A strong call-by-need calculus - Archive ouverte HAL
Communication Dans Un Congrès Année : 2021

A strong call-by-need calculus

Résumé

We present a call-by-need λ-calculus that enables strong reduction (that is, reduction inside the body of abstractions) and guarantees that arguments are only evaluated if needed and at most once. This calculus uses explicit substitutions and subsumes the existing strong-call-by-need strategy, but allows for more reduction sequences, and often shorter ones, while preserving the neededness. The calculus is shown to be normalizing in a strong sense: Whenever a λ-term $t$ admits a normal form $n$ in the λ-calculus, then any reduction sequence from $t$ in the calculus eventually reaches the normal form $n$. We also exhibit a restriction of this calculus that has the diamond property and that only performs reduction sequences of minimal length, which makes it systematically better than the existing strategy.
Fichier principal
Vignette du fichier
main.pdf (647.55 Ko) Télécharger le fichier
scbn-abella.zip (10.52 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03149692 , version 1 (23-02-2021)
hal-03149692 , version 2 (04-05-2021)

Identifiants

Citer

Thibaut Balabonski, Antoine Lanco, Guillaume Melquiond. A strong call-by-need calculus. FSCD 2021 - 6th International Conference on Formal Structures for Computation and Deduction, Jul 2021, Buenos Aires, Argentina. pp.1-22, ⟨10.4230/LIPIcs.FSCD.2021.9⟩. ⟨hal-03149692v2⟩
461 Consultations
631 Téléchargements

Altmetric

Partager

More