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REGULARITY AND SYMMETRY FOR SEMILINEAR ELLIPTIC EQUATIONS IN
BOUNDED DOMAINS.

LOUIS DUPAIGNE AND ALBERTO FARINA

Résumé. In the present paper, we investigate the regularity and symmetry properties of weak solutions
to semilinear elliptic equations which are locally stable.

1. Introduction and main results

In the present paper, we investigate the regularity and symmetry properties of weak solutions to
semilinear elliptic equations. We shall focus on the following class :

Definition 1. Let N ≥ 1, Ω ⊂ RN denote an open set and f ∈ C1(R). Assume that u ∈ H1
loc(Ω),

f(u) ∈ L1
loc(Ω) and that u solves

(1) −∆u = f(u) in D′(Ω).

We say that u is locally stable in Ω if f ′(u) ∈ L1
loc(Ω) and if for every x ∈ Ω, there exists an open

neighborhood ω ⊂ Ω of x such that for every ϕ ∈ C1
c (ω), there holds

(2)
ˆ
ω

f ′(u)ϕ2 ≤
ˆ
ω

|∇ϕ|2.

A solution is stable in Ω if the above inequality holds for ω = Ω and for every ϕ ∈ C1
c (Ω).

As shown by the following examples, the class of locally stable solutions is natural and wide enough
to encompass various interesting families of solutions (naturally) arising in the study of PDEs.

(1) Smooth solutions are locally stable, thanks to the (sharp) Poincaré inequality.

(2) More generally, for N ≥ 3, weak solutions such that f ′(u) ∈ L1
loc(Ω) and f ′(u)+ ∈ LN/2loc (Ω) are

locally stable. Indeed, choosing ω so small that ‖f ′(u)+‖
L
N
2 (ω)

≤ N(N−2)|B1|
4 and applying Hölder’s

and Sobolev’s inequalities, we haveˆ
ω

f ′(u)ϕ2 ≤
ˆ
ω

f ′(u)+ϕ2 ≤ ‖f ′(u)+‖
L
N
2 (ω)
‖ϕ‖2

L
2N
N−2 (ω)

≤
ˆ
ω

|∇ϕ|2

When N = 2, the local stability follows from Moser-Trudinger inequality if f ′(u) ∈ L1
loc(Ω) and

f ′(u)+ ∈ Lploc(Ω) for some p > 1.

(3) If N > 3, f(u) = 2(N − 2)eu and u = −2 ln |x|, then f ′(u) = 2(N−2)
|x|2 ∈ L1

loc but just fails to belong
to LN/2 near the origin. By the optimality of Hardy’s inequality, u is never locally stable in any
open set containing the origin whenever 3 ≤ N ≤ 9.

(4) Local minimizers are stable : u ∈ H1
loc(Ω) is a local minimizer if for any Ω′ ⊂⊂ Ω and for all

ϕ ∈ C1
c (Ω′), t = 0 is a point of minimum of the function t 7→ e(t) := EΩ′(u + tϕ), where EΩ′(v) =´

Ω′

(
1
2 |∇v|

2 − F (v)
)
and F ′ = f . Therefore (2) holds (since e′′(0) ≥ 0).

(5) If u ∈ H1
loc(Ω) has finite Morse index 1 in Ω, then u is locally stable in Ω, see Proposition 1.5.1 in

[10] (or Proposition 2.1 in [9]). In addition, u is stable outside a compact set, see Remark 1 in [12].
But there are also locally stable solutions of infinite Morse index. This is the case e.g. when Ω is
the punctured unit ball, f(u) = 2(N − 2)eu, u(x) = −2 ln |x| and 3 ≤ N ≤ 9.

1. We recall that a solution u to (1) has Morse index equal to K ≥ 0, if f ′(u) ∈ L1
loc(Ω) and K is the maximal dimension

of a subspace XK of C1
c (Ω) such that

´
Ω |∇ψ|

2 <
´
Ω f

′(u)ψ2 for any ψ ∈ XK \ {0}. In particular u is stable if and only if
its Morse index is zero.

1



2 LOUIS DUPAIGNE AND ALBERTO FARINA

Our first result concerns the complete classification of nonnegative stable solutions u ∈ H1
0 (Ω) to (1),

when f is a convex function satisfying f(0) = 0.

Theorem 1. Let Ω be a bounded domain of RN , N > 1, let f ∈ C1(R) be a convex function such that
f(0) = 0 and let λ1 be the principal eigenvalue of −∆ with homogeneous Dirichlet boundary conditions.
Assume that u ∈ H1

0 (Ω), f(u) ∈ L1
loc(Ω) and that u is a stable solution to

(3)

{
−∆u = f(u) in D′(Ω)

u > 0 a.e. on Ω.

Then, either u ≡ 0 or f(t) = λ1t on (0, supΩ u) and u ∈ C∞(Ω) ∩H1
0 (Ω) is a positive first eigenfunction

of −∆ with homogeneous Dirichlet boundary conditions.

Remark 2. If u ≡ 0, then necessarily f ′(0) 6 λ1, by Lemma 14 in section 3 below. Also observe that for
any α 6 λ1 there is a convex function f satisfying f(0) = 0, f ′(0) = α and such that u ≡ 0 is a stable
solution to (3). An example is provided by f(u) = u2 + αu.

The latter result is a consequence of the following general theorem which holds true for any convex
function f of class C1 and for distributional solutions merely in H1(Ω).

Theorem 3. Let Ω be a bounded domain of RN , N > 1 and let f ∈ C1([0; +∞)) be a convex function.
Assume that u, v ∈ H1(Ω) satisfy u − v ∈ H1

0 (Ω), 0 6 v 6 u a.e. on Ω, f(u), f(v) ∈ L1
loc(Ω) and both u

and v are solution to

(4) −∆w = f(w) in D′(Ω).

If f ′(u) ∈ L1
loc(Ω) and u is stable, then either u ≡ v or f(t) = a + λ1t for all t ∈ (infΩ v, supΩ u) and

some 2 a ∈ R, u, v ∈ C∞(Ω) and u− v is a positive first eigenfunction of −∆ with homogeneous Dirichlet
boundary conditions.

Remark 4. According to Theorem 1.3 and Corollary 3.7 in [7], there exists a C1, positive, increasing but
non-convex nonlinearity f with two distinct and ordered (classical) stable 3 solutions 0 ≤ u ≤ v. In other
words, the convexity assumption cannot be completely removed from the above theorem.

Another important consequence of Theorem 3 is the following approximation result which, in turn,
motivated our definition of local stability (see Definition 1). This result will be central in the proof of our
main regularity results for locally stable solutions to (1).

Theorem 5. Assume α ∈ (0, 1) and N > 1.
Let Ω be a bounded domain of RN and let f ∈ C1([0,+∞)) be a convex function such that f(0) > 0.

Assume that u ∈ H1(Ω), f(u) ∈ L1
loc(Ω) and that u is a stable solution to

(5)

{
−∆u = f(u) in D′(Ω)

u > 0 a.e. on Ω.

Then, there is a nondecreasing sequence (fk) of convex functions in C1([0,+∞)) ∩ C0,1([0,+∞)) such
that fk ↗ f pointwise in [0; +∞) and a nondecreasing sequence (uk) of functions in H1(Ω)∩C2(Ω) such

2. Actually the real number a is unique and its value is given by −λ1

´
Ω φ1h´
Ω φ1

6 0, where φ1 is a positive first eigenfunction

of −∆ with homogeneous Dirichlet boundary conditions and h ∈ H1(Ω) is the unique weak solution of −∆h = 0 in Ω with
u − h ∈ H1

0 (Ω) (to see this, use φ1 as test function in the weak formulation of −∆u = a + λ1u and the fact that h is
harmonic) and also note that h is nonnegative by the maximum principle. In particular, u, v ∈ H1

0 (Ω)⇐⇒ a = 0. Also note
that, for every a 6 0 there exist solutions u, v for which the second alternative of the theorem occurs. Indeed, the functions
ut := − a

λ1
+ tφ1, t > 0 are suitable.

3. Indeed, applying Corollary 3.7 in [7], we see that in the notations of that corollary, for f(u) = λg(u), uλ is minimal
hence stable. In addition, by minimality, λ 7→ uλ is nondecreasing and so uλ converges to a stable solution v as λ↘ λ such
that v ≥ uλ. Then, take u = uλ
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that uk is a stable weak solution 4 to

(6)


−∆uk = fk(uk) in Ω,

uk − u ∈ H1
0 (Ω),

0 6 uk 6 u a.e. on Ω,

and

(7) uk −→ u in H1(Ω), uk ↗ u a.e. on Ω.

Moreover, if f is nonnegative, then any function fk is nonnegative too.

Remark 6. (1) It follows from (7) that under the assumptions of the proposition, locally stable solutions
are automatically lower semi-continuous.

(2) The proposition recovers and extends Corollary 3.2.1. in [10].
(3) The result is not true if we drop the assumption u ∈ H1(Ω). To see this, consider Example 3.2.1 in

[10] in the light of Theorem 7 below.
(4) We do not know if the assumption f convex can be dropped.
(5) Theorem 5 generalizes Proposition 21 below, in which the approximating nonlinearity is taken of the

form fk = (1− εk)f , with εk → 0 at the expense of additionally assuming that f is nondecreasing.

Theorem 5 can be combined with the following a priori estimate due to [5] in order to establish
smoothness of locally stable solutions when f is nonnegative, convex and N ≤ 9.

Theorem A ([5]). Let B1 be the unit ball of RN , N > 1. Assume that u ∈ C2(B1) is a stable solution
of (1) in Ω = B1, where f : R→ R is locally Lipschitz and nonnegative. If 1 ≤ N ≤ 9, then

(8) ‖u‖Cα(B1/2) ≤ C‖u‖L1(B1),

where α ∈ (0, 1), C > 0 are dimensional constants.

More precisely we have the following interior regularity result :

Theorem 7. Let f ∈ C1([0,+∞)) be a nonnegative convex function. Let Ω be an open set of RN , N > 1.
Assume that u ∈ H1

loc(Ω), f(u) ∈ L1
loc(Ω) and that u is a locally stable solution of (1) such that u ≥ 0

a.e. in Ω.
If 1 6 N 6 9, then u ∈ C2,β

loc (Ω) for all β ∈ (0, 1). In particular, any finite Morse index solution is smooth
in Ω.

Remark 8. The result is optimal since for N ≥ 10, f(u) = 2(N − 2)eu and Ω = B1, u(x) = −2 ln |x| is a
singular stable solution in H1

0 (B1). Also observe that the above theorem fails if we do not assume that u
belongs to H1

loc(Ω), see e.g. Example 3.2.1 in [10].

A priori estimates near the boundary are more subtle, as the following result shows.

Theorem 9. Let f ∈ C1([0,+∞)) be a nonnegative convex function. Let Ω be an open set of RN , N > 1.
Assume that u ∈ H1

0 (Ω), f(u) ∈ L1
loc(Ω) and that u is a finite Morse index solution of (1) such that

u ≥ 0 a.e. in Ω.
(1) Let Ω be a bounded uniformly convex domain of class C2,α, for some α ∈ (0, 1). Then there exists

constants ρ, γ > 0, depending only on Ω, such that

(9) ‖u‖L∞(Ωρ) 6
1

γ
‖u‖L1(Ω)

where Ωρ := {x ∈ Ω : dist(x, ∂Ω) < ρ }. In particular, u ∈ C2,α(Ωρ ∪ ∂Ω).
(2) If 1 ≤ N ≤ 9 and either Ω is C2,α and convex or f is nondecreasing and Ω is C3, then there exists

constants ρ, γ > 0, depending only on Ω, such that (9) holds.

4. That is a function uk satisfying
´
Ω∇uk∇ϕ =

´
Ω fk(uk)ϕ, for all ϕ ∈ H1

0 (Ω).
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(3) Fix N ≥ 11. For every sequence (ρn) ⊂ R∗+ converging to zero, there exists a sequence of bounded
C1 convex domains Ωn ⊂ RN , n ∈ N∗, such that the corresponding stable solution un to (1) with
f(u) = 2(N − 3)eu and Ω = Ωn satisfies

‖un‖L∞((Ωn)ρn ) → +∞ yet
1

|Ωn|
‖un‖L1(Ωn) remains bounded.

The last point of the above theorem shows that in dimension N ≥ 11, no universal a priori estimate
of the type (9) can hold near the boundary if the domain Ω is merely convex and the constant γ depends
on the dimension N and the volume |Ω| only. The case N = 10 is open. We do not know either if locally
stable solutions are smooth near the boundary of convex domains, although the universal a priori estimate
fails.

When Ω is bounded and rotationally invariant we can prove the following classification result.

Theorem 10. (1) Let R > 0, N ≥ 1, B be the open ball B(0, R) ⊂ RN and let f ∈ C1([0,+∞)) be a
convex function. Assume that u ∈ H1

0 (B), f(u) ∈ L1
loc(B) and that u is a stable solution to

(10)

{
−∆u = f(u) in D′(B)

u > 0 a.e. on B.

Then, either u ≡ 0 or u ∈ C3(B \ {0}),u > 0 and u is radially symmetric and radially strictly
decreasing. Furthermore, if N 6 9 and f is nonnegative, then u ∈ C2(B).

(2) Let R > 0, 1 6 N 6 9, B be the open ball B(0, R) ⊂ RN and let f ∈ C1([0,+∞)) be a nonnegative
convex function. Assume that u ∈ H1

0 (B), f(u) ∈ L1
loc(B) and that u solves

(11)

{
−∆u = f(u) in D′(B)

u > 0 a.e. on B.

If u has finite Morse index, then either u ≡ 0 or u ∈ C2(B), u > 0 and u is radially symmetric
and radially strictly decreasing.

(3) Let N ≥ 2, Ω ⊂ RN be an open annulus centered at the origin and let f ∈ C1([0,+∞)) be a convex
function. Assume that u ∈ H1

0 (Ω), f(u) ∈ L1
loc(Ω) and that u is a stable solution to

(12)

{
−∆u = f(u) in D′(Ω)

u > 0 a.e. on Ω.

Then, either u ≡ 0 or u ∈ C2(Ω), u > 0 and u is radially symmetric. 5

Remark 11. (1) The conclusion that u is radially symmetric in item (1) of Theorem 10 was already
known to hold true in the special case where u ∈ C2(B) (and with no additional sign assumption
on u), see e.g. [1].

(2) Item (2) of Theorem 10 is sharp. Indeed, for N ≥ 10, f(u) = 2(N − 2)eu and Ω = B1 = B(0, 1),
u(x) = −2 ln |x| is a singular stable solution in H1

0 (B1). The finite Morse index assumption is also
essential : for N = 3 and f(u) = 2eu, there exists a family of nonradial singular solutions in Ω = B1

of the form u(x) = −2 ln |x − x0| + v(x), where x0 6= 0 and v ∈ L∞(B) ∩H1(B), see (in details)
the proofs in [18]. In particular, u ∈ H1

0 (B). It follows from our result that u cannot have finite
Morse index. In contrast, note that, for 3 6 N 6 9, Ω = B1 and f(u) = 2(N − 2)eu, there exist
infinitely many smooth and positive solutions to (1) such that u = 0 on ∂Ω and with finite and
non-zero Morse index. See chapter 2 of [10] (and the references therein) for a detailed discussion of
this topic.

(3) It will be clear from the proof that :
(a) the radial symmetry in item (1) is still true if we replace u ∈ H1

0 (Ω) by any member u of H1(Ω)
having constant trace c > 0 on ∂B.

5. Furtheremore, if Ω is the annulus {x ∈ RN : 0 < a < |x| < b} and u(x) = v(|x|), then there is a unique r0 ∈ (a, b)

such that v′ > 0 in (a, r0), v′(r0) = 0 and v′ < 0 in (r0, b). The result follows as in the proof of item 1). For this reason we
omit it.
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(b) the radial symmetry in item (3) is still true if we replace u ∈ H1
0 (Ω) by any member u of H1(Ω)

having a nonnegative constant trace on each of the two connected components of the boundary
of the annulus (possibly with differents values on the two connected component).

(c) Note that, if c > 0, we do not claim any monotonicity or special property about the radial
profile (as it happens when c = 0.)

A crucial step in the proof of the above Theorem is the following general symmetry result. As we shall
see below, this result also enables us to prove further symmetry results for stable solutions in "symmetric"
bounded domains.

Proposition 12. Assume N > 1 and let f ∈ C1([0,+∞)) be a convex function. Let ρ ∈ O(N) and let
Ω ⊂ RN be a ρ−invariant bounded domain, i.e., a bounded domain such that ρ(Ω) = Ω. Assume that
u ∈ H1

c (Ω) 6, f(u) ∈ L1
loc(Ω) and that u is a stable solution to

(13)

{
−∆u = f(u) in D′(Ω)

u > 0 a.e. on Ω.

If ρ has a fixed point in Ω, then u is ρ-invariant, namely, u(x) = u(ρx) for almost every x ∈ Ω.

Remark 13. Below we provide a (non-exhaustive) list of bounded domains to which the above result
applies :

(1) if Ω is any bounded domain symmetric with respect to a hyperplane, then u inherits the same
symmetry.

(2) if Ω is an open ball minus its center x0, then u is radially symmetric with respect to x0.

(3) if Ω is a n-sided regular polygon, with n > 3, then u is invariant with respect to the dihedral group
Dn (of order 2n).

(4) if Ω is the product of rotationally invariant bounded domains, i.e., Ω = ω1× ...×ωm, where ωj is a
bounded rotationnaly invariant domain 7 of Rnj , with nj > 1 and N = n1 + ...+nm, then u inherits
the same symmetry, i.e., u(x) = v(|x1|, ..., |xm|) a.e. in Ω. 8 This case was already addressed under
the additional assumption that u is smooth in Remark 2.1 in [6].

(5) if Ω is a cylinder with ρ-invariant cross section, i.e., Ω = ω × U, where ω is a ρ-invariant bounded
domain of Rk, 1 6 k 6 N − 1 and U is a domain of RN−k, then u(x) = u(ρ(x1), xk+1, ..., xN ) a.e.
on Ω (here x1 := (x1, ..., xk) ∈ Rk.)

(6) any bounded domain of "revolution".

2. Proofs

Proof of Theorem 5.
We distinguish two case : either f ′(t) 6 0 for any t > 0 or there exists t̄ > 0 such that f ′(t̄) > 0. In

the first case, by convexity of f, we have that f ′(0) 6 f ′(t) 6 0 for any t > 0, then f is also globally
Lipschitz-continuous on [0,+∞). So f(u) ∈ L2(Ω) and u ∈ C2(Ω) by standard elliptic estimates (plus
bootstrap and Sobolev imbedding). The claim follows by taking fk = f and uk = u for any integer k > 1.

In the second case, the convexity of f implies the existence of t0 > t̄ that f(t), f ′(t) > 0 for any t > t0.
Set k0 := bt0c+ 1 (here by bt0c we denote the integer part of t0) and, for any integer k > k0 and t > 0,
we set

(14) fk(t) :=

{
f(t) if t 6 k,

f(k) + f ′(k)(t− k) if t > k.

6. Here H1
c (Ω) denotes the subset of H1(Ω) whose members take the constant value c > 0 on ∂Ω. That is, H1

c (Ω) =

{u ∈ H1(Ω) : u− c ∈ H1
0 (Ω)}. In particular, for c = 0, that set boils down to H1

0 (Ω).
7. An open ball, an open ball minus its center or an annulus.
8. Here, for any j ∈ {1, ...,m}, xj denotes a generic point of ωj ⊂ Rnj in such a way that x := (x1, ..., xm) ∈ RN .
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Clearly, fk is a convex function of class C1([0,+∞)) ∩ C0,1([0,+∞)) and fk ↗ f pointwise in [0; +∞)
(recall that f(t), f ′(t) > 0 for any t > t0). Moreover we have

(15) f ′k(t) 6 f ′(t) ∀ k > k0, ∀t > 0

and

(16) fk(t) > min
t∈[0,k0]

f(t) := co(f), ∀ k > k0, ∀t > 0.

In particular, if f is nonnegative, then any function fk is nonnegative too.
Since any fk is globally Lipschitz-continuous on [0,+∞), we can use the (standard) method of sub and

supersolution in H1 to obtain a stable weak solution to (6) satisfying (7). To this end we observe that
u ∈ H1(Ω) is a nonnegative weak supersolution to

(17)

{
−∆vk = fk(vk) in Ω,

vk − u ∈ H1
0 (Ω),

since fk 6 f on [0,+∞) implies that fk(u)ϕ 6 f(u)ϕ a.e. in Ω, for any nonnegative ϕ ∈ C∞c (Ω). So

(18)
ˆ

Ω

fk(u)ϕ 6
ˆ

Ω

f(u)ϕ =

ˆ
Ω

∇u∇ϕ ∀ϕ ∈ C∞c (Ω), ϕ > 0 in Ω

by (1) and then the above inequality holds true for any nonnegative ϕ ∈ H1
0 (Ω) by a standard density

argument. Also, 0 is a weak subsolution to (17), since f(0) > 0 by assumption and (0−u)+ ≡ 0 ∈ H1
0 (Ω).

Since 0 6 u a.e. in Ω, the method of sub and supersolution in H1 provides a weak solution vk to (17) such
that 0 6 vk 6 u a.e. in Ω and which is minimal 9 in the following sense : given any weak supersolution
u ∈ H1 of (17) such that 0 6 u 6 u a.e. in Ω, we have that vk 6 u a.e. in Ω. From the latter property we
immediately infer that vk 6 vk+1 6 u a.e. in Ω. Also, by standard elliptic estimates we have vk ∈ C2,α

loc (Ω)
for any α ∈ (0, 1). By the convexity of fk and (15) we see that f ′k(vk) 6 f ′k(u) 6 f ′(u) a.e. in Ω, hence

(19)
ˆ

Ω

f ′k(vk)ϕ2 6
ˆ

Ω

f ′(u)ϕ2 6
ˆ

Ω

|∇ϕ|2 ∀ϕ ∈ C1
c (Ω)

and so vk is a stable weak solution to (6).
To prove (7) we test (17) with u− vk ∈ H1

0 (Ω) to obtain

(20)
ˆ

Ω

∇vk∇(u− vk) =

ˆ
Ω

fk(vk)(u− vk)

and so

(21)
ˆ

Ω

|∇vk|2 =

ˆ
Ω

∇vk∇u−
ˆ

Ω

fk(vk)(u− vk) 6
ˆ

Ω

∇vk∇u− c0(f)

ˆ
Ω

(u− vk)

thanks to (16) and u− vk > 0 a.e. in Ω. Thenˆ
Ω

|∇vk|2 6
1

2

ˆ
Ω

|∇vk|2 +
1

2

ˆ
Ω

|∇u|2 + |c0(f)|
ˆ

Ω

u

hence

(22) ‖∇vk‖2L2(Ω) 6 ‖∇u‖
2
L2(Ω) + 2|c0(f)|‖u‖L1(Ω).

We also have ‖vk‖L2(Ω) 6 ‖u‖L2(Ω) since 0 6 vk 6 u a.e. in Ω. Then (vk) is bounded in H1(Ω) and
therefore we may and do suppose that (up to subsequences) vk ⇀ v in H1(Ω), vk −→ v in L2(Ω), vk ↗ v
a.e. on Ω for some v ∈ H1(Ω), as k →∞ (actually the whole original sequence converges a.e. to v, since
we already know that it is monotone nondecreasing). In particular we have 0 6 v 6 u a.e. in Ω. Also note
that v − u ∈ H1

0 (Ω), since vk − u ⇀ v − u in H1
0 (Ω).

To prove that vk −→ v in H1(Ω) we test (17) with v − vk ∈ H1
0 (Ω) to get

(23)
ˆ

Ω

∇vk∇(v − vk) =

ˆ
Ω

fk(vk)(v − vk)

9. Just consider the solution obtained by the standard monotone iterations procedure starting from the subsolution
u ≡ 0.
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and so

(24)
ˆ

Ω

|∇vk|2 =

ˆ
Ω

∇vk∇v −
ˆ

Ω

fk(vk)(v − vk) 6
ˆ

Ω

∇vk∇v +

ˆ
Ω

|c0(f)|(v − vk)

thanks to (16) and v − vk > 0 a.e. in Ω. Recalling that 0 6 vk 6 v a.e. on Ω we then have

(25)
ˆ

Ω

|vk|2 + |∇vk|2 6
ˆ

Ω

|v|2 +

ˆ
Ω

∇vk∇v +

ˆ
Ω

|c0(f)|(v − vk)

and so

(26) lim sup ‖vk‖H1 6 ‖v‖H1

since vk ⇀ v in H1(Ω) and vk → v in L2(Ω). Inequality (26) and vk ⇀ v in H1(Ω) imply the strong
convergence in H1(Ω).

To proceed further we note that f(v) ∈ L1
loc(Ω) since

(27) c0(f) 6 fk(v) 6 f(v) = f(v)1{v6k0} + f(v)1{v>k0} 6 sup
t∈[0,k0]

f(t) + f(u),

where in the latter we have used that f ′(t) > 0 for t > k0 and v ≤ u a.e in Ω.
Next we prove that −∆v = f(v) in D′(Ω). This follows by passing to the limit in (17) by the Lebesgue’s

dominated convergence theorem, after having observed that fk(vk) −→ f(v) a.e. in Ω, and c0(f) 6
fk(vk) 6 f(vk) = f(vk)1{vk6k0} + f(vk)1{vk>k0} 6 supt∈[0,k0] f(t) + f(u) holds true.

So far we have proved that

(28)


−∆v = f(v) in D′(Ω)

v − u ∈ H1
0 (Ω),

0 6 v 6 u a.e. on Ω,

and therefore from Theorem 3 we deduce that either u = v in Ω or f(t) = a+λ1t for all t ∈ (infΩ v, supΩ u)
and some a ∈ R, u, v ∈ C∞(Ω) and u−v is a positive first eigenfunction of −∆ with homogeneous Dirichlet
boundary conditions. In the first case we are done, while in the second one we distinguish two subcases :
either supu = +∞ or not. In the first subcase f is necessarily globally Lipschitz-continuous on [0,+∞)
and the conclusion follows by taking fk = f and uk = u for every k. If supu < +∞, the conclusion
follows by taking the sequences (fk)k>k̄ and (u)k>k̄, where k̄ is any integer satisfying k̄ > supu.

Proof of Theorem 7.
When N = 1, any u ∈ H1

loc(Ω) is continuous by Sobolev imbedding and so is f(u). This implies u ∈ C2

and f(u) ∈ C1, so u is of class C3 by using equation (1). So assume that N ≥ 2 and that u is locally
stable. For any point x0 ∈ Ω pick a ball B(x0, r0) ⊂ Ω in which u is stable and set B = B(x0, r0).

By Theorem 5 there is a nondecreasing sequence (fk) of functions in C1([0,+∞))∩C0,1([0,+∞)) such
that fk ↗ f pointwise in [0; +∞) and a nondecreasing sequence (uk) of functions in H1(Ω)∩C2(Ω) such
that uk is a stable weak solution 10 to (6) such that (7) holds.

Since N 6 9 an application of Theorem A to uk yields

‖uk‖Cβ(B(x0,
r0
2 ))
6 C‖uk‖L1(B) 6 C|B|

1
2 ‖uk‖L2(B) 6 C

′‖u‖L2(B)

where β ∈ (0, 1) depends only on N , while C > 0 depends on N and r0. In particular, the sequence
(uk) is bounded in Cβ(B(x0,

r0
2 )) and the Ascoli-Arzelà’s theorem then implies that a subsequence must

converge uniformly to some continuous function v on B(x0,
r0
2 )). This function must coincide with u on

B(x0,
r0
2 )), since we already know that uk −→ u a.e. on Ω. The boundedness of u on B(x0,

r0
2 ) and

standard elliptic theory imply u ∈ C2,α
loc (B(x0,

r0
2 )) for every α ∈ (0, 1). Since x0 is an arbitrary point of

Ω, this concludes the proof.
�

Proof of Theorem 10.
1) In is enough to treat the case u 6≡ 0. We first prove that u is radially symmetric. For ρ ∈ O(N) we set

uρ(x) := u(ρx), x ∈ B. Then uρ ∈ H1
0 (B) is a stable solution to (10) since u is so. We can therefore apply

10. That is a function uk satisfying
´
Ω∇uk∇ϕ =

´
Ω fk(uk)ϕ, for all ϕ ∈ H1

0 (Ω)
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Theorem 17 below to get that u and uρ are ordered solutions. If u 6≡ uρ, an application of Theorem 3 would
give u, uρ ∈ C∞ and, either u < uρ or u > uρ in B. The latter are clearly impossible, since u(0) = uρ(0).
Thus, u ≡ uρ for any ρ ∈ O(N), and so u is radially symmetric in B. Since u is a radially symmetric
member of H1

0 (B), we have that u ∈ C0(B \ {0}) and by standard elliptic regularity, u ∈ C2,α
loc ((B \ {0}),

for any α ∈ (0, 1). Hence we can write u(x) = v(r), r = |x| ∈ (0, R], and so v ∈ C2((0, R]) is a classical
solution to the ode −(rN−1v′)′ = rN−1f(v) in (0, R]. The latter clearly implies v ∈ C3((0, R]) but also
that 11

(29) v′ < 0 in (R− ε, R),

for some ε ∈ (0, R). Indeed, if f(0) > 0 the Hopf’s lemma yields v′(R) < 0 (recall that we are supposing
that u 6≡ 0) and so (29) follows. When f(0) < 0 we have (rN−1v′)′ = −rN−1f(v) > 0 in an interval of
the form (R − ε, R), thus r → rN−1v′ is strictly increasing in (R − ε, R). The latter and the fact that
v′(R) 6 0 (recall that v > 0 in (0, R) and v(R) = 0) imply (29).

To conclude it is enough to prove that v′ < 0 on (0, R) (this also implies that u > 0 in B \ {0}).
Suppose not, then

(30) r0 := inf{r ∈ (0, R) : v′ < 0 on (r,R)}.

is well-defined, r0 belongs to (0, R) and v′(r0) = 0. We have two cases : either there exists z ∈ (0, r0) such
that v′(z) = 0, or v′ has a sign on (0, r0) (i.e., either v′ < 0 or v′ > 0 on (0, r0)). Let us show that both
of them are impossible. In the first case we observe that w := ur, the radial derivative of u, is of class
C2

0 (Az,r0) and satisfy

(31) −∆w + (N − 1)
w

r2
= f ′(u)w on Az,r0 ,

where Az,r0 := {x ∈ RN : z < |x| < r0}. We can then multiply (31) by w, integrate by parts and find

(32)
ˆ
Az,r0

|∇w|2 −
ˆ
Az,r0

f ′(u)w2 = −
ˆ
Az,r0

(N − 1)
w2

r2
.

On the other hand w ∈ C2
0 (Az,r0) and u is stable on Az,r0 , so w can be used as test function in the

stability condition satisfied by u to obtainˆ
Az,r0

|∇w|2 −
ˆ
Az,r0

f ′(u)w2 > 0.

The latter and (32) give w = 0 on Az,r0 and so w 6 0 in the open annulus Az,R. Since w solves the
linear equation −∆w + ( (N−1)

r2 − f ′(u))w = 0 on Az,R, the strong maximum principle implies w ≡ 0
on Az,R, and so v′ ≡ 0 on (z,R), which contradicts (29). In the second case, if v′ < 0 on (0, r0) then
w 6 0 on A0,R and, as before, w ≡ 0 on A0,R by the the strong maximum principle. The latter is again
in contradiction with (29). Hence we are left with v′ > 0 on (0, r0). In this case, the latter and the
definition of r0 imply 0 6 u 6 v(r0) on B \ {0}, so u ∈ L∞(B) and then u ∈ C2(B) by standard elliptic
estimates. To achieve a contradiction, we first observe that −∆w + (N − 1) wr2 = f ′(u)w on the annulus
Ar,r0 := {x ∈ RN : r < |x| < r0}, for every r ∈ (0, r0), we then multiply the equation by w, integrate by
parts to get

(33)
ˆ
Ar,r0

|∇w|2 −
ˆ
Ar,r0

f ′(u)w2 +

ˆ
Ar,r0

(N − 1)
w2

r2
=

ˆ
∂Ar,r0

∂w

∂ν
w.

Note that
´
∂Ar,r0

∂w
∂ν w −→ 0, as r → 0+. Indeed, the function

(34) w̃(x) :=

{
w(x) if x ∈ B \ {0},
0 if x = 0,

11. In view of (29) we could have used the moving planes procedure to get the strict monotonicity of u in the radial
direction. However, we have chosen to give an elementary proof of this fact, which highlights the role played by the stability
assumption on u.
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is of class C0,1(B) 12 and therefore |
´
∂Ar,r0

∂w
∂ν w| 6

´
Sr
|∇w̃||w| 6 ‖∇w̃‖L∞(B)σ(Sr)v

′(r) −→ 0 (here Sr
is the sphere {x ∈ RN : |x| = r} and σ(Sr) denotes its measure). Also observe that
ˆ
Ar,r0

|∇w|2−
ˆ
Ar,r0

f ′(u)w2 +

ˆ
Ar,r0

(N−1)
w2

r2
−→
ˆ
B(0,r0)

|∇w̃|2−
ˆ
B(0,r0)

f ′(u)w̃2 +

ˆ
B(0,r0)

(N−1)
w̃2

r2

by monotone and dominated convergence theorems. By gathering together all those information we are
led to

(35)
ˆ
B(0,r0)

|∇w̃|2 −
ˆ
B(0,r0)

f ′(u)w̃2 = −
ˆ
B(0,r0)

(N − 1)
w̃2

r2
.

Finally, since u is stable on B, then u is stable on B(0, r0) too. Thanks to item i) of Proposition 15) we
can use w ∈ C0,1

0 (B(0, r0)) ⊂ H1
0 (B(0, r0)) as test function in the stability condition satisfied by u to get´

B(0,r0)
|∇w̃|2 −

´
B(0,r0)

f ′(u)w̃2 > 0. As before, the latter and (35) imply that w ≡ 0 on B(0, r0) \ {0},
which is impossible since we are assuming that v′ > 0 in (0, r0).

If N 6 9 and f > 0, then u is C2 in a neighborhood of the origin by item (1) of Theorem 7. This
completes the proof of item (1).

2) By combining item (1) and item (2) of Theorem 7 we have that u ∈ C2(B). Then, either u ≡ 0 or
u > 0 in B by the strong maximum principle. The desired conclusion then follows by a celebrated result
of Gidas, Ni and Nirenberg.

3) Let H be any hyperplane through the origin and let ρ = ρ(H) ∈ O(N) be the corresponding
reflection with respect to H. Set uρ(x) := u(ρx), x ∈ Ω. Then uρ ∈ H1

0 (Ω) is a stable solution to (12)
since u is so. By Theorem 17, u and uρ are ordered solutions. If u 6≡ uρ, an application of Theorem 3
would give u, uρ ∈ C∞ and, either u < uρ or u > uρ in Ω. The latter are clearly impossible, since u = uρ
on the hyperplane H. Thus, u ≡ uρ and so u is radially symmetric in Ω, since H is arbitrary. Since u
is a radially symmetric member of H1

0 (Ω), we have that u ∈ C0(Ω) and standard elliptic theory imply
u ∈ C2,α

loc (Ω), for any α ∈ (0, 1). The required regularity then follows, as in item (1), by analysing the ode
satisfied by the radial profile of u. �

3. Some auxiliary results

In this section we prove some results for stable solutions in H1. These results have been used in the
proofs of our main results and some of them are of independent interest. In what follows, when Ω is
bounded, we shall denote by λ1 = λ1(Ω) > 0 the principal eigenvalue of −∆ with homogeneous Dirichlet
boundary conditions.

Lemma 14. Let Ω be a bounded domain of RN , N > 1 and let f ∈ C1(R) such that f(t) > λ1t for t > 0.
Assume that u ∈ H1(Ω) and f(u) ∈ L1

loc(Ω).
If u solves

(36)

{
−∆u > f(u) in D′(Ω)

u > 0 a.e. on Ω,

then u ≡ 0, f(0) = 0 and u is a solution to

(37) −∆u = f(u) in D′(Ω)

which is not stable.

12. Since u ∈ C2(B) is a radial function we have ∇u(0) = 0, w := ur ∈ C1(B \ {0}) and |w(x)| ≤ C|x| in B, for some
constant C > 0. Then w̃ ∈ C0(B), |v′(r)| 6 Cr in [0, R] and so |v′′(r)| 6 C1 in (0, R], for some constant C1 > 0, by
using the ode satisfied by v. Thus, for any x, y ∈ B such that |y| > |x| > 0 we have : |w(y) − w(x)| = |v′(|y|) − v′(|x|)| 6´ |y|
|x| |v

′′(t)| dt 6 supξ∈[|x|,|y|] |v′′(ξ)| (|y| − |x|) 6 supr∈B\{0} |v′′(r)|y − x| 6 C1|y − x|. Then, w̃ ∈ C0,1(B).
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Proof. By the strong maximum principle (for superharmonic functions in H1) either u ≡ 0 or u > 0
a.e. on Ω. Let us prove that the latter is impossible. To this end, let us suppose that u > 0 and let
h ∈ H1(Ω) be the unique weak solution to

(38)

{
−∆h = 0 in Ω,

u− h ∈ H1
0 (Ω).

Then 0 6 h 6 u a.e. on Ω by the maximum principle, and h < u a.e. on Ω by the strong maximum
principle. Indeed, h = u would imply 0 = −∆(u− h) = f(u) > λ1u > 0 a.e. on Ω, a contradiction.

Let φ1 ∈ H1
0 (Ω) be a positive function associated to the eigenvalue λ1. Since f(u) > 0 a.e. on Ω, a

standard density argument and Fatou’s Lemma imply
ˆ

Ω

∇u∇ϕ >
ˆ

Ω

f(u)ϕ ∀ϕ ∈ H1
0 (Ω), ϕ > 0 a.e. in Ω,

and therefore we can use φ1 in the latter to getˆ
Ω

∇u∇φ1 >
ˆ

Ω

f(u)φ1.

Then,ˆ
Ω

λ1uφ1 <

ˆ
Ω

f(u)φ1 6
ˆ

Ω

∇u∇φ1 =

ˆ
Ω

∇(u− h)∇φ1 +

ˆ
Ω

∇h∇φ1 =

ˆ
Ω

∇(u− h)∇φ1 + 0

where we have used the property of f , as well as the fact that h solves (38). In addition, by definition of
φ1 and u− h ∈ H1

0 (Ω), we also have
´

Ω
∇(u− h)∇φ1 =

´
Ω
λ1(u− h)φ1, which leads toˆ

Ω

λ1uφ1 <

ˆ
Ω

f(u)φ1 6
ˆ

Ω

∇u∇φ1 =

ˆ
Ω

∇(u− h)∇φ1 =

ˆ
Ω

λ1(u− h)φ1 6
ˆ

Ω

λ1uφ1

a contradiction. Therefore, u ≡ 0 and f(0) 6 −∆u = 0. The latter and the assumption on f give f(0) = 0

and so u solves (37). Since f ′(0) > λ1 = inf {
´
Ω
|∇u|2´
Ω
u2 : u ∈ H1

0 (Ω), u 6≡ 0} we immediately see that u = 0

cannot be a stable solution to (37).
�

Proposition 15. Let Ω be an open set of RN , N > 1, and let f ∈ C1([0; +∞)) be a convex function.
i) Let u ∈ L1

loc(Ω) such that u > 0 a.e. in Ω and

(39) f ′(u) ∈ L1
loc(Ω),

ˆ
Ω

f ′(u)φ2 6
ˆ

Ω

|∇φ|2 ∀φ ∈ C∞c (Ω).

Then

(40) f ′(u)ϕ2 ∈ L1(Ω),

ˆ
Ω

f ′(u)ϕ2 6
ˆ

Ω

|∇ϕ|2 ∀ϕ ∈ H1
0 (Ω).

ii) Let u, v ∈ H1(Ω) such that f(u), f(v) ∈ L1
loc(Ω), (u− v)+ ∈ H1

0 (Ω) and 0 6 v, 0 6 u a.e. in Ω. Also
assume that u satisfies (39). Then, (f(u)− f(v))(u− v)+ ∈ L1(Ω).

iii) Let u, v ∈ L1
loc(Ω) such that f(u), f(v) ∈ L1

loc(Ω) and 0 6 v 6 u a.e. in Ω.
Then, f ′(v)(u− v) ∈ L1

loc(Ω).

Proof.
i) By convexity of f and (39) we have

(41) f ′(0) 6 f ′(u) a.e. in Ω

and

(42)
ˆ

Ω

[f ′(u)]+φ2 6
ˆ

Ω

|∇φ|2 +

ˆ
Ω

[f ′(u)]−φ2 ∀φ ∈ C∞c (Ω).

From (41) we deduce that [f ′(u)]− 6 [f ′(0)]− and so [f ′(u)]− ∈ L∞(Ω) and [f ′(u)]−ϕ2 ∈ L1(Ω) for any
ϕ ∈ H1

0 (Ω). Now, for any ϕ ∈ H1
0 (Ω), let (φn) be a sequence of functions in C∞c (Ω) such that φn −→ ϕ

in H1
0 (Ω) and a.e. in Ω. Using φ = φn in (42) and Fatou’s Lemma we immediately get that (42) holds

true for any ϕ ∈ H1
0 (Ω). In particular, [f ′(u)]+ϕ2 ∈ L1(Ω) and the two claims of (40) follow.
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ii) The convexity of f and (u− v)+ > 0 a.e. on Ω imply

(43) f ′(0)[(u− v)+]2 6 f ′(v)[(u− v)+]2 6 (f(u)− f(v))(u− v)+ 6 f ′(u)[(u− v)+]2 a.e. on Ω

and so

(44) (f(u)− f(v))(u− v)+ ∈ L1(Ω)

thanks to (u− v)+ ∈ H1
0 (Ω) and item i).

iii) By convexity of f we have

f(u)− f(v) > f ′(v)(u− v) > f ′(0)(u− v)

which implies the desired conclusion.
�

Theorem 16. Let Ω be a bounded domain of RN , N > 1 and let f ∈ C1([0; +∞)) be a convex function.
Assume that u, v ∈ H1(Ω) satisfy u − v ∈ H1

0 (Ω), 0 6 v 6 u a.e. on Ω, f(u), f(v) ∈ L1
loc(Ω) and both u

and v are solution to

(45) −∆w = f(w) in D′(Ω).

If f ′(u) ∈ L1
loc(Ω) and u is stable, then either u ≡ v or f(t) = a + λ1t for all t ∈ (infΩ v, supΩ u) and

some 13 a ∈ R, u, v ∈ C∞(Ω) and u−v is a positive first eigenfunction of −∆ with homogeneous Dirichlet
boundary conditions.

Proof.
By item ii) of Proposition 15 we have

(46) (f(u)− f(v))(u− v) ∈ L1(Ω),

note that u− v = (u− v)+ since v 6 u a.e. in Ω.
We claim that

(47)
ˆ

Ω

|∇(u− v)|2 =

ˆ
Ω

(f(u)− f(v))(u− v).

To this end, recall that

(48)
ˆ

Ω

∇(u− v)∇ϕ =

ˆ
Ω

(f(u)− f(v))ϕ ∀ϕ ∈ C∞c (Ω)

by assumption. Then, since f(u) − f(v) ∈ L1
loc(Ω), a standard approximation argument and Lebesgue’s

dominated convergence theorem yield that (48) holds true for any ϕ ∈ H1(Ω) ∩ L∞(Ω) with compact
support. Now we prove that (48) holds true for any ϕ ∈ H1(Ω) with compact support and such that
0 6 ϕ 6 u − v a.e. on Ω. Indeed, we can apply (48) with ϕn = Tn(ϕ), where Tn = Tn(t) denotes the
truncation function at level n > 1, and write

(49)
ˆ

Ω

∇(u− v)∇ϕn =

ˆ
Ω

(f(u)− f(v))ϕn, ∀n > 1.

Since ϕn → ϕ in H1
0 (Ω) and a.e. on Ω, and (46) is in force, an application of Lebesgue’s dominated

convergence theorem we get

(50)
ˆ

Ω

∇(u−v)∇ϕ =

ˆ
Ω

(f(u)−f(v))ϕ ∀ϕ ∈ H1(Ω), supp(ϕ) ⊂⊂ Ω, 0 6 ϕ 6 u−v a.e. in Ω.

To conclude the proof of (47) we proceed as follows. Let (ρn) be a sequence of nonnegative functions in
C∞c (Ω) such that ρn → u− v in H1

0 (Ω) and a.e. on Ω and set wn := min{u− v, ρn}. Then, wn ∈ H1(Ω),
supp(wn) ⊂ supp(ρn) ⊂⊂ Ω and 0 6 wn 6 u− v a.e. on Ω. We can therefore apply (50) with ϕ = wn to
get the desired conclusion (47), since wn → u− v in H1

0 (Ω) and a.e. on Ω, and (46) is in force.

13. Actually the real number a is unique and its value is given by −λ1

´
Ω φ1h´
Ω φ1

6 0, where φ1 is a positive first eigenfunction

of −∆ with homogeneous Dirichlet boundary conditions and h ∈ H1(Ω) is the unique weak solution of −∆h = 0 in Ω with
u − h ∈ H1

0 (Ω) (to see this, use φ1 as test function in the weak formulation of −∆u = a + λ1u and the fact that h is
harmonic) and also note that h is nonnegative by the maximum principle. In particular, u, v ∈ H1

0 (Ω)⇐⇒ a = 0. Also note
that, for every a 6 0 there exist solutions u, v for which the second alternative of the theorem occurs. Indeed, the functions
ut := − a

λ1
+ tφ1, t > 0 are suitable.
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By convexity of f we have f ′(0) 6 f ′(v) 6 f ′(u) a.e. on Ω, hence f ′(v) ∈ L1
loc(Ω) and [f ′(v)]− 6

[f ′(0)]−a.e. in Ω. Also observe that −∆(u − v) = f(u) − f(v) > f ′(v)(u − v) in D′(Ω) and so also
−∆(u− v) + [f ′(v)]−(u− v) > [f ′(v)]+(u− v) > 0 in D′(Ω), since u− v ∈ H1

0 (Ω) is nonnegative a.e. in
Ω. The strong maximum principle (see e.g. Theorem 8.19 in [14]) yields either u ≡ v, and we are done, or
u > v a.e. on Ω. In the remaining part of the proof we assume that the latter possibility is in force and
we set I := infΩ v, S := supΩ u.

Now we combine (47) with (40) with ϕ = u− v to getˆ
Ω

(
f(u)− f(v)− f ′(u)(u− v)

)
(u− v) > 0.

By convexity of f , the integrand in the above inequality is nonpositive and so(
f(u)− f(v)− f ′(u)(u− v)

)
(u− v) = 0 a.e. in Ω

and then
f(u)− f(v)− f ′(u)(u− v) = 0 a.e. in Ω

since u > v a.e. on Ω. The latter implies that, for almost every x ∈ Ω, the function f must be affine on
the open interval (v(x), u(x)). Now we prove that f is an affine function on the the interval (I, S). To this
end we first consider the case in which one of the two solutions is a constant function. If v is constant, say
v ≡ c, then I = c and for almost every x ∈ Ω the function f is affine on the open interval (I, u(x)). Since
any two intervals of this form intersect and f is affine on each of them, we see that f must be the same
affine function on both intervals. This implies that f is an affine function over the entire interval (I, S),
as claimed. The same argument applies if u is constant. It remains to consider the case where neither v
nor u are constant. Since v is not constant we can find x0 ∈ Ω such that

(51)


v(x0) < u(x0) and f(t) = a+ bt for all t ∈ (v(x0), u(x0)),

|{ v > v(x0) }| > 0,

|{ v 6 v(x0) }| > 0,

where we denoted by |X| the Lebesgue measure of any measurable set X ⊂ Ω.
Let (α, β) be the largest open interval containing (v(x0), u(x0)) and such that f(t) = a + bt for all

t ∈ (α, β). To conclude the proof it is enough to show that (I, S) ⊂ (α, β). Let us first prove that I > α.
Assume to the contrary that I < α, then the latter and (51) give I < α 6 v(x0) < supΩ v and so we can
find an integer m > 1 such that

(52) I 6 inf
ωm

v < α < sup
ωm

v

where {ωm,m > 1} is a countable family of open connected sets of RN such ωm ⊂ ωm+1 ⊂⊂ Ω and
Ω = ∪m>1ωm (such a family of open connected sets exists thanks to the fact that Ω is open, bounded and
connected). Recall that u − v ∈ H1

0 (Ω) is positive a.e on Ω and satisfies −∆(u − v) + [f ′(v)]−(u − v) >
[f ′(v)]+(u− v) > 0 in D′(Ω), where [f ′(v)]− ∈ L∞(Ω), then the strong maximum principle yields

(53) u− v > c(m) > 0 a.e. on ωm.

Now, if we set ε := min{ c(m)
2 , α− infωm v } > 0, we have I 6 infωm v < α− ε < α < supωm v and so

(54)

 |{ v 6 α− ε } ∩ ωm| > 0,

|{ v > α− ε

2
} ∩ ωm| > 0.

Since ωm is open and connected we can use the "intermediate value theorem" for functions in a Sobolev
space (see e.g. Théorème 1 of [8]) to get |{α− ε 6 v 6 α− ε

2} } ∩ ωm| > 0. This fact and (53) prove the
existence of xε ∈ ωm such that α− ε 6 v(xε) 6 α− ε

2 and u(xε)− v(xε) > c(m), whose combination leads
to u(xε) > α + c(m)

2 and v(xε) < α. Therefore, f must satisfy f(t) = a + bt for all t ∈ (v(xε), β), which
contradicts the definition of (α, β). This proves that I > α. Now we show that S 6 β. If β = +∞ we are
done, so we suppose that β ∈ R. In this case we observe that infΩ u < β since otherwise we would have
u > β a.e. on Ω and so the strong maximum principle (applied to u − β) would give u > β a.e. on Ω
(recall that v is not constant by assumption). Hence there would exist x̄ ∈ Ω such that v(x̄) < β < u(x̄).
This would imply that f(t) = a + bt for all t ∈ (α, u(x̄)), contradicting the definition of (α, β). If S > β
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(and since infΩ u < β ) the same argument used to prove α 6 I can be applied to the solution u to get
a contradiction (again that f would satisfy f(t) = a + bt for all t ∈ (α, u(y)), for some y ∈ Ω such that
u(y) > β). Therefore S 6 β and f(t) = a + bt for all t ∈ (I, S). Hence, u and v are of class C2(Ω) by
standard elliptic estimates. Finally, u− v ∈ H1

0 (Ω) solves −∆(u− v) = f(u)− f(v) = b(u− v) in Ω and
u − v > 0 in Ω. Thererefore u − v is a positive eigenfunction and so we necessarily have b = λ1. This
concludes the proof. �

Theorem 17. Let Ω be a bounded domain of RN , N > 1 and let f ∈ C1([0; +∞)) be a convex function.
Assume that u, v ∈ H1(Ω) satisfy u− v ∈ H1

0 (Ω), f(u), f(v) ∈ L1
loc(Ω) and both u and v are solution to

(55)

{
−∆w = f(w) in D′(Ω)

w > 0 a.e. on Ω,

If u satisfies f ′(u) ∈ L1
loc(Ω) and u is stable, then u and v are ordered, namely, one of the following three

cases holds true : u < v a.e. in Ω, u ≡ v a.e. in Ω or u > v a.e. in Ω.

Proof. By item ii) of Proposition 15 we have

(56) (f(u)− f(v))(u− v)+ ∈ L1(Ω)

In view of the above results we can follow the proof of Theorem 3 to obtain

(57)
ˆ

Ω

|∇(u− v)+|2 =

ˆ
Ω

(f(u)− f(v))(u− v)+.

Using (40) with ϕ = (u− v)+, (57) and (43) we haveˆ
Ω

f ′(u)[(u− v)+]2 6
ˆ

Ω

|∇(u− v)+|2 =

ˆ
Ω

(f(u)− f(v))(u− v)+ 6
ˆ

Ω

f ′(u)[(u− v)+]2

and so ˆ
Ω

|∇(u− v)+|2 −
ˆ

Ω

f ′(u)[(u− v)+]2 = 0.

The latter and (40) imply that (u− v)+ minimizes the the functional ψ −→
´

Ω
|∇ψ|2 −

´
Ω
f ′(u)ψ2 over

H1
0 (Ω) and therefore (u− v)+ solves

(58) −∆(u− v)+ = f ′(u)(u− v)+ in D′(Ω).

Then

(59) −∆(u− v)+ + [f ′(u)]−(u− v)+ = [f ′(u)]+(u− v)+ > 0 in D′(Ω)

with [f ′(u)]− ∈ L∞(Ω), since f ′(u) > f ′(0) by convexity of f . By the strong maximum principle, either
(u−v)+ > 0 a.e. in Ω or (u−v)+ = 0 a.e. in Ω. That is, either u > v a.e. in Ω or u 6 v a.e. in Ω. In the latter
case we have −∆(v−u) = f(v)−f(u) > f ′(u)(v−u) in D′(Ω) and so also −∆(v−u) + [f ′(u)]−(v−u) >
[f ′(u)]+(v−u) > 0 in D′(Ω), since v−u ∈ H1

0 (Ω) is nonnegative a.e. in Ω. As above, another application
of the strong maximum principle yields either u ≡ v or v > u a.e. on Ω. �

By combining Lemma 14 and Theorem 3 we immediately obtain the following classification result for
stable solutions in H1

0 (Ω).

Theorem 18. Let Ω be a bounded domain of RN , N > 1 and let f ∈ C1(R) be a convex function such
that f(0) = 0. Assume that u ∈ H1

0 (Ω), f(u) ∈ L1
loc(Ω) and that u is a stable solution to

(60)

{
−∆u = f(u) in D′(Ω)

u > 0 a.e. on Ω.

Then, either u ≡ 0 or f(t) = λ1t on (0, supΩ u) and u ∈ C∞(Ω) ∩H1
0 (Ω) is a positive first eigenfunction

of −∆ with homogeneous Dirichlet boundary conditions.

Remark 19. If u ≡ 0, then necessarily f ′(0) 6 λ1 by Lemma 14. Also observe that for any α 6 λ1 there
is a convex function f satisfying f(0) = 0, f ′(0) = α and such that u ≡ 0 is a stable solution to (3). An
example is provided by f(u) = u2 + αu.
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Proof. v ≡ 0 is a solution to (3) since f(0) = 0. Then, an application of Theorem 3 provides the
desired results. Indeed, since u ∈ H1

0 (Ω), we have a = 0 (as observed in the footnote to Theorem 3).
Therefore f(t) = λ1t on (infΩ v, supΩ u) = (0, supΩ u).

�

Proposition 20. Let Ω be a bounded domain of RN , N > 1 and let f ∈ C1([0; +∞)) be a convex
function. Assume that u, v ∈ H1

loc(Ω) satisfy 0 6 v < u a.e. on Ω, f(u), f(v) ∈ L1
loc(Ω) and

(61)

{
−∆u > f(u) in D′(Ω),

−∆v 6 f(v) in D′(Ω).

Then

(62) f ′(v) ∈ L1
loc(Ω),

ˆ
Ω

f ′(v)ϕ2 6
ˆ

Ω

|∇ϕ|2 ∀ϕ ∈ C∞c (Ω).

In particular, if v is a solution to −∆v = f(v) in D′(Ω), then v is stable.

Proof. Recall that, by convexity of f , we have f(u)− f(v) > f ′(v)(u− v) and [f ′(v)]− 6 [f ′(0)]− a.e.
in Ω. Therefore, [f ′(v)]− ∈ L∞(Ω) and, using (61), we obtain

−∆(u− v) + [f ′(v)]−(u− v) > f(u)− f(v) + [f ′(v)]−(u− v) > [f ′(v)]+(u− v) > 0 in D′(Ω).

By the strong maximum principle and u− v > 0 a.e. in Ω we then get

(63) ∀ω ⊂⊂ Ω u− v > c(ω) > 0 a.e. on ω,

where c(ω) is a positive constant depending on the open subset ω. The latter implies that 1
u−v ∈ L

∞
loc(Ω)

and so f ′(v) ∈ L1
loc(Ω), thanks to item iii) of Proposition 15. This proves the first claim of (62). To prove

the second one we recall that f ′(v)(u− v) ∈ L1
loc(Ω) and use once again (61) to get

(64)
ˆ

Ω

∇(u− v)∇φ >
ˆ

Ω

f ′(v)(u− v)φ, ∀φ ∈ C∞c (Ω).

As before, a standard approximation argument and Lebesgue’s dominated convergence theorem yield
that (64) holds true for any φ ∈ H1(Ω)∩L∞(Ω) with compact support. Therefore, for every ϕ ∈ C∞c (Ω)

and recalling (63), we can then take φ = ϕ2

u−v in (64) and find

(65)
ˆ

Ω

∇(u− v)∇
( ϕ2

u− v

)
>
ˆ

Ω

f ′(v)ϕ2, ∀ϕ ∈ C∞c (Ω).

Hence, ˆ
Ω

f ′(v)ϕ2 6
ˆ

Ω

2
ϕ∇(u− v)

u− v
∇ϕ−

ˆ
Ω

ϕ2

(u− v)2
|∇(u− v)|2, ∀ϕ ∈ C∞c (Ω).

The second conclusion of (62) then follows by applying Young’s inequality to the first integral on the
r-h-s of the latter inequality. The last claim is a consquence of (62). �

Proof of Theorem 9.
(1) Since u has finite Morse index, there exists a neighborhood of the boundary of the form Ωε = {x ∈

Ω : dist (x, ∂Ω) < ε} such that u is stable in Ωε (see point (5) below Definition 1). Thanks to Theorem
5, it suffices to prove (9) in the case where u ∈ C2,α(Ωε). Also, the estimate will follow if we prove that
for some ρ ∈ (0, ε) and for every x ∈ Ωρ, there exists a set Ix such that |Ix| ≥ γ and u(x) ≤ u(y), for all
y ∈ Ix.

To this end, we apply the moving-plane method. For y ∈ ∂Ω, let n(y) denote the unit normal vector
to ∂Ω, pointing outwards. Thanks to Lemmas 4.1 and 4.2 in [2], there exists a constant λ0 ∈ (0, ε/2)
depending on Ω only, such that

{x = y − tn(y) : 0 < t < 2λ0, y ∈ ∂Ω} ⊂ Ω

In addition, in a fixed neighborhood of ∂Ω, every point can be written in the form x = y − tn(y), where
0 < t < λ0 and y is the unique projection of x on ∂Ω. Fix x0 ∈ ∂Ω and n = n(x0). By applying the
standard moving-plane method in the cap Σλ := {x ∈ Ω : 0 < −(x− x0) · n < λ} , we deduce that

(66) ∂nu < 0 in Σλ, for every λ ∈ [0, λ0].
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Next, since Ω is uniformly convex, there exists a radius r > 0 depending on Ω only, such that the geodesic
ball B = B(n(x0), r) ⊂ SN−1 can be realized as the set of normals at nearby points and so B ⊂ n(∂Ω).
To see this, assume without loss of generality that x0 = 0 and that ∂Ω coincides near x0 with the graph
of some C2 function ϕ : RN−1 → R such that ϕ(0) = 0, ∇ϕ(0) = 0 and ∇2ϕ(0) is a diagonal matrix with
eigenvalues bounded below by a positive constant (i.e. the directions of principal curvature of ∂Ω at x0

coincide with the canonical basis of RN−1). Then, n(x0) = (0, . . . , 0, 1) and for t = (t1, 0, . . . , 0) ∈ RN−1

small, there holds

n(ϕ(t)) =
(−∇ϕ(t), 1)√
1 + |∇ϕ(t)|2

= n(x0)− t1
(
∂2ϕ

∂t21
(0), 0, . . . , 0

)
+ o(|t1|)

and so n describes an arc of circle in the x1 direction as t1 varies in some small interval (−r1, r1). This
is also true (uniformly, since Ω is uniformly convex) in any direction e ∈ RN−1 and so a small geodesic
ball B = B(n(x0), r) ⊂ SN−1 can indeed be realized as the set of normals at nearby points. This in turn
implies that for all θ ∈ B,

∂θu < 0 in Σ :=

{
x ∈ Ω :

1

4
λ0 < −(x− x0) · n(x0) <

3

4
λ0

}
.

Indeed, applying the moving-plane procedure at every point y ∈ ∂Ω such that θ = n(y), θ ∈ B, we have

∂θu < 0 in {x ∈ Ω : 0 < −(x− y) · θ < λ0} .

By taking a smaller ball B if necessary, we may assume that

|(x− x0) · (θ − n(x0)) + (x0 − y) · θ| < 1

4
λ0, for all x ∈ Σ and θ = n(y) ∈ B.

Now, since −(x− y) · θ = −(x− x0) · n(x0)− (x− x0) · (θ − n(x0))− (x0 − y) · θ, we have for any x ∈ Σ,

λ0 =
1

4
λ0 +

3

4
λ0 > −(x− y) · θ > 1

4
λ0 −

1

4
λ0 = 0

and so, as claimed, for any x ∈ Σ, there holds

∂θu(x) < 0.

Now take ρ = λ0/8. Fix a point x ∈ Ωρ = {x ∈ Ω : dist(x, ∂Ω) < ρ} and let x0 denote its projection on
∂Ω. On the one hand, u(x) ≤ u(x1), where x1 = x0 − ρn(x0). On the other hand, u(x1) ≤ u(z), for all z
in the cone Ix ⊂ Σ having vertex at x1, opening angle B, and height λ0/2 and the proof is complete.

(2) Fix ε > 2λ0 > 0 as above. According to Theorem 5, there exists a sequence of functions uk ∈
C2,α(Ωε) which are stable solutions of a semilinear elliptic equation in Ωε and converge a.e. to u in Ωε.
If N ≤ 9, we may apply the interior estimate Theorem A to deduce that

‖uk‖L∞(Ω2λ0
\Ωλ0

) ≤M‖uk‖L1(Ωε) ≤M‖u‖L1(Ω),

for some constant M depending on Ω. Furthermore, if Ω is convex, we know that uk is monotone in the
normal direction i.e. (66) holds for u = uk, and so the inequality remains true all of Ω2λ0

. Passing to the
limit k → +∞ and using standard elliptic regularity, we deduce that u ∈ C2,α(Ωλ0

) in this case. In the
case where f is nondecreasing on Ω is C3, we can directly apply Theorem 5 combined to Theorem 1.5 in
[5].

(3) We write a generic point in RN as (x, y) ∈ RN−1×R. Let B′ be the unit ball in RN−1, N − 1 ≥ 10
and Ω ⊂ RN the open set obtained by gluing the cylinder B′ × (−1, 1) to the unit half-ball centered
at (x, y) = (0,−1) and to the unit half-ball centered at (x, y) = (0, 1). Let λn : [0, 2] → R+ be a C2

increasing concave function such that λn(y) = ny for y ∈ [0, 1] and λn(2) = (n + ρn), where ρn → 0.
Extend λn as an odd function on [−2, 2]. Then, the domain Ωn = {(x, λn(y)) : (x, y) ∈ Ω} is convex
but clearly not uniformly, nor even strictly. We let un be the minimal solution to (1) with nonlinearity
f(u) = 2(N − 3)eu and domain Ωn. Since u = 0 and u = −2 ln(|x|) are ordered sub and supersolution to
the problem, un is well-defined, stable and

0 < un < −2 ln(|x|) in Ωn.
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It already readily follows that the average 1
|Ωn|‖un‖L1(Ωn) of un remains bounded. In addition, since

−2 ln(|x|) is a strict supersolution of the equation, un cannot be an extremal solution and so un is
smooth and strictly stable, i.e. its linearized operator has positive first eigenvalue.

Recall that ρn → 0 and assume by contradiction that ‖un‖L∞((Ωn)ρn ) ≤M for some constant M > 0.
For (x, y) ∈ Ω, let vn(x, y) = un(x, λn(y)). Then, vn = 0 on ∂Ω and, letting µn denote the inverse function
of λn,

(67) −(∆x + (µ′n)2∂2
y + µ′′n∂y)vn = f(vn) in Ω.

We claim that
‖∇vn‖L∞(Ω) ≤ K,

for some constant K > 0. To see this, we begin by estimating |∇vn| on ∂Ω. On the flat part of the
boundary, we have a natural barrier : since vn < −2 ln(|x|) in Ω and vn = −2 ln(|x|) = 0 on ∂B′×(−1, 1),
we deduce that ‖∇vn‖L∞(∂B′×(−1,1)) ≤ 2. The function ζ(x, y) = 1 − |(x, y) − (0, 1)|2 vanishes on the
boundary of the half-ball centered at (0, 1) and satisfies

−(∆x + (µ′n)2∂2
y + µ′′n∂y)ζ = 2(N − 1) + 2(µ′n)2 − µ′′n∂yζ ≥ 2(N − 1) for y ≥ 1.

Hence, a constant multiple of ζ can be used as a barrier on the half-ball centered at (0, 1). Working
similarly with the other half-ball, we deduce that ‖∇vn‖L∞(∂Ω) ≤ K on the whole boundary of Ω. To
extend the inequality to the whole of Ω, we observe that any partial derivative ∂ivn solves the linearized
equation. Since vn is strictly stable (because this is the case for un), the linearized operator at vn has
positive first eigenvalue. It follows that

‖∇vn‖L∞(Ω) ≤ ‖∇vn‖L∞(∂Ω) ≤ K

as claimed. Up to extraction, the sequence (vn) converges uniformly to some lipschitz-continuous function
v in Ω. In addition, v = 0 on ∂Ω, and for any ϕ ∈ C∞c (B′ × (−1, 1)),

´
Ω
f(vn)ϕ dx→

´
Ω
f(v)ϕ dx whileˆ

Ω

vn(−(∆x + (µ′n)2∂2
y + µ′′n∂y))ϕ dx =

ˆ
Ω

vn(−(∆x +
1

n2
∂2
y))ϕ dx→

ˆ
Ω

v(−∆xϕ) dx.

In particular, the function w(x) = v(x, 0) ∈ H1
0 (B′) is a weak stable solution to

−∆w = f(w) in B′.

But so is u = −2 ln(|x|). By uniqueness of the extremal solution, we must have w = u, which is impossible,
since w is bounded. Hence, up to extraction, ‖un‖L∞((Ωn)ρn ) → +∞.

Appendix A

Proposition 21. Assume that α ∈ (0, 1) and N > 2. Let Ω be a bounded domain of RN and let
f ∈ C1([0,+∞)) be a nondecreasing and convex function. Assume that u ∈ H1(Ω) is a stable 14 solution
of (1) such that u ≥ 0 a.e. in Ω.
1) There exists a sequence (εn) of real numbers in [0, 1) such that εn ↘ 0 and a sequence (un) of functions
in H1(Ω) ∩ C2(Ω) such that un is a stable weak solution 15 to

(68)


−∆un = (1− εn)f(un) in Ω,

un − u ∈ H1
0 (Ω),

0 6 un 6 u a.e. on Ω,

and

(69) un −→ u in H1(Ω), un −→ u a.e. on Ω.

Also, if we assume in addition that Ω is of class C1, T is a C2,α open portion of ∂Ω and u|T = 0 (in
the sense of the traces), then un ∈ C2,α(Ω′) for any domain Ω′ ⊂⊂ Ω∪T (sufficiently small) and un = 0
in T ′.

14. Note that f ′(u) is a nonnegative Lebesgue measurable function (by our assumptions on f) and so the stability
inequality (2) has a meaning.
15. That is a function un satisfying

´
Ω∇un∇ϕ =

´
Ω(1− εn)f(un)ϕ, for all ϕ ∈ H1

0 (Ω).
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2) Assume in addition that u ∈ H1
0 (Ω). Then, the sequence (un) can be chosen in H1

0 (Ω) ∩ C2(Ω). If we
assume in addition that Ω is of class C1, T is a C2,α open portion of ∂Ω and u|T = 0 (in the sense of
the traces), then un ∈ C2

0 (Ω′) for any domain Ω′ ⊂⊂ Ω ∪ T (sufficiently small). In particular, if Ω is of
class C2,α, then un ∈ C2

0 (Ω).

Proof.
i) We argue as in [3] and in subsection 3.2.2 of [10]. Nevertheless, our approach requires several non

standard modifications due to the fact that we work in D′ and that u is merely in H1(B) (i.e., u does
not have "zero boundary value").

Given ε ∈ (0, 1), define Φε : [0,+∞)→ [0,+∞) by
ˆ Φε(t)

0

ds

f(s)
= (1− ε)

ˆ t

0

ds

f(s)

Since Φε solves the initial value problem

(70)

{
Φ′ε(t)f(t) = (1− ε)f(Φε(t)), t > 0

Φε(0) = 0,

we see that Φε ∈ C2([0,+∞)) is increasing, concave and satisfies 0 < Φ′ε(t) < 1 , 0 6 Φε(t) 6 t for all
t > 0, Φ′ε(0) = 1 − ε ∈ (0, 1), Φ′′ε (0) = −ε(1 − ε) f

′(0)
f(0) 6 0 Also, using the concavity on [0,+∞) of the

function h(t) :=
´ t

0
ds
f(s) we get that

(71) 0 6 f(Φε(t)) 6
C(f)

ε
(1 + t) ∀ t > 0,

where C = C(f) > 0 is a constant depending only on f .
Since u ∈ H1(Ω) and (71) is in force, we have Uε = Φε(u) ∈ H1(Ω) and so Uε is a weak supersolution 16

to

(72)

{
−∆uε,1 = (1− ε)f(uε,1) in Ω,

uε,1 − Φε(u) ∈ H1
0 (Ω),

while v = 0 is a weak subsolution to (72). In addition, we have 0 < Uε a.e. on Ω, since f > 0. Therefore by
the (standard) method of sub and supersolution in H1 we obtain a stable weak solution 17 uε,1 ∈ H1(Ω)
of (72) such that 0 < uε,1 6 Uε a.e. on Ω. Furthermore, from (71) we get

(73) 0 6 f(uε,1) 6 f(Uε) 6
C(f)

ε
(1 + u)

and so f(uε,1) ∈ L2(Ω). The latter implies uε,1 ∈ H2
loc(Ω) by elliptic regularity, hence

(74) uε,1 ∈ Lploc(Ω) ∀ p < 2N

N − 4
(p 6∞ if N 6 3, p <∞ if N = 4)

by Sobolev imbedding.
In what follows, for any integer j > 0, we shell denote by Φjε the composition of Φε with itself j times

(Φ0
ε = Id.)

16. That is it satisfies
´
Ω∇Uε∇ϕ >

´
Ω(1 − ε)f(Uε)ϕ, for all ϕ ∈ H1

0 (Ω), ϕ > 0. Indeed, in view of the above properties
of Φε we can extend it to a C2 function on the entire real line R (still denoted by Φε) such that Φε is nondecreasing and
concave, Φ′

ε is nonnegative and bounded on R. Then we can apply a variant of Kato’s inequality (see e.g. Lemma 3.2.1 in
[10]) to get that Uε is a supersolution in D′(Ω). A standard density argument and Fatou’s Lemma then give the desired
conclusion.
17. This solution is obtained by using the standard method of monotone iterations in H1 applied to the sequence (vk)k>1

defined by −∆vk+1 = (1 − ε)f(vk) in Ω, vk+1 ∈ { v ∈ H1(Ω)) : v − Φε(u) ∈ H1
0 } := H1

Φε(u)
and starting with v1 =

Φε(u) ∈ H1
Φε(u)

, the supersolution. Note that the sequence is well-defined in H1
Φε(u)

and satisfies 0 6 vk+1 6 vk 6 Φε(u)

a.e. on Ω thanks to f ′ > 0 and since f(Φε(u)) ∈ L2(B) by (71). Furthermore, the stabilty of uε,1 comes from the stabilty of
u and the fact that f ′ is positive and nondecreasing. Indeed, ∀ϕ ∈ C1

c (Ω) we have
´
Ω |∇ϕ|

2 >
´
Ω f

′(u)ϕ2 >
´
Ω(f ′(Uε)ϕ2 >´

Ω(f ′(uε,1)ϕ2 >
´
Ω((1− ε)f ′(uε,1)ϕ2.
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Now we can repeat the same construction to find a stable weak solution uε,2 ∈ H1(Ω) to

(75)

{
−∆uε,2 = (1− ε)2f(uε,2) in Ω,

uε,2 − Φ2
ε(u) ∈ H1

0 (Ω),

such that 0 < uε,2 6 Φε(uε,1) 6 uε,1 6 u a.e. on Ω. Here we have used Φε(uε,1) ∈ H1(Ω) as supersolution
and again v = 0 as subsolution. Also note that 0 6 Φ2

ε(u) 6 Φε(uε,1) on ∂Ω in the sense of H1(Ω), since
[Φ2
ε(u)− Φε(uε,1)]+ ∈ H1

0 (Ω). In particular, by (71), 0 6 f(uε,2) 6 C(f)
ε (1 + uε,1) ∈ Lploc(Ω) for any p in

the range (74), and thus uε,2 ∈ Lqloc(Ω) for all q < 2N
N−8 (q 6 ∞ if N 6 7, q < ∞ if N = 8). Also note

that 0 < uε,2 6 Φε(uε,1) 6 Φε(Φε(u)) = Φ2
ε(u) 6 Φε(u) a.e. on Ω.

By iteration, we find that if k =
[
N
4

]
+ 1, the solution uε,k ∈ H1(Ω) to

(76)

{
−∆uε,k = (1− ε)kf(uε,k) in Ω,

uε,k − Φkε (u) ∈ H1
0 (Ω),

is locally bounded (hence of class C2 inside Ω) and also satisfies 0 < uε,k 6 Φε(uε,k−1) 6 Φkε (u) 6 u a.e.
on Ω.

Since ε ∈ (0, 1) is arbitrary we have proved that, for every δ ∈ (0, 1) (choose δ = 1 − (1 − ε)k) there
exists a nonnegative stable weak solution uδ ∈ H1(Ω) ∩ C2(Ω) to

(77)

{
−∆uδ = (1− δ)f(uδ) in Ω,

uδ − Φkδ (u) ∈ H1
0 (Ω).

Since 0 6 uδ 6 Φkδ (u) 6 u a.e. on Ω by construction, we get ‖uδ‖L2(Ω) 6 ‖Φkδ (u)‖L2(Ω) 6 ‖u‖L2(Ω) and
also that Φkδ (u) −→ u in L2(Ω) by the dominated convergence theorem (recall that Φδ(t) −→ t for all
t > 0 and that Φε is a contraction on R+). Moreover, by choosing Φkδ (u) − uδ ∈ H1

0 (Ω) as test function
in the weak formulation of (77) we obtain

ˆ
Ω

∇uδ∇(Φkδ (u)− uδ) =

ˆ
Ω

(1− δ)f(uδ)(Φ
k
δ (u)− uδ) > 0

since Φkδ (u) − uδ > 0 a.e. on Ω and f > 0. Therefore we deduce that
´

Ω
|∇uδ|2 6

´
Ω
∇uδ∇Φkδ (u)

which leads to ‖∇uδ‖L2(B) 6 ‖∇Φkδ (u)‖L2(B) by Young’s inequality. On the other hand ∇Φkδ (u) =(∏k−1
j=0 Φ′δ(Φ

(j)
δ (u))

)
∇u, which entails ‖∇uδ‖L2(Ω) 6 ‖∇Φkδ (u)‖L2(Ω) 6 ‖∇u‖L2(Ω). Therefore

(78) ‖uδ‖H1(Ω) 6 ‖Φkδ (u)‖H1(Ω) 6 ‖u‖H1(Ω).

In particular the families (uδ) and (Φkδ (u)) are bounded in H1(Ω) and therefore, we may and do suppose
that (up to subsequences) uδ ⇀ v in H1(Ω), uδ −→ v in L2(Ω), uδ −→ v a.e. on Ω and Φkδ (u) ⇀ V
in H1(Ω), Φkδ (u) −→ V in L2(Ω), Φkδ (u) −→ V a.e. on Ω, for some v, V ∈ H1(Ω), as δ → 0. From
those properties we get V = u (recall that Φkδ (u) −→ u in L2(Ω)) and also that v is a solution of
−∆v = f(v) in Ω. Also v is stable thanks to uδ −→ v a.e. on Ω, the positivity and the continuity of f ′
and Fatou’s Lemma. On the other hand, the weak convergence of (uδ) and (Φkδ (u)) in H1(Ω) and (77)
imply uδ −Φkδ (u) ⇀ v − u in H1

0 (Ω). Finally we get that uδ −→ u in H1(Ω), since uδ ⇀ u in H1(Ω) and
lim sup ‖uδ‖H1(Ω) 6 ‖u‖H1(Ω) by (78). Since both u and v are stable solutions in H1(Ω) and 0 6 v 6 u
a.e. on Ω, we deduce from Theorem 3 that either u = v in Ω or u > 0 and u ∈ C∞(Ω). In the first case
the desired conclusion follows by taking εn = δn, where (δn) is any sequence in (0, 1) such that δn ↘ 0
and un = uδn , while in the second one it is enough to take εn = 0, un = u for every n > 1.

The last claim of item i) then follows by standard elliptic theory.

ii) If f(0) > 0, the conclusion follows from item i). If f(0) = 0, either u ≡ 0 or u is a positive first
eigenfunction of −∆ with homogeneous Dirichlet boundary conditions, by Theorem 18. In both cases the
smoothness of u up to (a portion of the) boundary follows from the elliptic regularity, since ∂Ω is smooth
enough. To conclude it is enough to take εn = 0, un = u for every n > 1.

�
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