate entirely 

 [12] with better efficiency compared to the wavelet

leaders. As it has been reported [14], the complexity of the 

wavelet leaders estimator is  (where n is the

image size), mainly due to the wavelet coefficients 

computation phase. Our method shares this same 

preliminary phase and therefore has a similar complexity.  



3. RESULTS

3.1. Numerical simulation 

The performance of the estimation procedure has been 

analyzed by generating a large number of realizations of a 

synthetic process. We use Mandelbrot multiplicative 

cascades with a minimal regularity and log-poisson 

multipliers (CMC-LP) [15]. These cascades are multifractal 

and their scale invariance properties are entirely determined 

by the spectrum of singularities  [12, 15].

Fig. 1.  Estimation performance: a) Evolution of the Euclidian 

distance between the estimates and the theoretical spectrum, b) 

Theoretical (blue) vs. maximum coefficient (• black) vs. wavelet 

leaders (* red) based spectrum.

We evaluated quantitatively the performance of our 

estimator by estimating the average Euclidean distance 

between the estimated  and the theoretical spectrum of

singularity . This is defined as the average of the

distance between each point  of  and its nearest

neighbor on the theoretical spectrum.

 (12) 

Where  is the number of points of the estimated curve.
CmaxWT spectra WL spectra 

Distance (d) 0.0473 0.0146 

Table 1.  Estimation of the euclidien distance between the 

theoretical curve and the estimation ones. 

We notice (Table 1) that the multifractal spectrum based on 

our estimator obtains better fit to the theoretical curve, 

although more precise for positive statistical moments 

(Figure1). 

3.2. Application of the multifractal formalism to 

ultrasound skin images  

As an application, we conducted a preliminary study of the 

characterization of melanoma using multifractal analysis in 

ultrasound skin images, and compared it to the fractal 

approach proposed in [3]. Our preliminary corpus was made 

of seven skin ultrasound images provided by a clinical study 

from the hospital of Toulouse, France. 

To demonstrate the performance of the proposed method, 

we applied the analysis to 14 samples (selected by the 

clinician from the 7 images). We, then, extracted 

multifractal and fractal features from each sample in order 

to investigate the ability of each parameter to differentiate 

normal from pathological tissues. 

Fig 2. Ultrasound skin images: the yellow ellipse delimits a 

melanoma and the white square surrounds normal dermis. 

Fig 3. Estimation of the multifractal spectrum from the 4 samples 

of figure 2. 

The extracted features  from our approach represent the

degree of singularities of the underlying tissue for order q. 

 is the most common degree of irregularity.

Monofractal parameters  have been extracted from

the diffusion equation [3]; H is the Hurst parameter; 

Var represents the saturation of the variance; and S, the 

characteristic size of the autosimilar element in the image. 

Multifractal formalism  Fractal 

Melanoma1 0.2225 0.2102 0.2007 0.1933 0.1876 0.72|1.60|4.39 

Melanoma2 0.4341 0.3911  0.3569  0.3239  0.2859 0.70|1.79|3.31 

Melanoma3 0.4530  0.4185  0.3900  0.3676  0.3494 0.74|1.38|4.45 

Melanoma4 0.4331  0.4366  0.4462  0.4484  0.4356 0.60|1.94|3.48 

Melanoma5 0.3486  0.3236  0.3025  0.2840  0.2671  0.66|1.60|3.51 

Melanoma6 0.2564  0.2344  0.2133  0.1939  0.1763 0.84|1.09|3.58 

Melanoma7 0.5302  0.4385  0.3718  0.3275  0.2961 0.71|4.27|3.27 

Table2.  Estimation of  multifractal features form melanoma 

samples. 

Tables 2 and 3 show the computed singularities at different 

orders for the melanoma and the skin, respectively. We can 

notice that values obtained, in the same image, from the 

melanoma and the normal skin are significantly different. 

This difference is particularly important for  This can be

explained by the higher complexity of scatters present in 

melanoma compared to normal skin [16]. In addition, the 

mean of for each tissue over the entire corpus remains

different, with acceptable standard deviations (Table 4).  
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We note that the multifractal approach gives better results. 

This preliminary result indicates the potential of our method 

to distinguish between different tissues. 

Multifractal formalism  Fractal 

Skin 1 0.1507 0.1165 0.0868 0.0637 0.0472 0.66 |1.60|3.37 

Skin 2 0.1088 0.0971 0.0971 0.0751 0.0652 0.62|1.79|3.38 

Skin 3 0.1625  0.1347  0.1104  0.0897  0.0725 0.76|1.38|3.50 

Skin 4 0.1965  0.1784 0.2164  0.1377  0.1187 0.75|1.38|3.37 

Skin 5 0.1490  0.1428  0.1359  0.1281  0.1195 0.70|1.60|3.39 

Skin 6 0.2315  0.1344 0.0969 0.0638  0.0382 0.86|1.09|3.47 

Skin 7 0.1001 0.0798  0.0608  0.0444  0.0315 0.93|1.09|340 

Table3.  Estimation of multifractal features form normal skin 

samples  
Multifractal formalism Fractal 

H 

Skin 0.0704 0.0335 0.1149 0.0465 0.1570 0.0428 0.7543 0.1014 

Melanoma 0.2683 0.0913 0.3259 0.0850 0.3826 0.1033 0.7100 0.0682 

Table4.  Averages of multifractal features from the samples. 

4. CONCLUSION

In this paper, we have investigated a preliminary study of 

the multifractality of the speckle in ultrasound images. We 

extracted meaningful parameters of a mutifractal spectrum 

for discrimination between ultrasound skin tissues annotated 

by dermatologists. 

We proposed hierarchical multiresolution parameters based 

on the wavelet leaders. We have observed in practice that 

the leaders may consist of a large amount of estimated 

parameters. As an alternative, we have improved the 

computation by taking the same coefficient without the 

spatial neighborhood. 

That led us to the definition of the maximum wavelet 

coefficients. The estimation of multifractal attributes of 

synthetic 2D process with known and controlled theoretical 

attributes showed that these coefficients are more efficient 

than the leaders, and moreover require less computation 

time.  

We have applied this analysis to different samples of 

ultrasound skin images to extract a vector of features. This 

vector consists of singularities of order .

The selected features discriminate a priori two groups 

(normal and pathological tissues),  

We finally studied the variability of the features in the 

different regions (normal and melanoma) against the seven 

images and noticed that the estimated parameters are fairly 

stable. 

We are currently conducting the validation of these 

parameters using large real medical data corpuses. We have 

also started investigating the feasibility of a segmentation 

method based on the proposed singularity features vector.  
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