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REGULARITY AND SYMMETRY FOR SEMILINEAR ELLIPTIC EQUATIONS IN BOUNDED DOMAINS

In the present paper, we investigate the regularity and symmetry properties of weak solutions to semilinear elliptic equations which are locally stable.

1. We recall that a solution u to (1) has Morse index equal to

In particular u is stable if and only if its Morse index is zero.

Introduction and main results

In the present paper, we investigate the regularity and symmetry properties of weak solutions to semilinear elliptic equations. We shall focus on the following class :

Definition 1. Let N ≥ 1, Ω ⊂ R N denote an open set and f ∈ C 1 (R). Assume that u ∈ H 1 loc (Ω), f (u) ∈ L 1
loc (Ω) and that u solves (1)

-∆u = f (u) in D (Ω).
We say that u is locally stable in Ω if f (u) ∈ L 1 loc (Ω) and if for every x ∈ Ω, there exists an open neighborhood ω ⊂ Ω of x such that for every ϕ ∈ C 1 c (ω), there holds

(2) ˆω f (u)ϕ 2 ≤ ˆω |∇ϕ| 2 .
A solution is stable in Ω if the above inequality holds for ω = Ω and for every ϕ ∈ C 1 c (Ω).

As shown by the following examples, the class of locally stable solutions is natural and wide enough to encompass various interesting families of solutions (naturally) arising in the study of PDEs.

(1) Smooth solutions are locally stable, thanks to the (sharp) Poincaré inequality.

(2) More generally, for N ≥ 3, weak solutions such that f (u) ∈ L 1 loc (Ω) and f (u) + ∈ L N/2 loc (Ω) are locally stable. Indeed, choosing ω so small that f (u)

+ L N 2 (ω) ≤ N (N -2)|B1|
4 and applying Hölder's and Sobolev's inequalities, we have

ˆω f (u)ϕ 2 ≤ ˆω f (u) + ϕ 2 ≤ f (u) + L N 2 (ω) ϕ 2 L 2N N -2 (ω)
≤ ˆω |∇ϕ| 2

When N = 2, the local stability follows from Moser-Trudinger inequality if f (u) ∈ L 1 loc (Ω) and f (u) + ∈ L p loc (Ω) for some p > 1.

(3) If N 3, f (u) = 2(N -2)e u and u = -2 ln |x|, then f (u) = 2(N -2) |x| 2 ∈ L 1 loc but just fails to belong to L N/2 near the origin. By the optimality of Hardy's inequality, u is never locally stable in any open set containing the origin whenever 3 ≤ N ≤ 9. (4) Local minimizers are stable : u ∈ H 1 loc (Ω) is a local minimizer if for any Ω ⊂⊂ Ω and for all ϕ ∈ C 1 c (Ω ), t = 0 is a point of minimum of the function t → e(t) := E Ω (u + tϕ), where E Ω (v) = ´Ω 1 2 |∇v| 2 -F (v) and F = f . Therefore (2) holds (since e (0) ≥ 0). (5) If u ∈ H 1 loc (Ω) has finite Morse index 1 in Ω, then u is locally stable in Ω, see Proposition 1.5.1 in [START_REF] Dupaigne | Stable solutions of elliptic partial differential equations[END_REF] (or Proposition 2.1 in [START_REF] Dávila | Partial regularity of finite Morse index solutions to the Lane-Emden equation[END_REF]). In addition, u is stable outside a compact set, see Remark 1 in [START_REF] Farina | On the classification of solutions of the Lane-Emden equation on unbounded domains of R N[END_REF]. But there are also locally stable solutions of infinite Morse index. This is the case e.g. when Ω is the punctured unit ball, f (u) = 2(N -2)e u , u(x) = -2 ln |x| and 3 ≤ N ≤ 9.

Our first result concerns the complete classification of nonnegative stable solutions u ∈ H 1 0 (Ω) to (1), when f is a convex function satisfying f (0) = 0. Theorem 1. Let Ω be a bounded domain of R N , N 1, let f ∈ C 1 (R) be a convex function such that f (0) = 0 and let λ 1 be the principal eigenvalue of -∆ with homogeneous Dirichlet boundary conditions. Assume that u ∈ H 1 0 (Ω), f (u) ∈ L 1 loc (Ω) and that u is a stable solution to

(3) -∆u = f (u) in D (Ω)
u 0 a.e. on Ω.

Then, either u ≡ 0 or f (t) = λ 1 t on (0, sup Ω u) and u ∈ C ∞ (Ω) ∩ H 1 0 (Ω) is a positive first eigenfunction of -∆ with homogeneous Dirichlet boundary conditions. Remark 2. If u ≡ 0, then necessarily f (0) λ 1 , by Lemma 14 in section 3 below. Also observe that for any α λ 1 there is a convex function f satisfying f (0) = 0, f (0) = α and such that u ≡ 0 is a stable solution to [START_REF] Brezis | Blow up for ut -∆u = g(u) revisited[END_REF]. An example is provided by f (u) = u 2 + αu.

The latter result is a consequence of the following general theorem which holds true for any convex function f of class C 1 and for distributional solutions merely in H 1 (Ω).

Theorem 3. Let Ω be a bounded domain of R N , N 1 and let f ∈ C 1 ([0; +∞)) be a convex function. Assume that u, v ∈ H 1 (Ω) satisfy u -v ∈ H 1 0 (Ω), 0 v u a.e. on Ω, f (u), f (v) ∈ L 1 loc (Ω) and both u and v are solution to [START_REF] Cabré | Regularity of radial minimizers and extremal solutions of semilinear elliptic equations[END_REF] -∆w = f (w) in D (Ω).

If f (u) ∈ L 1 loc (Ω) and u is stable, then either u ≡ v or f (t) = a + λ 1 t for all t ∈ (inf Ω v, sup Ω u) and some 2 a ∈ R, u, v ∈ C ∞ (Ω) and u -v is a positive first eigenfunction of -∆ with homogeneous Dirichlet boundary conditions. Remark 4. According to Theorem 1.3 and Corollary 3.7 in [START_REF] Thierry Cazenave | Some stability properties for minimal solutions of -∆u = λg(u)[END_REF], there exists a C 1 , positive, increasing but non-convex nonlinearity f with two distinct and ordered (classical) stable 3 solutions 0 ≤ u ≤ v. In other words, the convexity assumption cannot be completely removed from the above theorem.

Another important consequence of Theorem 3 is the following approximation result which, in turn, motivated our definition of local stability (see Definition 1). This result will be central in the proof of our main regularity results for locally stable solutions to (1).

Theorem 5. Assume α ∈ (0, 1) and N 1.

Let Ω be a bounded domain of R N and let f ∈ C 1 ([0, +∞)) be a convex function such that f (0) 0. Assume that u ∈ H 1 (Ω), f (u) ∈ L 1 loc (Ω) and that u is a stable solution to

(5) -∆u = f (u) in D (Ω) u 0 a.e. on Ω.
Then, there is a nondecreasing sequence

(f k ) of convex functions in C 1 ([0, +∞)) ∩ C 0,1 ([0, +∞)) such that f k f pointwise in [0; +∞) and a nondecreasing sequence (u k ) of functions in H 1 (Ω) ∩ C 2 (Ω) such 2.
Actually the real number a is unique and its value is given by -λ 1

´Ω φ 1 h ´Ω φ 1 0
, where φ 1 is a positive first eigenfunction of -∆ with homogeneous Dirichlet boundary conditions and h ∈ H 1 (Ω) is the unique weak solution of -∆h = 0 in Ω with u -h ∈ H 1 0 (Ω) (to see this, use φ 1 as test function in the weak formulation of -∆u = a + λ 1 u and the fact that h is harmonic) and also note that h is nonnegative by the maximum principle. In particular, u, v ∈ H 1 0 (Ω) ⇐⇒ a = 0. Also note that, for every a 0 there exist solutions u, v for which the second alternative of the theorem occurs. Indeed, the functions ut := -a λ 1 + tφ 1 , t 0 are suitable. 3. Indeed, applying Corollary 3.7 in [START_REF] Thierry Cazenave | Some stability properties for minimal solutions of -∆u = λg(u)[END_REF], we see that in the notations of that corollary, for f (u) = λg(u), u λ is minimal hence stable. In addition, by minimality, λ → u λ is nondecreasing and so u λ converges to a stable solution v as λ λ such that v ≥ u λ . Then, take u = u λ that u k is a stable weak solution 4 to (6)

     -∆u k = f k (u k ) in Ω, u k -u ∈ H 1 0 (Ω), 0 u k u
a.e. on Ω, and

u k -→ u in H 1 (Ω), u k u a.e. on Ω. (7) 
Moreover, if f is nonnegative, then any function f k is nonnegative too. Remark 6. (1) It follows from [START_REF] Thierry Cazenave | Some stability properties for minimal solutions of -∆u = λg(u)[END_REF] that under the assumptions of the proposition, locally stable solutions are automatically lower semi-continuous.

(2) The proposition recovers and extends Corollary 3.2.1. in [START_REF] Dupaigne | Stable solutions of elliptic partial differential equations[END_REF].

(3) The result is not true if we drop the assumption u ∈ H 1 (Ω). To see this, consider Example 3.2.1 in [START_REF] Dupaigne | Stable solutions of elliptic partial differential equations[END_REF] in the light of Theorem 7 below.

(4) We do not know if the assumption f convex can be dropped.

(5) Theorem 5 generalizes Proposition 21 below, in which the approximating nonlinearity is taken of the form f k = (1k )f , with k → 0 at the expense of additionally assuming that f is nondecreasing.

Theorem 5 can be combined with the following a priori estimate due to [START_REF] Cabré | Stable solutions to semilinear elliptic equations are smooth up to dimension 9[END_REF] in order to establish smoothness of locally stable solutions when f is nonnegative, convex and N ≤ 9.

Theorem A ([5]). Let B 1 be the unit ball of R N , N 1. Assume that u ∈ C 2 (B 1 ) is a stable solution of (1) in Ω = B 1 , where f : R → R is locally Lipschitz and nonnegative. If 1 ≤ N ≤ 9, then (8) u C α (B 1/2 ) ≤ C u L 1 (B1) ,
where α ∈ (0, 1), C > 0 are dimensional constants.

More precisely we have the following interior regularity result :

Theorem 7. Let f ∈ C 1 ([0, +∞)) be a nonnegative convex function. Let Ω be an open set of R N , N 1. Assume that u ∈ H 1 loc (Ω), f (u) ∈ L 1 loc (Ω)
and that u is a locally stable solution of (1) such that u ≥ 0 a.e. in Ω. If 1 N 9, then u ∈ C 2,β loc (Ω) for all β ∈ (0, 1). In particular, any finite Morse index solution is smooth in Ω.

Remark 8. The result is optimal since for N ≥ 10, f (u) = 2(N -2)e u and Ω = B 1 , u(x) = -2 ln |x| is a singular stable solution in H 1 0 (B 1 ). Also observe that the above theorem fails if we do not assume that u belongs to H 1 loc (Ω), see e.g. Example 3.2.1 in [START_REF] Dupaigne | Stable solutions of elliptic partial differential equations[END_REF]. A priori estimates near the boundary are more subtle, as the following result shows.

Theorem 9. Let f ∈ C 1 ([0, +∞)) be a nonnegative convex function. Let Ω be an open set of R N , N 1. Assume that u ∈ H 1 0 (Ω), f (u) ∈ L 1 loc (Ω)
and that u is a finite Morse index solution of (1) such that u ≥ 0 a.e. in Ω.

(1) Let Ω be a bounded uniformly convex domain of class C 2,α , for some α ∈ (0, 1). Then there exists constants ρ, γ > 0, depending only on Ω, such that

(9) u L ∞ (Ωρ) 1 γ u L 1 (Ω)
where Ω ρ := { x ∈ Ω : dist(x, ∂Ω) < ρ }. In particular, u ∈ C 2,α (Ω ρ ∪ ∂Ω).

(2) If 1 ≤ N ≤ 9 and either Ω is C 2,α and convex or f is nondecreasing and Ω is C 3 , then there exists constants ρ, γ > 0, depending only on Ω, such that (9) holds.

That is a function

u k satisfying ´Ω ∇u k ∇ϕ = ´Ω f k (u k )ϕ, for all ϕ ∈ H 1 0 (Ω).
(3) Fix N ≥ 11. For every sequence (ρ n ) ⊂ R * + converging to zero, there exists a sequence of bounded C 1 convex domains Ω n ⊂ R N , n ∈ N * , such that the corresponding stable solution u n to (1) with f (u) = 2(N -3)e u and Ω = Ω n satisfies

u n L ∞ ((Ω n ) ρn ) → +∞ yet 1 |Ω n | u n L 1 (Ω n ) remains bounded.
The last point of the above theorem shows that in dimension N ≥ 11, no universal a priori estimate of the type (9) can hold near the boundary if the domain Ω is merely convex and the constant γ depends on the dimension N and the volume |Ω| only. The case N = 10 is open. We do not know either if locally stable solutions are smooth near the boundary of convex domains, although the universal a priori estimate fails.

When Ω is bounded and rotationally invariant we can prove the following classification result.

Theorem 10. (1) Let R > 0, N ≥ 1, B be the open ball B(0, R) ⊂ R N and let f ∈ C 1 ([0, +∞)) be a convex function. Assume that u ∈ H 1 0 (B), f (u) ∈ L 1 loc (B)
and that u is a stable solution to

(10) -∆u = f (u) in D (B) u 0 a.e. on B.
Then, either u ≡ 0 or u ∈ C 3 (B \ {0}), u > 0 and u is radially symmetric and radially strictly decreasing. Furthermore, if N 9 and f is nonnegative, then u ∈ C 2 (B).

(2) Let R > 0, 1 N 9, B be the open ball B(0, R) ⊂ R N and let f ∈ C 1 ([0, +∞)) be a nonnegative convex function. Assume that u ∈ H 1 0 (B), f (u) ∈ L 1 loc (B)
and that u solves

(11) -∆u = f (u) in D (B) u 0 a.e. on B.
If u has finite Morse index, then either u ≡ 0 or u ∈ C 2 (B), u > 0 and u is radially symmetric and radially strictly decreasing. (3) Let N ≥ 2, Ω ⊂ R N be an open annulus centered at the origin and let f ∈ C 1 ([0, +∞)) be a convex function. Assume that u ∈ H 1 0 (Ω), f (u) ∈ L 1 loc (Ω) and that u is a stable solution to

(12) -∆u = f (u) in D (Ω)
u 0 a.e. on Ω.

Then, either u ≡ 0 or u ∈ C 2 (Ω), u > 0 and u is radially symmetric. 5

Remark 11. (1) The conclusion that u is radially symmetric in item (1) of Theorem 10 was already known to hold true in the special case where u ∈ C 2 (B) (and with no additional sign assumption on u), see e.g. [START_REF] Alikakos | On the singular limit in a phase field model of phase transitions[END_REF]. (2) Item (2) of Theorem 10 is sharp. Indeed, for N ≥ 10, f (u) = 2(N -2)e u and Ω = B 1 = B(0, 1), u(x) = -2 ln |x| is a singular stable solution in H 1 0 (B 1 ). The finite Morse index assumption is also essential : for N = 3 and f (u) = 2e u , there exists a family of nonradial singular solutions in Ω = B 1 of the form u(x) = -2 ln |x -x 0 | + v(x), where x 0 = 0 and v ∈ L ∞ (B) ∩ H 1 (B), see (in details) the proofs in [START_REF] Rébaï | Solutions of semilinear elliptic equations with one isolated singularity[END_REF]. In particular, u ∈ H 1 0 (B). It follows from our result that u cannot have finite Morse index. In contrast, note that, for 3 N 9, Ω = B 1 and f (u) = 2(N -2)e u , there exist infinitely many smooth and positive solutions to [START_REF] Alikakos | On the singular limit in a phase field model of phase transitions[END_REF] such that u = 0 on ∂Ω and with finite and non-zero Morse index. See chapter 2 of [START_REF] Dupaigne | Stable solutions of elliptic partial differential equations[END_REF] (and the references therein) for a detailed discussion of this topic.

(3) It will be clear from the proof that :

(a) the radial symmetry in item (1) is still true if we replace u ∈ H 1 0 (Ω) by any member u of H 1 (Ω) having constant trace c 0 on ∂B.

5. Furtheremore, if Ω is the annulus {x ∈ R N : 0 < a < |x| < b} and u(x) = v(|x|), then there is a unique r 0 ∈ (a, b) such that v > 0 in (a, r 0 ), v (r 0 ) = 0 and v < 0 in (r 0 , b). The result follows as in the proof of item 1). For this reason we omit it.

(b) the radial symmetry in item (3) is still true if we replace u ∈ H 1 0 (Ω) by any member u of H 1 (Ω) having a nonnegative constant trace on each of the two connected components of the boundary of the annulus (possibly with differents values on the two connected component).

(c) Note that, if c > 0, we do not claim any monotonicity or special property about the radial profile (as it happens when c = 0.)

A crucial step in the proof of the above Theorem is the following general symmetry result. As we shall see below, this result also enables us to prove further symmetry results for stable solutions in "symmetric" bounded domains.

Proposition 12. Assume N 1 and let f ∈ C 1 ([0, +∞)) be a convex function. Let ρ ∈ O(N ) and let Ω ⊂ R N be a ρ-invariant bounded domain, i.e., a bounded domain such that ρ(Ω) = Ω. Assume that u ∈ H 1 c (Ω) 6 , f (u) ∈ L 1 loc (Ω)
and that u is a stable solution to

(13) -∆u = f (u) in D (Ω) u 0 a.e. on Ω.
If ρ has a fixed point in Ω, then u is ρ-invariant, namely, u(x) = u(ρx) for almost every x ∈ Ω.

Remark 13. Below we provide a (non-exhaustive) list of bounded domains to which the above result applies :

(1) if Ω is any bounded domain symmetric with respect to a hyperplane, then u inherits the same symmetry.

(2) if Ω is an open ball minus its center x 0 , then u is radially symmetric with respect to x 0 .

(3) if Ω is a n-sided regular polygon, with n 3, then u is invariant with respect to the dihedral group D n (of order 2n).

(4) if Ω is the product of rotationally invariant bounded domains, i.e., Ω = ω 1 × ... × ω m , where ω j is a bounded rotationnaly invariant domain 7 of R nj , with n j 1 and N = n 1 + ... + n m , then u inherits the same symmetry, i.e., u(x) = v(|x 1 |, ..., |x m |) a.e. in Ω. 8 This case was already addressed under the additional assumption that u is smooth in Remark 2.1 in [START_REF] Cabré | Regularity of stable solutions up to dimension 7 in domains of double revolution[END_REF].

(5) if Ω is a cylinder with ρ-invariant cross section, i.e., Ω = ω × U, where ω is a ρ-invariant bounded

domain of R k , 1 k N -1 and U is a domain of R N -k , then u(x) = u(ρ(x 1 ), x k+1 , ..., x N ) a.e.
on Ω (here

x 1 := (x 1 , ..., x k ) ∈ R k .) (6) 
any bounded domain of "revolution".

Proofs

Proof of Theorem 5.

We distinguish two case : either f (t) 0 for any t > 0 or there exists t > 0 such that f ( t) > 0. In the first case, by convexity of f, we have that f (0) f (t) 0 for any t 0, then f is also globally Lipschitz-continuous on [0, +∞). So f (u) ∈ L 2 (Ω) and u ∈ C 2 (Ω) by standard elliptic estimates (plus bootstrap and Sobolev imbedding). The claim follows by taking f k = f and u k = u for any integer k 1.

In the second case, the convexity of f implies the existence of t 0 > t that f (t), f (t) > 0 for any t t 0 . Set k 0 := t 0 + 1 (here by t 0 we denote the integer part of t 0 ) and, for any integer k k 0 and t 0, we set

(14) f k (t) := f (t) if t k, f (k) + f (k)(t -k) if t > k.
6. Here H 1 c (Ω) denotes the subset of H 1 (Ω) whose members take the constant value c 0 on ∂Ω. That is,

H 1 c (Ω) = {u ∈ H 1 (Ω) : u -c ∈ H 1 0 (Ω)}.
In particular, for c = 0, that set boils down to H 1 0 (Ω).

7. An open ball, an open ball minus its center or an annulus. 8. Here, for any j ∈ {1, ..., m}, x j denotes a generic point of ω j ⊂ R n j in such a way that x :

= (x 1 , ..., x m ) ∈ R N . Clearly, f k is a convex function of class C 1 ([0, +∞)) ∩ C 0,1 ([0, +∞)) and f k f pointwise in [0; +∞) (recall that f (t), f (t) > 0 for any t t 0 ). Moreover we have (15) f k (t) f (t) ∀ k k 0 , ∀t 0 and (16) f k (t) min t∈[0,k0] f (t) := c o (f ), ∀ k k 0 , ∀t 0.
In particular, if f is nonnegative, then any function f k is nonnegative too. Since any f k is globally Lipschitz-continuous on [0, +∞), we can use the (standard) method of sub and supersolution in H 1 to obtain a stable weak solution to ( 6) satisfying [START_REF] Thierry Cazenave | Some stability properties for minimal solutions of -∆u = λg(u)[END_REF]. To this end we observe that u ∈ H 1 (Ω) is a nonnegative weak supersolution to [START_REF] Pohožaev | On the eigenfunctions of the equation ∆u + λf (u) = 0[END_REF] - 1) and then the above inequality holds true for any nonnegative ϕ ∈ H 1 0 (Ω) by a standard density argument. Also, 0 is a weak subsolution to [START_REF] Pohožaev | On the eigenfunctions of the equation ∆u + λf (u) = 0[END_REF], since f (0) 0 by assumption and (0 -u) + ≡ 0 ∈ H 1 0 (Ω). Since 0 u a.e. in Ω, the method of sub and supersolution in H 1 provides a weak solution v k to [START_REF] Pohožaev | On the eigenfunctions of the equation ∆u + λf (u) = 0[END_REF] such that 0 v k u a.e. in Ω and which is minimal 9 in the following sense : given any weak supersolution u ∈ H 1 of ( 17) such that 0 u u a.e. in Ω, we have that v k u a.e. in Ω. From the latter property we immediately infer that v k v k+1 u a.e. in Ω. Also, by standard elliptic estimates we have v k ∈ C 2,α loc (Ω) for any α ∈ (0, 1). By the convexity of f k and [START_REF] Malý | Fine regularity of solutions of elliptic partial differential equations[END_REF] we see that

∆v k = f k (v k ) in Ω, v k -u ∈ H 1 0 (Ω), since f k f on [0, +∞) implies that f k (u)ϕ f (u)ϕ a.e. in Ω, for any nonnegative ϕ ∈ C ∞ c (Ω). So (18) ˆΩ f k (u)ϕ ˆΩ f (u)ϕ = ˆΩ ∇u∇ϕ ∀ϕ ∈ C ∞ c (Ω), ϕ 0 in Ω by (
f k (v k ) f k (u) f (u) a.e. in Ω, hence (19) ˆΩ f k (v k )ϕ 2 ˆΩ f (u)ϕ 2 ˆΩ |∇ϕ| 2 ∀ϕ ∈ C 1 c (Ω)
and so v k is a stable weak solution to [START_REF] Cabré | Regularity of stable solutions up to dimension 7 in domains of double revolution[END_REF].

To prove [START_REF] Thierry Cazenave | Some stability properties for minimal solutions of -∆u = λg(u)[END_REF] we test [START_REF] Pohožaev | On the eigenfunctions of the equation ∆u + λf (u) = 0[END_REF] with

u -v k ∈ H 1 0 (Ω) to obtain (20) ˆΩ ∇v k ∇(u -v k ) = ˆΩ f k (v k )(u -v k )
and so

(21) ˆΩ |∇v k | 2 = ˆΩ ∇v k ∇u -ˆΩ f k (v k )(u -v k ) ˆΩ ∇v k ∇u -c 0 (f ) ˆΩ(u -v k )
thanks to [START_REF] Moss | Positive solutions of elliptic equations[END_REF] and u -v k 0 a.e. in Ω. Then

ˆΩ |∇v k | 2 1 2 ˆΩ |∇v k | 2 + 1 2 ˆΩ |∇u| 2 + |c 0 (f )| ˆΩ u hence (22) ∇v k 2 L 2 (Ω) ∇u 2 L 2 (Ω) + 2|c 0 (f )| u L 1 (Ω) . We also have v k L 2 (Ω) u L 2 (Ω) since 0 v k u a.e. in Ω. Then (v k ) is bounded in H 1 (Ω)
and therefore we may and do suppose that (up to subsequences)

v k v in H 1 (Ω), v k -→ v in L 2 (Ω), v k v a.e.
on Ω for some v ∈ H 1 (Ω), as k → ∞ (actually the whole original sequence converges a.e. to v, since we already know that it is monotone nondecreasing). In particular we have 0 v u a.e. in Ω. Also note that

v -u ∈ H 1 0 (Ω), since v k -u v -u in H 1 0 (Ω). To prove that v k -→ v in H 1 (Ω) we test (17) with v -v k ∈ H 1 0 (Ω) to get (23) ˆΩ ∇v k ∇(v -v k ) = ˆΩ f k (v k )(v -v k ) 9.
Just consider the solution obtained by the standard monotone iterations procedure starting from the subsolution u ≡ 0. and so

(24) ˆΩ |∇v k | 2 = ˆΩ ∇v k ∇v -ˆΩ f k (v k )(v -v k ) ˆΩ ∇v k ∇v + ˆΩ |c 0 (f )|(v -v k )
thanks to [START_REF] Moss | Positive solutions of elliptic equations[END_REF] and v -v k 0 a.e. in Ω. Recalling that 0 v k v a.e. on Ω we then have

(25) ˆΩ |v k | 2 + |∇v k | 2 ˆΩ |v| 2 + ˆΩ ∇v k ∇v + ˆΩ |c 0 (f )|(v -v k )
and so

(26) lim sup v k H 1 v H 1 since v k v in H 1 (Ω) and v k → v in L 2 (Ω). Inequality (26) and v k v in H 1 (Ω) imply the strong convergence in H 1 (Ω).
To proceed further we note that

f (v) ∈ L 1 loc (Ω) since (27) c 0 (f ) f k (v) f (v) = f (v)1 {v k0} + f (v)1 {v>k0} sup t∈[0,k0] f (t) + f (u),
where in the latter we have used that f (t) > 0 for t k 0 and v ≤ u a.e in Ω.

Next we prove that -∆v = f (v) in D (Ω). This follows by passing to the limit in ( 17) by the Lebesgue's dominated convergence theorem, after having observed that

f k (v k ) -→ f (v) a.e. in Ω, and c 0 (f ) f k (v k ) f (v k ) = f (v k )1 {v k k0} + f (v k )1 {v k >k0} sup t∈[0,k0] f (t) + f (u) holds true.
So far we have proved that (28)

     -∆v = f (v) in D (Ω) v -u ∈ H 1 0 (Ω), 0 v u a.e. on Ω,
and therefore from Theorem 3 we deduce that either Proof of Theorem 7.

u = v in Ω or f (t) = a+λ 1 t for all t ∈ (inf Ω v, sup Ω u) and some a ∈ R, u, v ∈ C ∞ (Ω)
When N = 1, any u ∈ H 1 loc (Ω) is continuous by Sobolev imbedding and so is f (u). This implies u ∈ C 2 and f (u) ∈ C 1 , so u is of class C 3 by using equation [START_REF] Alikakos | On the singular limit in a phase field model of phase transitions[END_REF]. So assume that N ≥ 2 and that u is locally stable. For any point x 0 ∈ Ω pick a ball B(x 0 , r 0 ) ⊂ Ω in which u is stable and set B = B(x 0 , r 0 ).

By Theorem 5 there is a nondecreasing sequence

(f k ) of functions in C 1 ([0, +∞)) ∩ C 0,1 ([0, +∞)) such that f k f pointwise in [0; +∞) and a nondecreasing sequence (u k ) of functions in H 1 (Ω) ∩ C 2
(Ω) such that u k is a stable weak solution 10 to (6) such that (7) holds.

Since N 9 an application of Theorem A to u k yields

u k C β (B(x0, r 0 2 )) C u k L 1 (B) C|B| 1 2 u k L 2 (B) C u L 2 (B)
where β ∈ (0, 1) depends only on N , while C > 0 depends on N and r 0 . In particular, the sequence

(u k ) is bounded in C β (B(x 0 , r0 2 
)) and the Ascoli-Arzelà's theorem then implies that a subsequence must converge uniformly to some continuous function v on B(x 0 , r0 2 )). This function must coincide with u on B(x 0 , r0

2 )), since we already know that u k -→ u a.e. on Ω. The boundedness of u on B(x 0 , r0 2 ) and standard elliptic theory imply u ∈ C 2,α loc (B(x 0 , r0 2 )) for every α ∈ (0, 1). Since x 0 is an arbitrary point of Ω, this concludes the proof.

Proof of Theorem 10.

1) In is enough to treat the case u ≡ 0. We first prove that u is radially symmetric. For ρ ∈ O(N ) we set u ρ (x) := u(ρx), x ∈ B. Then u ρ ∈ H 1 0 (B) is a stable solution to [START_REF] Dupaigne | Stable solutions of elliptic partial differential equations[END_REF] since u is so. We can therefore apply

10. That is a function u k satisfying ´Ω ∇u k ∇ϕ = ´Ω f k (u k )ϕ, for all ϕ ∈ H 1 0 (Ω)
Theorem 17 below to get that u and u ρ are ordered solutions. If u ≡ u ρ , an application of Theorem 3 would give u, u ρ ∈ C ∞ and, either u < u ρ or u > u ρ in B. The latter are clearly impossible, since u(0) = u ρ (0). Thus, u ≡ u ρ for any ρ ∈ O(N ), and so u is radially symmetric in B. Since u is a radially symmetric member of H 1 0 (B), we have that u ∈ C 0 (B \ {0}) and by standard elliptic regularity, u ∈ C 2,α loc ((B \ {0}), for any α ∈ (0, 1). Hence we can write u(x) = v(r), r = |x| ∈ (0, R], and so v ∈ C 2 ((0, R]) is a classical solution to the ode -

(r N -1 v ) = r N -1 f (v) in (0, R]. The latter clearly implies v ∈ C 3 ((0, R]) but also that 11 (29) v < 0 in (R -, R),
for some ∈ (0, R). Indeed, if f (0) 0 the Hopf's lemma yields v (R) < 0 (recall that we are supposing that u ≡ 0) and so (29) follows. When f (0) < 0 we have (r

N -1 v ) = -r N -1 f (v) > 0 in an interval of the form (R -, R), thus r → r N -1 v is strictly increasing in (R -, R
). The latter and the fact that v (R) 0 (recall that v 0 in (0, R) and v(R) = 0) imply (29).

To conclude it is enough to prove that v < 0 on (0, R) (this also implies that u > 0 in B \ {0}). Suppose not, then (30)

r 0 := inf{r ∈ (0, R) : v < 0 on (r, R)}.
is well-defined, r 0 belongs to (0, R) and v (r 0 ) = 0. We have two cases : either there exists z ∈ (0, r 0 ) such that v (z) = 0, or v has a sign on (0, r 0 ) (i.e., either v < 0 or v > 0 on (0, r 0 )). Let us show that both of them are impossible. In the first case we observe that w := u r , the radial derivative of u, is of class

C 2 0 (A z,r0
) and satisfy

(31) -∆w + (N -1) w r 2 = f (u)w on A z,r0 ,
where A z,r0 := {x ∈ R N : z < |x| < r 0 }. We can then multiply (31) by w, integrate by parts and find

(32) ˆAz,r 0 |∇w| 2 - ˆAz,r 0 f (u)w 2 = - ˆAz,r 0 (N -1) w 2 r 2 .
On the other hand w ∈ C 2 0 (A z,r0 ) and u is stable on A z,r0 , so w can be used as test function in the stability condition satisfied by u to obtain ˆAz,r 0 |∇w| 2 -ˆAz,r 0 f (u)w 2 0.

The latter and (32) give w = 0 on A z,r0 and so w 0 in the open annulus A z,R . Since w solves the linear equation -∆w + ( (N -1) r 2 -f (u))w = 0 on A z,R , the strong maximum principle implies w ≡ 0 on A z,R , and so v ≡ 0 on (z, R), which contradicts (29). In the second case, if v < 0 on (0, r 0 ) then w 0 on A 0,R and, as before, w ≡ 0 on A 0,R by the the strong maximum principle. The latter is again in contradiction with (29). Hence we are left with v > 0 on (0, r 0 ). In this case, the latter and the definition of r 0 imply 0 u v(r 0 ) on B \ {0}, so u ∈ L ∞ (B) and then u ∈ C 2 (B) by standard elliptic estimates. To achieve a contradiction, we first observe that -∆w + (N -1) w r 2 = f (u)w on the annulus A r,r0 := {x ∈ R N : r < |x| < r 0 }, for every r ∈ (0, r 0 ), we then multiply the equation by w, integrate by parts to get

(33) ˆAr,r 0 |∇w| 2 - ˆAr,r 0 f (u)w 2 + ˆAr,r 0 (N -1) w 2 r 2 = ˆ∂Ar,r 0 ∂w ∂ν w.
Note that ´∂Ar,r 0 ∂w ∂ν w -→ 0, as r → 0 + . Indeed, the function

(34) w(x) := w(x) if x ∈ B \ {0}, 0 if x = 0,
11. In view of (29) we could have used the moving planes procedure to get the strict monotonicity of u in the radial direction. However, we have chosen to give an elementary proof of this fact, which highlights the role played by the stability assumption on u.

is of class C 0,1 (B) 12 and therefore | ´∂Ar,r 0 ∂w ∂ν w| ´Sr |∇ w||w| ∇ w L ∞ (B) σ(S r )v (r) -→ 0 (here S r is the sphere {x ∈ R N : |x| = r} and σ(S r ) denotes its measure). Also observe that ˆAr,r 0 |∇w| 2 -ˆAr,r 0 f (u)w 2 + ˆAr,r 0 (N -1)

w 2 r 2 -→ ˆB(0,r0) |∇ w| 2 - ˆB(0,r0) f (u) w2 + ˆB(0,r0) (N -1) w2 r 2
by monotone and dominated convergence theorems. By gathering together all those information we are led to (35)

ˆB(0,r0) |∇ w| 2 - ˆB(0,r0) f (u) w2 = - ˆB(0,r0) (N -1) w2 r 2 .
Finally, since u is stable on B, then u is stable on B(0, r 0 ) too. Thanks to item i) of Proposition 15) we can use w ∈ C 0,1 0 (B(0, r 0 )) ⊂ H 1 0 (B(0, r 0 )) as test function in the stability condition satisfied by u to get ´B(0,r0) |∇ w| 2 -´B(0,r0) f (u) w2 0. As before, the latter and (35) imply that w ≡ 0 on B(0, r 0 ) \ {0}, which is impossible since we are assuming that v > 0 in (0, r 0 ).

If N

9 and f 0, then u is C 2 in a neighborhood of the origin by item (1) of Theorem 7. This completes the proof of item (1).

2) By combining item (1) and item (2) of Theorem 7 we have that u ∈ C 2 (B). Then, either u ≡ 0 or u > 0 in B by the strong maximum principle. The desired conclusion then follows by a celebrated result of Gidas, Ni and Nirenberg.

3) Let H be any hyperplane through the origin and let ρ = ρ(H) ∈ O(N ) be the corresponding reflection with respect to H. Set u ρ (x) := u(ρx), x ∈ Ω. Then u ρ ∈ H 1 0 (Ω) is a stable solution to (12) since u is so. By Theorem 17, u and u ρ are ordered solutions. If u ≡ u ρ , an application of Theorem 3 would give u, u ρ ∈ C ∞ and, either u < u ρ or u > u ρ in Ω. The latter are clearly impossible, since u = u ρ on the hyperplane H. Thus, u ≡ u ρ and so u is radially symmetric in Ω, since H is arbitrary. Since u is a radially symmetric member of H 1 0 (Ω), we have that u ∈ C 0 (Ω) and standard elliptic theory imply u ∈ C 2,α loc (Ω), for any α ∈ (0, 1). The required regularity then follows, as in item (1), by analysing the ode satisfied by the radial profile of u.

Some auxiliary results

In this section we prove some results for stable solutions in H 1 . These results have been used in the proofs of our main results and some of them are of independent interest. In what follows, when Ω is bounded, we shall denote by λ 1 = λ 1 (Ω) > 0 the principal eigenvalue of -∆ with homogeneous Dirichlet boundary conditions.

Lemma 14. Let Ω be a bounded domain of R N , N 1 and let f ∈ C 1 (R) such that f (t) > λ 1 t for t > 0. Assume that u ∈ H 1 (Ω) and f (u) ∈ L 1 loc (Ω). If u solves (36) -∆u f (u) in D (Ω)
u 0 a.e. on Ω, then u ≡ 0, f (0) = 0 and u is a solution to

(37) -∆u = f (u) in D (Ω)
which is not stable. Proof.

By the strong maximum principle (for superharmonic functions in H 1 ) either u ≡ 0 or u > 0 a.e. on Ω. Let us prove that the latter is impossible. To this end, let us suppose that u > 0 and let h ∈ H 1 (Ω) be the unique weak solution to (38)

-∆h = 0 in Ω, u -h ∈ H 1 0 (Ω). Then 0 h u a.e.
on Ω by the maximum principle, and h < u a.e. on Ω by the strong maximum principle. Indeed, h = u would imply 0 = -∆(u -h) = f (u) > λ 1 u > 0 a.e. on Ω, a contradiction.

Let φ 1 ∈ H 1 0 (Ω) be a positive function associated to the eigenvalue λ 1 . Since f (u) 0 a.e. on Ω, a standard density argument and Fatou's Lemma imply ˆΩ ∇u∇ϕ ˆΩ f (u)ϕ ∀ϕ ∈ H 1 0 (Ω), ϕ 0 a.e. in Ω, and therefore we can use φ 1 in the latter to get

ˆΩ ∇u∇φ 1 ˆΩ f (u)φ 1 .
Then,

ˆΩ λ 1 uφ 1 < ˆΩ f (u)φ 1 ˆΩ ∇u∇φ 1 = ˆΩ ∇(u -h)∇φ 1 + ˆΩ ∇h∇φ 1 = ˆΩ ∇(u -h)∇φ 1 + 0
where we have used the property of f , as well as the fact that h solves (38). In addition, by definition of φ 1 and u -h ∈ H 1 0 (Ω), we also have

´Ω ∇(u -h)∇φ 1 = ´Ω λ 1 (u -h)φ 1 , which leads to ˆΩ λ 1 uφ 1 < ˆΩ f (u)φ 1 ˆΩ ∇u∇φ 1 = ˆΩ ∇(u -h)∇φ 1 = ˆΩ λ 1 (u -h)φ 1 ˆΩ λ 1 uφ 1
a contradiction. Therefore, u ≡ 0 and f (0) -∆u = 0. The latter and the assumption on f give f (0) = 0 and so u solves (37). Since f (0

) > λ 1 = inf { ´Ω |∇u| 2 ´Ω u 2 : u ∈ H 1 0 (Ω), u ≡ 0}
we immediately see that u = 0 cannot be a stable solution to (37). (39)

f (u) ∈ L 1 loc (Ω), ˆΩ f (u)φ 2 ˆΩ |∇φ| 2 ∀φ ∈ C ∞ c (Ω). Then (40) f (u)ϕ 2 ∈ L 1 (Ω), ˆΩ f (u)ϕ 2 ˆΩ |∇ϕ| 2 ∀ϕ ∈ H 1 0 (Ω). ii) Let u, v ∈ H 1 (Ω) such that f (u), f (v) ∈ L 1 loc (Ω), (u -v) + ∈ H 1 0
(Ω) and 0 v, 0 u a.e. in Ω. Also assume that u satisfies (39). Then,

(f (u) -f (v))(u -v) + ∈ L 1 (Ω). iii) Let u, v ∈ L 1 loc (Ω) such that f (u), f (v) ∈ L 1 loc (Ω) and 0 v u a.e. in Ω. Then, f (v)(u -v) ∈ L 1 loc (Ω). Proof.
i) By convexity of f and (39) we have

(41) f (0) f (u) a.e. in Ω and (42) ˆΩ[f (u)] + φ 2 ˆΩ |∇φ| 2 + ˆΩ[f (u)] -φ 2 ∀φ ∈ C ∞ c (Ω).
From (41) we deduce that

[f (u)] -[f (0)] -and so [f (u)] -∈ L ∞ (Ω) and [f (u)] -ϕ 2 ∈ L 1 (Ω) for any ϕ ∈ H 1 0 (Ω). Now, for any ϕ ∈ H 1 0 (Ω), let (φ n ) be a sequence of functions in C ∞ c (Ω) such that φ n -→ ϕ in H 1 0
(Ω) and a.e. in Ω. Using φ = φ n in (42) and Fatou's Lemma we immediately get that (42) holds true for any ϕ ∈ H 1 0 (Ω). In particular, [f (u)] + ϕ 2 ∈ L 1 (Ω) and the two claims of (40) follow.

ii) The convexity of f and (u -v) + 0 a.e. on Ω imply

(43) f (0)[(u -v) + ] 2 f (v)[(u -v) + ] 2 (f (u) -f (v))(u -v) + f (u)[(u -v) + ] 2
a.e. on Ω and so

(44) (f (u) -f (v))(u -v) + ∈ L 1 (Ω)
thanks to (u -v) + ∈ H 1 0 (Ω) and item i). iii) By convexity of f we have

f (u) -f (v) f (v)(u -v) f (0)(u -v)
which implies the desired conclusion.

Theorem 16. Let Ω be a bounded domain of R N , N 1 and let f ∈ C 1 ([0; +∞)) be a convex function. Assume that u, v ∈ H 1 (Ω) satisfy u -v ∈ H 1 0 (Ω), 0 v u a.e. on Ω, f (u), f (v) ∈ L 1 loc (Ω)
and both u and v are solution to

(45) -∆w = f (w) in D (Ω).
If f (u) ∈ L 1 loc (Ω) and u is stable, then either u ≡ v or f (t) = a + λ 1 t for all t ∈ (inf Ω v, sup Ω u) and some 13 a ∈ R, u, v ∈ C ∞ (Ω) and u -v is a positive first eigenfunction of -∆ with homogeneous Dirichlet boundary conditions.

Proof.

By item ii) of Proposition 15 we have

(46) (f (u) -f (v))(u -v) ∈ L 1 (Ω), note that u -v = (u -v) + since v u a.e. in Ω. We claim that (47) ˆΩ |∇(u -v)| 2 = ˆΩ(f (u) -f (v))(u -v).
To this end, recall that

(48) ˆΩ ∇(u -v)∇ϕ = ˆΩ(f (u) -f (v))ϕ ∀ϕ ∈ C ∞ c (Ω)
by assumption. Then, since f (u) -f (v) ∈ L 1 loc (Ω), a standard approximation argument and Lebesgue's dominated convergence theorem yield that (48) holds true for any ϕ ∈ H 1 (Ω) ∩ L ∞ (Ω) with compact support. Now we prove that (48) holds true for any ϕ ∈ H 1 (Ω) with compact support and such that 0 ϕ u -v a.e. on Ω. Indeed, we can apply (48) with ϕ n = T n (ϕ), where T n = T n (t) denotes the truncation function at level n 1, and write

(49) ˆΩ ∇(u -v)∇ϕ n = ˆΩ(f (u) -f (v))ϕ n , ∀n 1.
Since ϕ n → ϕ in H 1 0 (Ω) and a.e. on Ω, and (46) is in force, an application of Lebesgue's dominated convergence theorem we get

(50) ˆΩ ∇(u -v)∇ϕ = ˆΩ(f (u) -f (v))ϕ ∀ϕ ∈ H 1 (Ω), supp(ϕ) ⊂⊂ Ω, 0 ϕ u -v a.e. in Ω.
To conclude the proof of (47) we proceed as follows. Let (ρ n ) be a sequence of nonnegative functions in

C ∞ c (Ω) such that ρ n → u -v in H 1 0 (Ω)
and a.e. on Ω and set w n := min{u -v, ρ n }. Then, w n ∈ H 1 (Ω), supp(w n ) ⊂ supp(ρ n ) ⊂⊂ Ω and 0 w n u -v a.e. on Ω. We can therefore apply (50) with ϕ = w n to get the desired conclusion (47), since w n → u -v in H 1 0 (Ω) and a.e. on Ω, and ( 46) is in force.

13. Actually the real number a is unique and its value is given by -λ 1

´Ω φ 1 h ´Ω φ 1 0
, where φ 1 is a positive first eigenfunction of -∆ with homogeneous Dirichlet boundary conditions and h ∈ H 1 (Ω) is the unique weak solution of -∆h = 0 in Ω with u -h ∈ H 1 0 (Ω) (to see this, use φ 1 as test function in the weak formulation of -∆u = a + λ 1 u and the fact that h is harmonic) and also note that h is nonnegative by the maximum principle. In particular, u, v ∈ H 1 0 (Ω) ⇐⇒ a = 0. Also note that, for every a 0 there exist solutions u, v for which the second alternative of the theorem occurs. Indeed, the functions ut := -a λ 1 + tφ 1 , t 0 are suitable.

By convexity of f we have f (0)

f (v) f (u) a.e. on Ω, hence f (v) ∈ L 1 loc (Ω) and [f (v)] - [f (0)] -a.e. in Ω. Also observe that -∆(u -v) = f (u) -f (v) f (v)(u -v) in D (Ω) and so also -∆(u -v) + [f (v)] -(u -v) [f (v)] + (u -v) 0 in D (Ω), since u -v ∈ H 1 0 (Ω) is nonnegative a.e.
in Ω. The strong maximum principle (see e.g. Theorem 8.19 in [START_REF] Gilbarg | Elliptic Partial Differential Equations of Second Order[END_REF]) yields either u ≡ v, and we are done, or u > v a.e. on Ω. In the remaining part of the proof we assume that the latter possibility is in force and we set I := inf Ω v, S := sup Ω u. Now we combine (47) with (40

) with ϕ = u -v to get ˆΩ f (u) -f (v) -f (u)(u -v) (u -v) 0.
By convexity of f , the integrand in the above inequality is nonpositive and so

f (u) -f (v) -f (u)(u -v) (u -v) = 0 a.e. in Ω and then f (u) -f (v) -f (u)(u -v) = 0 a.e.
in Ω since u > v a.e. on Ω. The latter implies that, for almost every x ∈ Ω, the function f must be affine on the open interval (v(x), u(x)). Now we prove that f is an affine function on the the interval (I, S). To this end we first consider the case in which one of the two solutions is a constant function. If v is constant, say v ≡ c, then I = c and for almost every x ∈ Ω the function f is affine on the open interval (I, u(x)). Since any two intervals of this form intersect and f is affine on each of them, we see that f must be the same affine function on both intervals. This implies that f is an affine function over the entire interval (I, S), as claimed. The same argument applies if u is constant. It remains to consider the case where neither v nor u are constant. Since v is not constant we can find x 0 ∈ Ω such that (51)

     v(x 0 ) < u(x 0 ) and f (t) = a + bt for all t ∈ (v(x 0 ), u(x 0 )), |{ v > v(x 0 ) }| > 0, |{ v v(x 0 ) }| > 0,
where we denoted by |X| the Lebesgue measure of any measurable set X ⊂ Ω.

Let (α, β) be the largest open interval containing (v(x 0 ), u(x 0 )) and such that f (t) = a + bt for all t ∈ (α, β). To conclude the proof it is enough to show that (I, S) ⊂ (α, β). Let us first prove that I α. Assume to the contrary that I < α, then the latter and (51) give I < α v(x 0 ) < sup Ω v and so we can find an integer m 1 such that 

∆(u -v) + [f (v)] -(u -v) [f (v)] + (u -v) 0 in D (Ω), where [f (v)] -∈ L ∞ (Ω), then the strong maximum principle yields (53) u -v c(m) > 0 a.e. on ω m . Now, if we set := min{ c(m) 2 , α -inf ωm v } > 0, we have I inf ωm v < α -< α < sup ωm v and so (54)    |{ v α -} ∩ ω m | > 0, |{ v α - 2 } ∩ ω m | > 0.
Since ω m is open and connected we can use the "intermediate value theorem" for functions in a Sobolev space (see e.g. Théorème 1 of [START_REF] Chabi | Haraux Un théorème de valeurs intermédiaires dans les espaces de Sobolev et applications[END_REF]

) to get |{ α - v α -2 } } ∩ ω m | > 0.
This fact and (53) prove the existence of x ∈ ω m such that α -v(x ) α -2 and u(x ) -v(x ) c(m), whose combination leads to u(x ) α + c(m) 2 and v(x ) < α. Therefore, f must satisfy f (t) = a + bt for all t ∈ (v(x ), β), which contradicts the definition of (α, β). This proves that I α. Now we show that S β. If β = +∞ we are done, so we suppose that β ∈ R. In this case we observe that inf Ω u < β since otherwise we would have u β a.e. on Ω and so the strong maximum principle (applied to u -β) would give u > β a.e. on Ω (recall that v is not constant by assumption). Hence there would exist x ∈ Ω such that v(x) < β < u(x). This would imply that f (t) = a + bt for all t ∈ (α, u(x)), contradicting the definition of (α, β). If S > β (and since inf Ω u < β ) the same argument used to prove α I can be applied to the solution u to get a contradiction (again that f would satisfy f (t) = a + bt for all t ∈ (α, u(y)), for some y ∈ Ω such that u(y) > β). Therefore S β and f (t) = a + bt for all t ∈ (I, S). Hence, u and v are of class C 2 (Ω) by standard elliptic estimates. Finally, 

u -v ∈ H 1 0 (Ω) solves -∆(u -v) = f (u) -f (v) = b(u -v) in Ω and u -v > 0 in Ω. Thererefore u -v is

Proof.

By item ii) of Proposition 15 we have

(56) (f (u) -f (v))(u -v) + ∈ L 1 (Ω)
In view of the above results we can follow the proof of Theorem 3 to obtain

(57) ˆΩ |∇(u -v) + | 2 = ˆΩ(f (u) -f (v))(u -v) + .
Using (40) with ϕ = (u -v) + , ( 57) and (43) we have

ˆΩ f (u)[(u -v) + ] 2 ˆΩ |∇(u -v) + | 2 = ˆΩ(f (u) -f (v))(u -v) + ˆΩ f (u)[(u -v) + ] 2
and so

ˆΩ |∇(u -v) + | 2 -ˆΩ f (u)[(u -v) + ] 2 = 0.
The latter and (40) imply that (u -v) + minimizes the the functional ψ -→ ´Ω |∇ψ| 2 -´Ω f (u)ψ 2 over H 1 0 (Ω) and therefore (u

-v) + solves (58) -∆(u -v) + = f (u)(u -v) + in D (Ω). Then (59) -∆(u -v) + + [f (u)] -(u -v) + = [f (u)] + (u -v) + 0 in D (Ω)
with [f (u)] -∈ L ∞ (Ω), since f (u) f (0) by convexity of f . By the strong maximum principle, either (u-v) + > 0 a.e. in Ω or (u-v) + = 0 a.e. in Ω. That is, either u > v a.e. in Ω or u v a.e. in Ω. In the latter case we have

-∆(v -u) = f (v) -f (u) f (u)(v -u) in D (Ω) and so also -∆(v -u) + [f (u)] -(v -u) [f (u)] + (v -u) 0 in D (Ω), since v -u ∈ H 1 0 (Ω) is nonnegative a.e.
in Ω. As above, another application of the strong maximum principle yields either u ≡ v or v > u a.e. on Ω.

By combining Lemma 14 and Theorem 3 we immediately obtain the following classification result for stable solutions in H 1 0 (Ω). Theorem 18. Let Ω be a bounded domain of R N , N 1 and let f ∈ C 1 (R) be a convex function such that f (0) = 0. Assume that u ∈ H 1 0 (Ω), f (u) ∈ L 1 loc (Ω) and that u is a stable solution to

(60) -∆u = f (u) in D (Ω)
u 0 a.e. on Ω.

Then, either u ≡ 0 or f (t) = λ 1 t on (0, sup Ω u) and u ∈ C ∞ (Ω) ∩ H 1 0 (Ω) is a positive first eigenfunction of -∆ with homogeneous Dirichlet boundary conditions. Remark 19. If u ≡ 0, then necessarily f (0) λ 1 by Lemma 14. Also observe that for any α λ 1 there is a convex function f satisfying f (0) = 0, f (0) = α and such that u ≡ 0 is a stable solution to (3). An example is provided by f (u) = u 2 + αu.

Proof.

v ≡ 0 is a solution to (3) since f (0) = 0. Then, an application of Theorem 3 provides the desired results. Indeed, since u ∈ H 1 0 (Ω), we have a = 0 (as observed in the footnote to Theorem 3). Therefore f (t) = λ 1 t on (inf Ω v, sup Ω u) = (0, sup Ω u).

Proposition 20. Let Ω be a bounded domain of R N , N 1 and let f ∈ C 1 ([0; +∞)) be a convex function. Assume that u, v ∈ H 1 loc (Ω) satisfy 0 v < u a.e. on Ω, f (u), f (v) ∈ L 1 loc (Ω) and

(61) -∆u f (u) in D (Ω), -∆v f (v) in D (Ω). Then (62) f (v) ∈ L 1 loc (Ω), ˆΩ f (v)ϕ 2 ˆΩ |∇ϕ| 2 ∀ϕ ∈ C ∞ c (Ω).
In particular, if v is a solution to -∆v = f (v) in D (Ω), then v is stable.

Proof.

Recall that, by convexity of f , we have

f (u) -f (v) f (v)(u -v) and [f (v)] -[f (0)] -a.e. in Ω. Therefore, [f (v)] -∈ L ∞ (Ω)
and, using (61), we obtain

-∆(u -v) + [f (v)] -(u -v) f (u) -f (v) + [f (v)] -(u -v) [f (v)] + (u -v) 0 in D (Ω).
By the strong maximum principle and u -v > 0 a.e. in Ω we then get

(63) ∀ ω ⊂⊂ Ω u -v c(ω) > 0 a.e. on ω,
where c(ω) is a positive constant depending on the open subset ω. The latter implies that 1 u-v ∈ L ∞ loc (Ω) and so f (v) ∈ L 1 loc (Ω), thanks to item iii) of Proposition 15. This proves the first claim of (62). To prove the second one we recall that f (v)(u -v) ∈ L 1 loc (Ω) and use once again (61) to get

(64) ˆΩ ∇(u -v)∇φ ˆΩ f (v)(u -v)φ, ∀ φ ∈ C ∞ c (Ω).
As before, a standard approximation argument and Lebesgue's dominated convergence theorem yield that (64) holds true for any φ ∈ H 1 (Ω) ∩ L ∞ (Ω) with compact support. Therefore, for every ϕ ∈ C ∞ c (Ω) and recalling (63), we can then take φ = ϕ 2 u-v in (64) and find

(65) ˆΩ ∇(u -v)∇ ϕ 2 u -v ˆΩ f (v)ϕ 2 , ∀ ϕ ∈ C ∞ c (Ω). Hence, ˆΩ f (v)ϕ 2 ˆΩ 2 ϕ∇(u -v) u -v ∇ϕ - ˆΩ ϕ 2 (u -v) 2 |∇(u -v)| 2 , ∀ ϕ ∈ C ∞ c (Ω).
The second conclusion of (62) then follows by applying Young's inequality to the first integral on the r-h-s of the latter inequality. The last claim is a consquence of (62).

Proof of Theorem 9.

(1) Since u has finite Morse index, there exists a neighborhood of the boundary of the form Ω = {x ∈ Ω : dist (x, ∂Ω) < } such that u is stable in Ω (see point (5) below Definition 1). Thanks to Theorem 5, it suffices to prove (9) in the case where u ∈ C 2,α (Ω ). Also, the estimate will follow if we prove that for some ρ ∈ (0, ) and for every x ∈ Ω ρ , there exists a set I x such that |I x | ≥ γ and u(x) ≤ u(y), for all y ∈ I x .

To this end, we apply the moving-plane method. For y ∈ ∂Ω, let n(y) denote the unit normal vector to ∂Ω, pointing outwards. Thanks to Lemmas 4.1 and 4.2 in [START_REF] Azizieh | A priori estimates and continuation methods for positive solutions of p-Laplace equations[END_REF], there exists a constant λ 0 ∈ (0, /2) depending on Ω only, such that {x = y -tn(y) : 0 < t < 2λ 0 , y ∈ ∂Ω} ⊂ Ω In addition, in a fixed neighborhood of ∂Ω, every point can be written in the form x = y -tn(y), where 0 < t < λ 0 and y is the unique projection of x on ∂Ω. Fix x 0 ∈ ∂Ω and n = n(x 0 ). By applying the standard moving-plane method in the cap Σ λ := {x ∈ Ω : 0 < -(x -x 0 ) • n < λ} , we deduce that (66)

∂ n u < 0 in Σ λ , for every λ ∈ [0, λ 0 ].
Next, since Ω is uniformly convex, there exists a radius r > 0 depending on Ω only, such that the geodesic ball B = B(n(x 0 ), r) ⊂ S N -1 can be realized as the set of normals at nearby points and so B ⊂ n(∂Ω).

To see this, assume without loss of generality that x 0 = 0 and that ∂Ω coincides near x 0 with the graph of some C 2 function ϕ : R N -1 → R such that ϕ(0) = 0, ∇ϕ(0) = 0 and ∇ 2 ϕ(0) is a diagonal matrix with eigenvalues bounded below by a positive constant (i.e. the directions of principal curvature of ∂Ω at x 0 coincide with the canonical basis of R N -1 ). Then, n(x 0 ) = (0, . . . , 0, 1) and for t = (t 1 , 0, . . . , 0) ∈ R N -1 small, there holds n(ϕ(t)) = (-∇ϕ(t), 1)

1 + |∇ϕ(t)| 2 = n(x 0 ) -t 1 ∂ 2 ϕ ∂t 2 1 (0), 0, . . . , 0 + o(|t 1 |)
and so n describes an arc of circle in the x 1 direction as t 1 varies in some small interval (-r 1 , r 1 ). This is also true (uniformly, since Ω is uniformly convex) in any direction e ∈ R N -1 and so a small geodesic ball B = B(n(x 0 ), r) ⊂ S N -1 can indeed be realized as the set of normals at nearby points. This in turn implies that for all θ ∈ B,

∂ θ u < 0 in Σ := x ∈ Ω : 1 4 λ 0 < -(x -x 0 ) • n(x 0 ) < 3 4 λ 0 .
Indeed, applying the moving-plane procedure at every point y ∈ ∂Ω such that θ = n(y), θ ∈ B, we have

∂ θ u < 0 in {x ∈ Ω : 0 < -(x -y) • θ < λ 0 } .
By taking a smaller ball B if necessary, we may assume that

|(x -x 0 ) • (θ -n(x 0 )) + (x 0 -y) • θ| < 1 4 λ 0 , for all x ∈ Σ and θ = n(y) ∈ B. Now, since -(x -y) • θ = -(x -x 0 ) • n(x 0 ) -(x -x 0 ) • (θ -n(x 0 )) -(x 0 -y) • θ, we have for any x ∈ Σ, λ 0 = 1 4 λ 0 + 3 4 λ 0 > -(x -y) • θ > 1 4 λ 0 - 1 4 λ 0 = 0
and so, as claimed, for any x ∈ Σ, there holds

∂ θ u(x) < 0.
Now take ρ = λ 0 /8. Fix a point x ∈ Ω ρ = {x ∈ Ω : dist(x, ∂Ω) < ρ} and let x 0 denote its projection on ∂Ω. On the one hand, u(x) ≤ u(x 1 ), where x 1 = x 0 -ρn(x 0 ). On the other hand, u(x 1 ) ≤ u(z), for all z in the cone I x ⊂ Σ having vertex at x 1 , opening angle B, and height λ 0 /2 and the proof is complete.

(2) Fix > 2λ 0 > 0 as above. According to Theorem 5, there exists a sequence of functions u k ∈ C 2,α (Ω ) which are stable solutions of a semilinear elliptic equation in Ω and converge a.e. to u in Ω . If N ≤ 9, we may apply the interior estimate Theorem A to deduce that

u k L ∞ (Ω 2λ 0 \Ω λ 0 ) ≤ M u k L 1 (Ω ) ≤ M u L 1 (Ω) ,
for some constant M depending on Ω. Furthermore, if Ω is convex, we know that u k is monotone in the normal direction i.e. (66) holds for u = u k , and so the inequality remains true all of Ω 2λ0 . Passing to the limit k → +∞ and using standard elliptic regularity, we deduce that u ∈ C 2,α (Ω λ0 ) in this case. In the case where f is nondecreasing on Ω is C 3 , we can directly apply Theorem 5 combined to Theorem 1.5 in [START_REF] Cabré | Stable solutions to semilinear elliptic equations are smooth up to dimension 9[END_REF].

(3) We write a generic point in R N as (x, y) ∈ R N -1 × R. Let B be the unit ball in R N -1 , N -1 ≥ 10 and Ω ⊂ R N the open set obtained by gluing the cylinder B × (-1, 1) to the unit half-ball centered at (x, y) = (0, -1) and to the unit half-ball centered at (x, y) = (0, 1). Let λ n : [0, 2] → R + be a C 2 increasing concave function such that λ n (y) = ny for y ∈ [0, 1] and λ n (2) = (n + ρ n ), where ρ n → 0. Extend λ n as an odd function on [-2, 2]. Then, the domain Ω n = {(x, λ n (y)) : (x, y) ∈ Ω} is convex but clearly not uniformly, nor even strictly. We let u n be the minimal solution to (1) with nonlinearity f (u) = 2(N -3)e u and domain Ω n . Since u = 0 and u = -2 ln(|x|) are ordered sub and supersolution to the problem, u n is well-defined, stable and 0 < u n < -2 ln(|x|)

in Ω n .

2) Assume in addition that u ∈ H 1 0 (Ω). Then, the sequence (u n ) can be chosen in H 1 0 (Ω) ∩ C 2 (Ω). If we assume in addition that Ω is of class C 1 , T is a C 2,α open portion of ∂Ω and u | T = 0 (in the sense of the traces), then u n ∈ C 2 0 (Ω ) for any domain Ω ⊂⊂ Ω ∪ T (sufficiently small). In particular, if Ω is of class C 2,α , then u n ∈ C 2 0 (Ω). Proof.

i) We argue as in [START_REF] Brezis | Blow up for ut -∆u = g(u) revisited[END_REF] and in subsection 3.2.2 of [START_REF] Dupaigne | Stable solutions of elliptic partial differential equations[END_REF]. Nevertheless, our approach requires several non standard modifications due to the fact that we work in D and that u is merely in H 1 (B) (i.e., u does not have "zero boundary value").

Given ∈ (0, 1), define Φ : [0, +∞) → [0, +∞) by ˆΦ where C = C(f ) > 0 is a constant depending only on f . Since u ∈ H 1 (Ω) and ( 71) is in force, we have U = Φ (u) ∈ H 1 (Ω) and so U is a weak supersolution 16 to (72) -∆u ,1 = (1 -)f (u ,1 ) in Ω, u ,1 -Φ (u) ∈ H 1 0 (Ω), while v = 0 is a weak subsolution to (72). In addition, we have 0 < U a.e. on Ω, since f > 0. Therefore by the (standard) method of sub and supersolution in H 1 we obtain a stable weak solution 17 u ,1 ∈ H 1 (Ω) of (72) such that 0 < u ,1 U a.e. on Ω. Furthermore, from (71) we get (73) 0 f (u ,1 ) f (U ) C(f ) (1 + u)

and so f (u ,1 ) ∈ L 2 (Ω). The latter implies u ,1 ∈ H 2 loc (Ω) by elliptic regularity, hence

(74) u ,1 ∈ L p loc (Ω) ∀ p < 2N N -4 (p ∞ if N 3, p < ∞ if N = 4)
by Sobolev imbedding.

In what follows, for any integer j 0, we shell denote by Φ j the composition of Φ with itself j times (Φ 0 = Id.)

16. That is it satisfies ´Ω ∇U ∇ϕ ´Ω(1 -)f (U )ϕ, for all ϕ ∈ H 1 0 (Ω), ϕ 0. Indeed, in view of the above properties of Φ we can extend it to a C 2 function on the entire real line R (still denoted by Φ ) such that Φ is nondecreasing and concave, Φ is nonnegative and bounded on R. Then we can apply a variant of Kato's inequality (see e.g. Lemma 3.2.1 in [START_REF] Dupaigne | Stable solutions of elliptic partial differential equations[END_REF]) to get that U is a supersolution in D (Ω). A standard density argument and Fatou's Lemma then give the desired conclusion.

17. This solution is obtained by using the standard method of monotone iterations in H 1 applied to the sequence (v k ) k 1 defined by -∆v k+1 = (1 -)f (v k ) in Ω, v k+1 ∈ { v ∈ H 1 (Ω)) : v -Φ (u) ∈ H 1 0 } := H 1 Φ (u) and starting with v 1 = Φ (u) ∈ H 1 Φ (u) , the supersolution. Note that the sequence is well-defined in H 1 Φ (u) and satisfies 0 v k+1 v k Φ (u)

a.e. on Ω thanks to f 0 and since f (Φ (u)) ∈ L 2 (B) by (71). Furthermore, the stabilty of u ,1 comes from the stabilty of u and the fact that f is positive and nondecreasing. Indeed, ∀ϕ ∈ C 1 c (Ω) we have ´Ω |∇ϕ| 2 ´Ω f (u)ϕ 2 ´Ω(f (U )ϕ 2 ´Ω(f (u ,1 )ϕ 2 ´Ω((1 -)f (u ,1 )ϕ 2 .

  and u-v is a positive first eigenfunction of -∆ with homogeneous Dirichlet boundary conditions. In the first case we are done, while in the second one we distinguish two subcases : either sup u = +∞ or not. In the first subcase f is necessarily globally Lipschitz-continuous on [0, +∞) and the conclusion follows by taking f k = f and u k = u for every k. If sup u < +∞, the conclusion follows by taking the sequences (f k ) k k and (u) k k, where k is any integer satisfying k > sup u.

12 .

 12 Since u ∈ C 2 (B) is a radial function we have ∇u(0) = 0, w := ur ∈ C 1 (B \ {0}) and |w(x)| ≤ C|x| in B, for some constant C > 0. Then w ∈ C 0 (B), |v (r)| Cr in [0, R] and so |v (r)| C 1 in (0, R], for some constant C 1 > 0, by using the ode satisfied by v. Thus, for any x, y ∈ B such that |y| > |x| > 0 we have : |w(y) -w(x)| = |v (|y|) -v (|x|)| ´|y| |x| |v (t)| dt sup ξ∈[|x|,|y|] |v (ξ)| (|y| -|x|) sup r∈B\{0} |v (r)|y -x| C 1 |y -x|. Then, w ∈ C 0,1 (B).

Proposition 15 .

 15 Let Ω be an open set of R N , N 1, and let f ∈ C 1 ([0; +∞)) be a convex function. i) Let u ∈ L 1 loc (Ω) such that u 0 a.e. in Ω and

  {ω m , m 1} is a countable family of open connected sets of R N such ω m ⊂ ω m+1 ⊂⊂ Ω and Ω = ∪ m 1 ω m (such a family of open connected sets exists thanks to the fact that Ω is open, bounded and connected). Recall that u -v ∈ H 1 0 (Ω) is positive a.e on Ω and satisfies -

  a positive eigenfunction and so we necessarily have b = λ 1 . This concludes the proof.Theorem 17. Let Ω be a bounded domain of R N , N 1 and let f ∈ C 1 ([0; +∞)) be a convex function. Assume that u, v ∈ H 1 (Ω) satisfy u -v ∈ H 1 0 (Ω), f (u), f (v) ∈ L 1 loc (Ω)and both u and v are solution to(55) -∆w = f (w) in D (Ω)w 0 a.e. on Ω,If u satisfies f (u) ∈ L 1 loc (Ω)and u is stable, then u and v are ordered, namely, one of the following three cases holds true : u < v a.e. in Ω, u ≡ v a.e. in Ω or u > v a.e. in Ω.

  Since Φ solves the initial value problem (70)Φ (t)f (t) = (1 -)f (Φ (t)), t > 0 Φ (0) = 0, we see that Φ ∈ C 2 ([0, +∞)) is increasing, concave and satisfies 0 < Φ (t) < 1 , 0 Φ (t) t for all t 0, Φ (0) = 1 -∈ (0, 1), Φ (0) = -(1 -) f (0) f (0)0 Also, using the concavity on [0, +∞) of the function h(t) := ´t 0 ds f (s) we get that (71) 0 f (Φ (t)) C(f ) (1 + t) ∀ t 0,

It already readily follows that the average 1 |Ω n | u n L 1 (Ω n ) of u n remains bounded. In addition, since -2 ln(|x|) is a strict supersolution of the equation, u n cannot be an extremal solution and so u n is smooth and strictly stable, i.e. its linearized operator has positive first eigenvalue.

Recall that ρ n → 0 and assume by contradiction that u n L ∞ ((Ω n )ρ n ) ≤ M for some constant M > 0. For (x, y) ∈ Ω, let v n (x, y) = u n (x, λ n (y)). Then, v n = 0 on ∂Ω and, letting µ n denote the inverse function of λ n , (67)

We claim that ∇v n L ∞ (Ω) ≤ K, for some constant K > 0. To see this, we begin by estimating |∇v n | on ∂Ω. On the flat part of the boundary, we have a natural barrier : since v n < -2 ln(|x|) in Ω and v n = -2 ln(|x|) = 0 on ∂B × (-1, 1), we deduce that ∇v n L ∞ (∂B ×(-1,1)) ≤ 2. The function ζ(x, y) = 1 -|(x, y) -(0, 1)| 2 vanishes on the boundary of the half-ball centered at (0, 1) and satisfies

Hence, a constant multiple of ζ can be used as a barrier on the half-ball centered at (0, 1). Working similarly with the other half-ball, we deduce that ∇v n L ∞ (∂Ω) ≤ K on the whole boundary of Ω. To extend the inequality to the whole of Ω, we observe that any partial derivative ∂ i v n solves the linearized equation. Since v n is strictly stable (because this is the case for u n ), the linearized operator at v n has positive first eigenvalue. It follows that

Up to extraction, the sequence (v n ) converges uniformly to some lipschitz-continuous function v in Ω. In addition, v = 0 on ∂Ω, and for any ϕ

In particular, the function w

But so is u = -2 ln(|x|). By uniqueness of the extremal solution, we must have w = u, which is impossible, since w is bounded. Hence, up to extraction,

Appendix A Proposition 21. Assume that α ∈ (0, 1) and N 2.

Let Ω be a bounded domain of R N and let f ∈ C 1 ([0, +∞)) be a nondecreasing and convex function. Assume that u ∈ H 1 (Ω) is a stable 14 solution of (1) such that u ≥ 0 a.e. in Ω. 1) There exists a sequence (ε n ) of real numbers in [0, 1) such that ε n 0 and a sequence

a.e. on Ω, and

Also, if we assume in addition that Ω is of class C 1 , T is a C 2,α open portion of ∂Ω and u | T = 0 (in the sense of the traces), then u n ∈ C 2,α (Ω ) for any domain Ω ⊂⊂ Ω ∪ T (sufficiently small) and u n = 0 in T .

14. Note that f (u) is a nonnegative Lebesgue measurable function (by our assumptions on f ) and so the stability inequality (2) has a meaning. [START_REF] Malý | Fine regularity of solutions of elliptic partial differential equations[END_REF]. That is a function un satisfying ´Ω ∇un∇ϕ = ´Ω(1n)f (un)ϕ, for all ϕ ∈ H 1 0 (Ω).

Now we can repeat the same construction to find a stable weak solution

such that 0 < u ,2 Φ (u ,1 ) u ,1 u a.e. on Ω. Here we have used Φ (u ,1 ) ∈ H 1 (Ω) as supersolution and again v = 0 as subsolution. Also note that 0 Φ 2 (u) Φ (u ,1 ) on ∂Ω in the sense of H 1 (Ω), since [Φ 2 (u) -Φ (u ,1 )] + ∈ H 1 0 (Ω). In particular, by (71), 0 f (u ,2 ) C(f ) (1 + u ,1 ) ∈ L p loc (Ω) for any p in the range (74), and thus u ,2 ∈ L q loc (Ω) for all q < 2N N -8 (q ∞ if N 7, q < ∞ if N = 8). Also note that 0 < u ,2 Φ (u ,1 ) Φ (Φ (u)) = Φ 2 (u) Φ (u) a.e. on Ω.

By iteration, we find that if

is locally bounded (hence of class C 2 inside Ω) and also satisfies 0 < u ,k Φ (u ,k-1 ) Φ k (u) u a.e. on Ω.

Since ∈ (0, 1) is arbitrary we have proved that, for every δ ∈ (0, 1)

Since 0 u δ Φ k δ (u) u a.e. on Ω by construction, we get

(Ω) by the dominated convergence theorem (recall that Φ δ (t) -→ t for all t 0 and that Φ is a contraction on R + ). Moreover, by choosing Φ k δ (u) -u δ ∈ H 1 0 (Ω) as test function in the weak formulation of (77) we obtain

on Ω and f 0. Therefore we deduce that

∇Φ k δ (u) L 2 (B) by Young's inequality. On the other hand

In particular the families (u δ ) and (Φ k δ (u)) are bounded in H 1 (Ω) and therefore, we may and do suppose that (up to subsequences)

on Ω, for some v, V ∈ H 1 (Ω), as δ → 0. From those properties we get V = u (recall that Φ k δ (u) -→ u in L 2 (Ω)) and also that v is a solution of -∆v = f (v) in Ω. Also v is stable thanks to u δ -→ v a.e. on Ω, the positivity and the continuity of f and Fatou's Lemma. On the other hand, the weak convergence of (u δ ) and

u H 1 (Ω) by (78). Since both u and v are stable solutions in H 1 (Ω) and 0 v u a.e. on Ω, we deduce from Theorem 3 that either u = v in Ω or u > 0 and u ∈ C ∞ (Ω). In the first case the desired conclusion follows by taking n = δ n , where (δ n ) is any sequence in (0, 1) such that δ n 0 and u n = u δn , while in the second one it is enough to take n = 0, u n = u for every n 1.

The last claim of item i) then follows by standard elliptic theory.

ii) If f (0) > 0, the conclusion follows from item i). If f (0) = 0, either u ≡ 0 or u is a positive first eigenfunction of -∆ with homogeneous Dirichlet boundary conditions, by Theorem 18. In both cases the smoothness of u up to (a portion of the) boundary follows from the elliptic regularity, since ∂Ω is smooth enough. To conclude it is enough to take n = 0, u n = u for every n 1.