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Efficient convolution optimisation by composing micro-kernels

Nicolas Tollenaere∗ Auguste Olivry∗ Guillaume Iooss∗∗ Hugo Brunie†

Albert Cohen‡ P. Sadayappan§ Fabrice Rastello∗

Abstract
Tiling is a key loop transformation for optimizing tensor computations such as CNNs (Convolu-

tional Neural Networks). Tile optimization involves an explosively large search space for multi-level
tiling, including all possible permutations of the tiling loops and all possible valid tile sizes. In this
paper, we develop a comprehensive methodology for finding optimized tile configurations with imper-
fectly nested micro-kernels (“beyond perfect”) and outer tile loops optimized via analytical modeling.
Experimental results on over 30 CNN benchmarks from three popular DNN pipelines demonstrate
the effectiveness of the presented optimization approach by comparing with the Intel oneDNN library.

1 Introduction
Data locality optimization is critical for high performance. Tiling is among the most critical loop trans-
formations for data locality optimization of loop-based programs. Although tiling has been extensively
studied in the compiler research community, effective tiled code generation for high performance remains
a challenging problem. A fundamental problem is that the design space of possible multi-level tiled con-
figurations is huge. Consider the code for a 2D convolution operator in machine learning. As detailed
later in the paper, it is a 7-dimensional loop nest. There are 7! possible permutations for the loop nest.
Tiling for 3 levels of cache results in four bands of loop-nests, one per level of cache and an outermost
band. For each of the tiling loops, many possible choices for tile-size exist.

Tensor computations are at the core of many applications in scientific computing, data analytics and
machine learning. The optimized implementation of tensor computations is therefore of considerable
interest. The current options for optimizing the implementation of a tensor operator, such as a 2D
convolution, are:

• Polyhedral compilers like Diesel [13], Polly [18], Pluto [8], PPCG [29], Tensor Comprehensions, [28],
Tiramisu [4] can automatically generate multi-level tiled code for any affine loop computation such
as 2D convolutions. However, a significant limitation of polyhedral compilers is that none of them
can directly optimize across tile sizes.

• Vendor libraries like oneDNN [1] and cuDNN [23] provide implementations that have been manually
optimized by expert software developers. While these implementations use JIT optimization, they
cannot customize tile configurations in a fully adaptive manner depending on the tensor extents of
different CNN stages in a DNN pipeline.
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• Auto Tuning can be performed by systems like AutoTVM [10]. A user provides a multi-level tiled
loop structure along with a specification of a search space including permutation among subsets
of loops and parametric tile sizes. A search process guided by a dynamically constructed machine
learning model [11] iterates through a number of tiled loop configurations, where code is generated
and compiled, followed by execution on the target platform. The code generated by AutoTVM
has been demonstrated to achieve higher performance than that generated by polyhedral compilers
[10], but still below reference libraries like oneDNN.

• Manual/semi-automatic analytical modeling/optimization. Recent research has shown that a com-
prehensive characterization and optimization across the space of all possible tiled loop configurations
for CNNs is feasible [21]. A manual generation of analytical cost models for data movement and
pruning by manual reasoning was used in conjunction with solution of nonlinear constrained opti-
mization problems to optimize tile sizes. For the innermost loops, a manually created micro-kernel
was used, similar to the BLIS micro-kernel [27]. Over a set of 30+ CNN stages from 3 DNN pipelines,
performance was shown to be consistently higher than state-of-the-art autotuning AutoTVM [10]
and comparable or better than the state-of-the-art oneDNN library [1].

These approaches to optimize core tensor computations differ along two key attributes: (i) perfor-
mance, and (ii) productivity. Optimization approaches that are fully automated, e.g., polyhedral compil-
ers, offer the highest productivity benefits for developers, but currently achievable performance is lower
than other approaches. Libraries like oneDNN [1] and the manually developed optimization scheme of Li
et al. [21] achieve the highest performance but require considerable manual effort. AutoTVM achieves
lower performance than oneDNN [1] or the code from the optimization scheme of Li et al. [21] but requires
much less manual effort – a good script to constrain the search space for the autotuning. In this paper,
we develop an approach to optimize tensor computations that achieves both maximum user productivity
via complete automation, as well as maximum performance. Figure 1 summarizes previously developed
approaches and the new approach (TTile) presented in this paper.

Approach Automation Performance
Polyhedral Compilers High Medium
Library (e.g.oneDNN) Low Very High
Autotuning (e.g., TVM) Medium-High High

Li et al. [21] Medium Very High
TTile (ours) High Very High

Figure 1: Comparison of degree of automation versus performance for alternative approaches to optimizing
CNN

Comparing the prior approaches that do well on both productivity (degree of automation in generating
efficient code) and performance:

• AutoTVM uses heuristic search guided by a machine learning model where the design space is the
entire set of tile sizes for the multi-level tiled loop nest and LLVM is used to compile the loop nest.

• Li et al. use a fully analytical approach by formulating and solving a nonlinear optimization problem
to find the set of tile sizes that minimize data movement overheads. But unlike the TVM approach,
they do not optimize for all tile sizes but use a fixed manually pre-designed micro-kernel for the
innermost loops, similar to the BLIS approach [27], implemented using vector intrinsics.

In this paper, we present an automated micro-kernel optimization and code-generation approach for
tensor computations that improves on these prior approaches. While the developed approach applies to a
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wider class of tensor computations (defined later in the paper), we focus on the important CNN operator
in this paper. The key features of the presented approach and the contributions of this paper are as
follows:

• Instead of a single fixed (manually developed) micro-kernel used by prior approaches [27, 21], a
comprehensive search among the space of possible micro-kernel configurations is made to identify a
set of micro-kernel instances as base building blocks for use in generating optimized code for specific
CNN instances.

• For a given CNN instance and a given micro-kernel, automated analytical modeling is used to
formulate and solve a constrained nonlinear optimization problem for the tile loops surrounding the
micro-kernel.

• For a specific CNN instance, a combination of several micro-kernels can be considered using imper-
fectly nested loops - or “beyond perfect” tile loops.

• Experimental data from a set of 30+ CNN stages from three networks (ResNet, MobileNet, Yolo9000)
demonstrate the superior single-core performance achieved by the presented approach to micro-
kernel optimization over the state-of-the-art oneDNN library.

The rest of the paper is organized as follow: Sec. 2 recaps some necessary background. Sec. 3 motivates
the design of the search space and Sec. 4 details the search strategies. Sec. 5 describes or code generator.
Sec. 6 reports experimental comparisons against state of the art frameworks and libraries. Sec. 7 discusses
related work before the conclusion in Sec. 8.

2 Background
Our framework need to consider several key concepts.

A micro-kernel (µkernel) is an efficient portion of a code which corresponds to the inner-most loops
that do not involve any data-movement between the different cache levels. Its efficiency is mostly dictated
by the CPU characteristics it turns on. It is generally directly written in assembly, or using intrinsic
instructions. In order to be efficient, we want our µkernel to have the following properties: (i) vectorization
units should be used; (ii) the data are stored in (vector) registers and reused across iterations (avoid
extensive use of register spilling); (iii) there is enough parallelism between the instructions (hide pipeline
latency of multiply-add). We target super-scalar architectures and expect out-of-order mechanism to
exploit exposed instruction level parallelism.

An iteration space is the set of integer values taken by the loop indices surrounding a given statement.
A tiling [25, 12] is a loop transformation that partitions the iteration space into sets, called tiles, such that
each tiles are executed atomically between each other. In this paper, we will only consider programs that
have rectangular iteration space, and rectangular tiling. The tiled code has additional loops compared to
the original code: over the tiles, and inside a tile. This division of the computation allows us to control
the amount of data usage per tile (footprint), such that the footprint does not exceed a given memory
capacity. We will consider a hierarchy of tiling which will allow us to fit the data locally used in the
smaller and faster memories.

3 Optimization search space
Let us first introduce the class of loop nests we consider then build a search space of optimization strategies
for this class.
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for ( it = 0 ; it < I ; it += 6)
for (jt = 0 ; jt < J ; jt += 32)

for (k = 0 ; k < K ; k += 1)
µkernel_gemm6,32(C,A,B, it, jt, kt)

Figure 2: Tiled matrix multiplication with µkernel.

3.1 Kernel specification
Figure 2 shows a tiled matrix multiplication kernel as an illustrative example. It relies on an (inline)
fully-unrolled and vectorized µkernel of size 6× 32.

Dimensions and iteration space We only consider rect-angular-shaped iteration spaces. By conven-
tion, we use lowercase to name dimensions (i, j, k) and uppercase to name the (possibly symbolic) upper
bound on this dimension (respectively I, J , K). We also assume that the considered dimensions are
either (i) parallel (ex: i and j) or (ii) a reduction (ex: k). While associativity can be used to parallelize
a reduction, we do not exploit it.

Tensors Tensors are rectangular-shaped multidimensional arrays that are operated upon. In a given
program statement, we assume every tensor may occur once or more but always with the same subscript,
which is an affine function of the iteration space to the tensor’s rectangular shape. For example, tensor
A of shape {i, k|0 ≤ i < I, 0 ≤ k < K} may be subscripted by [i, k], corresponding to the access
function (i, j, k 7→ i, k). We also assume that a index cannot appear twice inside an access function: for
example E[i, i] is forbidden. These assumptions apply to tensor contractions and convolutions, including
all strided variants. A mapping function from a tensor definition domain to a memory location is used
during the last phase of the code generation to linearize the tensors. For example, C[i, j] will be replaced
by C[J*i+j].

Class of kernels We consider perfectly nested affine loop programs such that:

• The iteration domain is rectangular and is fully permutable.

• All the occurrences of a tensor in a statement have the same access function.

• An index cannot appear twice in an access function of a tensor.

3.2 Optimization strategy
Classical high-performance libraries, such as BLIS, TCCG, oneDNN, rely on a fixed optimization pattern.
This pattern is based on a single hand-written µkernel selected from a tiny set, uses a fixed packing
strategy and conditional execution or padding to manage partial tiles. In our case, we consider a different
space of strategies: we allow combination of micro-kernels, and we forbid partial tiles. This section define
this class of optimization strategy we will consider.

The optimization scheme is a list of specifiers that describe the layered structure of the generated
code, from the outermost loop inwards. A specifier can be either:
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• Rd, to insert the outer loop along dimension d. Assuming a tiling along d, this loop will iterate
over the outer-level tiles along d (it will step by 1 otherwise). As we will see, our scheme does not
consider partial tiles: outer-level tiles sizes along d should divide D. Besides, Rd may appear at most
once for a given dimension d, and must be the first (leftmost) specifier involving this dimension.

• Tk,d, to insert a tile loop along dimension d. It iterates exactly k times along d on the next-level
tiles (if any, and it will step by 1 otherwise). Again, there is no partial tile and the size of the
iteration space along d covered by one full execution of this loop should be a multiple of k.

• Uk,d, is semantically equivalent to insert a tile loop with Tk,d and fully unroll it (register tile).
Divisibility constraint still hold: partial register-tiles or partial vectors are not allowed.

• Vd, is semantically equivalent to insert a tile loop with Tv,d (with v the vector length on the targeted
architecture) and vectorize it. Vectorization occurs at the innermost level only: there may be at
most one V•, which must be at the end of the list.

• λseqd
α. [`], where ` = [(ri, ai)]1≤i<s is a list of s ≥ 2 pairs, introduces a sequence of s loops of size ri

along dimension d. Each of the s loop iterates over the next-level parametrized-by-α tiles. For loop
nest 1 ≤ i < s, parameter α (that can be used in a specifier as a placeholder for k) is set to α = ai.
As we will see later, this specifier that leads to generating a non-perfectly nested loop, allows to
use highly-optimized µkernels which size do not divide the problem size: Splitting a dimension (e.g.
Y = 34) into two non-equal parts (e.g. 22 and 12 with ` = [(2, 11); (1, 10)]) allows to fulfill the
divisibility constraint (no partial tiles) and use high-performance µkernels (here of size 11 and 10
along y).

Note that we do not define a packing specifier. Our experiments demonstrated that packing was
not a performance-critical transformation for convolutions. Diverging from the default strategy in the
optimization of matrix product and tensor contractions, packing should not be an automatic choice. This
is good news, as it helps simplifying both code generation and the search for an efficient optimization
strategy. Of course, we will have to extend our framework to enable packing again when broadening the
applications of our optimization algorithm beyond convolutions.

Example For example, the naive implementation of a matrix multiplication would be: [Ri,Rj ,Rk]. A
slightly less naive implementation of a matrix multiplication based on the BLIS [27] µkernel for floats
(f32) on AVX2 is:

[Rj ,Rk,Ri,Tnc
16
,j ,Tmc

6
,i,Tnk,k,U6,i,U2,j ,Vj ]

The generated code contains a µkernel of size (i = 6, j = 16, k = nk) known to be quite efficient as
it requires only 15 vectors (see [27]) and exposes enough instruction-level parallelism (12 multiply-add
can be done independently between two accumulation steps). Around it, a loop along i creates a tile of
size mc, and another along j a surrounding tile of size nc. As one can observe, and as explained later
in this section, this code needs to assume that I is a multiple of mc itself being a multiple of 6 (similar
constraints apply for j and k). State of the art libraries rely on fixed-size µkernels and tuned tiles sizes,
and thus introduce partial non-optimized tiles to cope with arbitrary problem size that do not fulfill the
divisibility constraint. Assume for example a matrix-multiplication of size I × J ×K = 128× 128× 64.
128 is not divisible by 6, but 128 = 12× 6+ 8× 7, and efficient code can be obtained using the following
scheme:

[Rj , λseqiα. [(12, 6); (8, 7)] ,Tnk,k,Uα,i,U2,j ,Vj ]

which leads to the loop structure:

5



for (j = 0 ; j < 128 ; j+= 16) {
for ( i = 0 ; i < 72 ; i+= 6)

for (k = 0 ; k < nk ; k+= 1)
µkernel_gemm6,16

for ( i = 72 ; i < 128 ; i+= 7)
for (k = 0 ; k < nk ; k+= 1)

µkernel_gemm7,16

}

4 Exploration of the optimization space
While we have been able to define an optimization space for a general class of tensor operations, building
an effective exploration strategy involves additional domain knowledge and properties. From now on, we
focus on the important case of convolution kernels with static shape. Figure 3 shows a template for a 2D
convolution.

We propose a novel optimization algorithm capable of exploring our very expressive optimization
space. The optimization algorithm is divided into 4 steps, building on analytical modeling, empirical
evidence, control overhead mitigation and code size constraints. It is summarized by Figure 4:

1. First, we measure the performance of many variations of µkernels in isolation. The set of µkernel
candidates are the one that are performing best (Section 4.1). This phase is problem size agnostic
but is specific to each targeted architecture.

2. Then, for each µkernel candidate, accounting for the problem size and cache sizes, we determine
the best loop permutation (list of loop dimensions) enclosing the µkernel (Section 4.2), that is, the
main structure of the loop nest is determined (nesting of tiles along which dimensions), but not the
actual tiles sizes. This permutation is obtained through operational research by using an analytical
model of the footprint, data movement and reuse across tiles. Similar size µkernels are grouped
into classes at this step as they yield the same permutation in the analytical model. The output
permutation is also decomposed into 4 parts, the L1-, L2-, L3-fitting loops, and the remaining loops
whose footprint does not fit the last level cache.

3. From the selected µkernels, we generate the space of compatible optimization schemes. For a µkernel
(or a combination of – see below), we complete the associated permutation with specific tile sizes
and unroll factors (Section 4.3). The main compatibility challenge, that is the so-called divisibility
constraint, stems from our choice to never generate any partial tile (associated with control flow
overhead, code duplication or padding overhead). We thus require any tile size picked at a given
dimension to be a multiple of the size of its sub-tiles and to divide the (full) problem size along that
dimension. In particular, a µkernel which size does not divide the problem size shall not lead to
any compatible scheme. In practice, problem size might not be friendly with the size of the high-
performance selected micro-benchmarks. As an example, Yolo9000-8 has a problem size of H = 17,
but while in particular some of the micro-benchmarks of size H ∈ {5, 6} have good performance, all
of the micro-benchmarks of size H = 17 have quite poor performance. To address this problem, we
also consider, thanks to the λTseq specifier, combinations of µkernels: two candidate µkernels can
be combined if their size differs only on one dimension. For our Yolo9000-8 for example, µkernels
of size {S = 3, H = 5,K = 4} and {S = 3, H = 6,K = 4} can be combined to fulfill the divisibility
constraint without compromising the performance.
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for (k = 0 ; k < K ; k+= 1)
for (c = 0 ; c < C ; c+= 1)

for (h = 0 ; h < H ; h+= 1)
for (w = 0 ; w < W ; w+= 1)

for (r = 0 ; r < R ; r+= 1)
for (s = 0 ; s < S ; s+= 1)
O[k, h, w] = K[k, c, r, s] ∗ I[c, h+ r, w + s]

Figure 3: Convolution (batch size N = 1).

Pb size agnostic
µkernel performance

measurements

µkernel candidates
GFlops
selection

Pb and cache sizes

Best loop permutation
L1, L2, L3, MEM parts

opt.
solve

analytical I/O model

Compatible
optimization schemes

filtering
divisibility constraint

µkernel combination

sorted candidate schemes
analytical I/O model

sorting

first candidate
selection

TTile best
autotuning

Figure 4: Flow of the optimization strategy selection.

4. Thanks to our decoupled approach and because of the strong imposed constraint of divisibility,
the size of the obtained space of viable schemes, ranges from a few hundreds to several thousands.
While, this is still acceptable for ahead-of-time exploration (a few hours for one problem), we can
do better. A simple metric detailed in Section 4.4 can be used to sort all those schemes allowing to
either remove the need for any autotuning or allowing JIT selection.

4.1 µkernel performance evaluation
We identified 4 optimization schemes to build the space of all possible µkernels. The optimization schemes
selection is driven by CPU architecture and CNN structure: the code should contain vectorized load and
store instruction to maximize the performance throughput. The dimension k is selected to be vectorized
because it contains the simplest access patterns among all w, h and k.

We evaluate the performance in isolation of the variations of convolution shapes and context. The
code of these µkernels are generated automatically using TTile, from these optimization schemes:

• [T512,c,Uβ,h,Uα,k,Vk]

• [T512,c,U3,s,Uβ,h,Uα,k,Vk]
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Figure 5: Performance of µkernels in isolation for AVX512 (Intel i9-7940X Skylake-X), in percentage of
the machine peak. Here R and S are fixed to 1. We tested all combination of R/S in 1,3 but report the
results only for 1,1 here for space consideration. The sizes of the µkernels (α along the K dimension
(horizontal axis) and β along the H dimension (vertical axis)) vary between 1 and 15. Only the upper-left
triangle was evaluated. In red are the selected class of best µkernels that will be used by our optimization
strategy selection.

• [T512,c,U3,r,Uβ,h,Uα,k,Vk]

• [T512,c,U3,r,U3,s,Uβ,h,Uα,k,Vk]

where α and β are the sizes of the µkernel along the k and the h dimension, respectively. The r and
s dimensions are small dimensions whose value is often 1 or 3. Thus, we do not need to explore it
extensively.

In order to evaluate the performance of one of these µkernel, we repeat it along the c dimension (T512,c),
and we run its code on a problem size equal to the footprint of the µkernel optimization strategy. The
results on AVX512 are shown in Figure 5. For these experiments, the frequency have been fixed at 3.1
GHz, the OS is Arch Linux (kernel version 5.10.10), and hardware counters have been monitored using
PAPI version 6.0.0.1.

We observe that the performance graph is roughly convex with some local fluctuations. Also, placing
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both dimensions r and s in the µkernel gives at most 70% of the peak performance, which is much less
than the 95% we can potentially obtained for the other patterns. So, these µkernels should be avoided.

Class of candidate µkernels Many µkernels are near the peak performance. We select the ones which
are above 85% and classify them using the following ad-hoc strategy: The µkernels of a given class have
the same characteristics (same size on C,H, S,R), except for their size on dimensions H that belongs to
an interval. For example, {[Uβ,h,U2,k,Vk], 8 ≤ β < 15} is one of the class of µkernels that is selected for
AVX-512, as shown with the leftmost red vertical rectangular contour on Figure 5.

This step is problem size agnostic, and needs to be done only once per architecture.

4.2 Loop permutation above the µkernel
Given the convolution size and a µkernel, we compute a suitable permutation of the loop above the
µkernel that minimizes the amount of data movement needed by the caches and in particular the L1
cache. This permutation is divided into parts, each part corresponding to a cache level.

For example, for the Yolo9000-0 benchmark, the output on the µkernel [U8,h,U2,k,Vk] is (from outer
to inner):

[K;H], [W ;H], [H], [S;R;W ;C]

The first list are the loops above the L3 cache, the second list are the loops above the L2 while being
L3-resident, the third list is the loop above the L1 and L2-resident and the fourth list are the loops above
the µkernel and L1-resident. Each dimension appears at most once in each list.

The permutation is found by running a separate tool, whose functioning is detailed in a paper currently
under review. The approach is similar to that of Li et al. [21], but generalized to the larger class of affine
programs [16]. We will only summarize the main ideas behind it.

For a given permutation, the tool is able to derive an analytical expression of the data movement
volume at each memory level, as a function of tiling loop extents and cache sizes. This is done by
computing the footprint of each array at each level of the loop nest, as well as the level at which the
total memory footprint exceeds the cache size. A pre-processing step avoids trying all possible loop
permutations (here (7!)3): many of them are equivalent in term of data movement cost, or provably
worse. At each memory level, the number of considered permutations drops from 7! to only 6.

Then, for given value of array sizes, this analytical model is fed to a non-linear problem optimizer
which finds (potentially fractional) tile loop sizes for each dimension at each level that minimize overall
data movement. Since actual tile size selection is a very complex problem (with divisibility constraints,
partial tiles, cache replacement policies...), what is retained in the output is only the loop permutation,
i.e. the order of loops that are non-degenerate at each tiling level.

Low level architecture details such as vector units and register capacity are not part of the analytical
model, so the µkernel configuration is part of the input.

In order to avoid performing this analysis for every µkernel for a convolution size, we assume that the
loop permutation stays the same for any µkernel inside the same class.

4.3 Space of valid optimization schemes
One of the main assets of our technique, enforced in the optimization scheme, is that we forbid partial
tiles. This means that, the size of a rectangular tile along a dimension must be the divisor of the problem
size along this dimension, and a multiple of the size of a potential tile below it on the same dimension.
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H = 34

11

11

12

K=2

Figure 6: Example of coverage of a problem size by using a combination of two µkernels: 34 = 2×11+12.

However, this constraint is difficult to satisfy for some problem sizes. We avoid this problem by using
two µkernels of different sizes, and by combining them sequentially in order to get back to a divisor of
the problem size. Figure 6 shows a graphical example of such a combination.

Combining µkernels sequentially In order to juxtapose legally two µkernels, all their sizes must be
the same, except for one dimension. In our case, we consider the combination of µkernels inside the same
class, thus, in practice, the h dimension is generally the one that varies.

For all pair of µkernel in the same class, of sizes h1 and h2 along the changing dimension, and given a
problem size H, we try to find a number of repetitions a and b of these µkernels such that: (a×h1+b×h2)
divides H.

For example, if H = 34 and we are considering two µkernels of the same class of size h1 = 11 and
h2 = 12, then we can combine two µkernels of size 11 followed by a µkernel of size 12 in order to reach
34.

If we cannot reach a divisor of the problem size, then we consider that it is not possible to tile using
the considered pair of µkernels, and we continue on the next candidates.

When we manage to find a valid combination, we need to complete it into a full optimization scheme.

Completing a µkernel into a full scheme Given (i) a single µkernel that divides the problem sizes,
or a µkernel combination that divides the problem sizes, and (ii) a loop permutation, we combine them
into an optimization scheme. The algorithm proceeds as follows:

1. We place the chosen µkernel, or the pattern of the combination of µkernels on the right of the
optimization strategy (innermost loops).

2. For every dimension, we consider the divisors of the problem size divided by the µkernel size. These
divisors needs to be allocated to the different strip-minded occurrences of the dimension across the
whole permutation. There are many solutions and we consider all of them. Notice that there are
(by construction) at most 4 occurrences of a dimension in a loop permutation, which limits the
amount of possibilities.

3. For each element d in the loop permutation, we consider the product π of the divisors allocated
to this occurrence and we build the corresponding specifier and we place a Tπ,d. These specifiers
arranged in the same order of the given loop permutation form the strategy scheme above the
µkernel.
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4. If we consider a sequence of two µkernels at dimension d with the combination a× h1 + b× h2, we
can place the λseqd

α. [l] at any occurrence of dimension d in the loop permutation, and consider all
variations. The value of the list ` is [(a, h1), (b, h2)].

Example Let us consider the µkernel class

{[Uβ,h,U2,k,Vk], 8 ≤ β ≤ 15}

for AVX512, and let us consider Yolo9000-13 problem sizes (K,C,H/W, R/S) = (512, 256, 34, 3). Let us
assume that the corresponding loop permutation found was

[K;H], [W ;H], [H], [S;R;W ;C]

The problem size on the dimension H is 34 = 2×17, thus there is no single µkernel from the considered
class that matches one of its divisor. Thus, we consider combinations of 2 µkernels from that class. We
can either consider combination equals to 17 or to 34. Let us consider the later case, and let us consider
2× 11 + 1× 12 as one of these combination.

Now, we need to distribute the multiples of the other dimensions across the different level of tiling
described by the loop permutation:

• The k dimension is trivial: there are only one loop above the µkernel and the µkernel size along
this dimension already has a footprint of 32. Thus, we need to tile by a factor of 16 on the outer
loop.

• The c dimension is also trivial: the only loop need to be tiled by a factor of 256. Likewise for the
r and s dimensions (3 for both).

• The h dimension is already managed by the combination of µkernels. We have 3 locations where
we can place the λseqh

β. [(2, 11); (1, 12)] corresponding to the switch between the two µkernels. Let
us consider the outer one.

• The w dimension has 34 to be distributed across 2 level of tilings. There are 4 combinations: 34×1,
17× 2, 2× 17 and 1× 34. Let us consider the second one.

Thus, one of the optimization scheme that we generate is:

[Tk,16,Th,1, λseqh
β. [(2, 11); (1, 12)] ,Tw,17,Th,1,Th,1,

Ts,3,Tr,3,Tw,2,T256,c,Uβ,h,U2,k,Vk]

4.4 Pruning the optimization space
The optimization space is large and, even if spending several hours or days per convolution instance to
evaluate all schemes can be acceptable, it turns out that one can drastically reduce the search space
(up to not having to rely on any tuning at all) without trading too much performance. We propose the
following metric, which allows us to focus on an area where there are at least one of the best performing
scheme, based on observations made on Figure 7:

• First, maximize the reduction size, i.e. the size of the tiling on c just above the µkernel.

• Then, select those close to 120% of occupancy of the L1 cache.
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Figure 7: Exhaustive exploration of the optimisation space for Yolo9000-4, and classification according
to the tile size of the reduction loop c above the µkernel and L1 cache occupancy.
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Benchmark Problem sizes
(K, C, H/W, R/S)

Yolo9000-0 32, 3, 544, 3
Yolo9000-2 64, 32, 272, 3
Yolo9000-4 128, 64, 136, 3
Yolo9000-5 64, 128, 136, 1
Yolo9000-8 256, 128, 68, 3
Yolo9000-9 128, 256, 68, 1
Yolo9000-12 512, 256, 34, 3
Yolo9000-13 256, 512, 34, 1
Yolo9000-18 1024, 512, 17, 3
Yolo9000-19 512, 1024, 17, 1
Yolo9000-23 28269, 1024, 17, 1

Benchmark Problem sizes
(K, C, H/W, R/S)

ResNet18-1* 64, 3, 224, 7
ResNet18-2 64, 64, 56, 3
ResNet18-3 64, 64, 56, 1
ResNet18-4* 128, 64, 56, 3
ResNet18-5* 128, 64, 56, 1
ResNet18-6 128, 128, 28, 3
ResNet18-7* 256, 128, 28, 3
ResNet18-8 256, 128, 28, 3
ResNet18-9 256, 256, 14, 3
ResNet18-10* 512, 512, 14, 3
ResNet18-11* 512, 256, 14, 1
ResNet18-12 512, 512, 7, 3

Benchmark Problem sizes
(K, C, H/W, R/S)

MobileNet-1 32, 32, 112, 3
MobileNet-2* 64, 64, 112, 3
MobileNet-3 128, 128, 56, 3
MobileNet-4* 128, 128, 56, 3
MobileNet-5 256, 256, 28, 3
MobileNet-6* 256, 256, 28, 3
MobileNet-7 512, 512, 14, 3
MobileNet-8* 512, 512, 14, 3
MobileNet-9 1024, 1024, 7, 3

Figure 8: Convolution benchmarks and sizes. The kernels marked with a * are stride 2, else stride 1.
Dimension k Yolo9000-23 was padded to 28272 (which is a multiple of 16) to vectorize it on AVX512.

The cache occupancy can be easily evaluated from the scheme, because the loop permutation tells us
at what level the L1 cache should be saturated.

We evaluate all the schemes of our set using this metric and select the 50 best ones. Then, we generate
code (see Section 5) before measuring performance. The final results are shown in Section 6.

5 Code generator (TTile)
Let us now describe how to generate a C code from a kernel specification, problem size and the associated
optimization scheme.

5.1 Sub-scheme and associated size
As illustrated in the example of Section 3.2, generating a loop requires to know the size of the sub-tiles.
For this purpose, our code generator proceeds from innermost outwards. Calling a sub-scheme the suffix
of an optimization scheme, at a given step the already generated code (that corresponds to inner levels)
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is fully specified by the corresponding sub-scheme. In the following, the size of a sub-scheme refers to the
size of the corresponding (parametrized) sub-iteration space.

Taking the example from Section 3.2, the sub-scheme of the BLIS µkernel (including the reduction
loop on k) is: Sµkernel = [Tnk,k,U6,i,U2,j ,Vj ]. Its size along i, j, and k is respectively 6, 16 and nk.

5.2 Overview of the code generation algorithm
Our code generator iterates right to left on the optimization scheme in a single pass. At every level, we
keep track of the following information:

• the size of the loops that are already generated;

• for every dimension, the name of the last index used by a loop (to handle tiling).

Before applying our code generation algorithm, we apply a preprocessing step to get rid of the λTseq
specifier and its parameter α. We introduce a new specifier Seq that corresponds to the sequential
composition of a list of strategies. For our considered optimization strategies, the list of the λTseq specifier
is always of size 2. The corresponding rewriting rule would be:

[ . . . , λseqd
α. [(i1, v1), (i2, v2)] , S ]

⇒ [ . . . ,Seq([Ti1,d, S[α/v1]], [Ti2,d, S[α/v2]]) ]

where S is the sub-scheme following the λTseq specifier and S[α/v] is this sub-scheme where α was
substituted by the value v.

We now have a tree of specifiers instead of a list of specifiers, on which we can still iterate from the
leaves (innermost loops) to the root of the tree (outermost loops).

5.3 Code generation rules
Let us now survey the different specifiers and how code generation operates for each one.

Sequence Seq We combine sequentially the generated code corresponding to the sub-schemes inside
the Seq specifier.

Vectorization Vd We consider the SSA graph of the computation described in Section 3.1. We deter-
mine which operations should be vectorized by propagating the vectorization in this graph starting from
the loads:

• read (T, f) is vectorized if d appears in the access function f .

• Op (x, y) is vectorized if one of its operand (x or y) is vectorized. If one of them is a scalar, it is
broadcasted.

• write (v, T, f) is vectorized if v is a vector and d appears in the access function f . These conditions
must be both true or false, else we raise an error.

The C code uses Intel intrinsics to manipulate vectors.
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Unroll Uk,d We unroll the computation over the d dimension k times by duplicating the generated code
of its sub-scheme, while updating the value of the loop index on the d dimension in each duplication.

Tiling Tk,d or Rd We add a loop over the generated code of its sub-scheme, that iterates k times,
and whose value is increased by the value of the sub-scheme. If Rd is used, we can deduce the correct
number of iterations by comparing the footprint of the sub-scheme with the problem sizes. This changes
the current loop index in use over the d dimension.

6 Performance results
We target an Intel i9-7940X Skylake-X using AVX512. The frequency have been fixed at 3.1 GHz, the OS
is Arch Linux (kernel version 5.10.10), and hardware counters have been monitored using PAPI version
6.0.0.1.

We evaluate the generated code for the scheme selected by our optimization algorithm, and compare
performance with Intel oneDNN. Figure 9 reports single-thread performance for all the benchmarks in
Figure 8. Performance results are the median of 100 executions. The whole process, using TTile to find
the 50 best permutation for each benchmark, according to our metric 4.4, and running all of them to get
the performance results, takes about 15 mins. This is much faster than state-of-the-art feedback-directed
autotuning approaches.

We use the following layouts, from outer to inner dimensions: for the output tensor, W,H,K; for the
input tensor, W + S,H +R,C; and for parameters, S,R,C,K. These layouts are widely used on CPU.
They have been chosen to facilitate vectorization along dimension K, which is a parallel dimension and
has the desirable property of being a big power of two in every benchmark—except for yolo9000_23.
Thus K should be the inner dimension when it subscripts a tensor. OneDNN has the ability to reorder
dimensions, changing the layout for optimal performance. Thus, we report both end-to-end performance
results including the cost of oneDNN’s layout transformations, and convolution-only results for oneDNN
performance evaluation. This potentially allows oneDNN to start with a more elaborated layout than our
basic one, for example one with interleaved dimensions (instead of the default layout which is linearized)
that matches the accesses pattern of the convolution loop nest. The results on figure 9 highlight that the
code we generate remains competitive and outperforms oneDNN in the majority of the cases (17 times
out of 32 convolutions).

We also report the combination of µkernels used by the best performing scheme. The variety of
configuration supports the argument that we should not restrict the code generation to a few µkernels
but instead embrace the diversity of their candidate.

After ordering the list of configurations following our metric defined in section 4.4 (no execution
needed), we report the performance of the "best" candidate configuration and the performance of the
best one among the first 50 (out of several thousands). We also report the best out of an exhaustive
search. This last result shows that our metric is good enough to quickly find the best configuration in
many cases.

As an example, the best optimization strategy for Yolo9000-4 on AVX512 is: [λseqh
α. [(1, 12); (4, 14)] ;T136,w;

T8,k;T2,h; T3,r;T64,c;U3,s;Uα,h;Vk].
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Benchmark oneDNN oneDNN TTile (us) µkernel
with reorder conv only (first/50 best/exhaustive) (50 best)

Yolo9000-0 25% 61% 27%/31%/42% 11[H11K2]+[H15K2]
Yolo9000-2 70% 85% 82%/85%/85% 9[H9K2]+5[H11K2]
Yolo9000-4 79% 86% 86%/92%/92% [S3H12]+4[S3H14]
Yolo9000-5 47% 83% 66%/76%/76% [H6K4]+4[H7K4]
Yolo9000-8 82% 86% 81%/81%/87% [S3H10]+2[S3H12]
Yolo9000-9 66% 88% 77%/86%/86% 3[H8K2]+4[H11K2]
Yolo9000-12 82% 86% 37%/66%/74% [H8K2]+2[H13K2]
Yolo9000-13 73% 85% 75%/88%/88% [H10K2]+2[H12K2]
Yolo9000-18 68% 78% 16%/63%/65% [S3H5K4]+2[S3H6K4]
Yolo9000-19 72% 82% 30%/39%/75% [H8K2]+[H9K2]
Yolo9000-23 66% 79% 9%/56%/- [H8K3]+[H9K3]
ResNet18-1* 68% 83% 39%/47%/- [H7K4]
ResNet18-2 73% 82% 80%/92%/- [S3H14]
ResNet18-3 44% 74% 60%/75%/- 7[H6K4]+2[H7K4]
ResNet18-4* 63% 71% 67%/88%/- 2[S3H9K2]+[S3H10K2]
ResNet18-5* 34% 76% 83%/83%/- [H7K4]
ResNet18-6 76% 83% 83%/95%/- 2[S3H9K2]+[S3H10K2]
ResNet18-7* 61% 77% 37%/78%/80% 2[R3H4K4]+[R3H6K4]
ResNet18-8 77% 84% 37%/40%/79% 2[S3H9]+[S3H10]
ResNet18-9 67% 80% 38%/78%/- [H14K2]
ResNet18-10* 38% 58% 31%/64%/- [H7K2]
ResNet18-11* 43% 80% 84%/88%/- [H7K4]
ResNet18-12 39% 61% 41%/66%/- [R3H7K4]
MobileNet-1 67% 79% 82%/87%/- 3[H8K2]+8[H11K2]
MobileNet-2* 52% 64% 61%/79%/- 3[S3H10]+2[S3H13]
MobileNet-3 81% 86% 84%/93%/- [S3H14]
MobileNet-4* 57% 62% 71%/88%/- 2[S3H9K2]+[S3H10K2]
MobileNet-5 77% 80% 34%/78%/85% [H14K2]
MobileNet-6* 57% 71% 37%/76%/- [H7K4]
MobileNet-7 66% 78% 32%/70%/- [H14K2]
MobileNet-8* 38% 58% 31%/63%/- [H7K4]
MobileNet-9 33% 58% 23%/43%/- [H7K4]

Figure 9: Performance results of the generated convolution kernel for AVX512 (Intel i9-7940X Skylake-X),
in percentage of machine peak. (a) Bold results are the best among all. Underlined results correspond
to TTile beating oneDNN with reorder, but not oneDNN convolution only. (b) We also report the
performance of the first candidate, as noted by our metric. (c) We took the time to explore exhaustively
some of the optimization space of some benchmarks and we report the best performance found. (d) The
µkernel reported are the unrolled loops above the vectorization on k, and the potential split between two
µkernels, for the best configuration found. For example, “11[H11K2]+[H15K2]” means the combination
of 11 times a µkernel with the h dimension unrolled 11 times and the k dimension twice, and a µkernel
with the h dimension unrolled 15 times and the k dimension twice.
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7 Related work
Optimization of affine Programs To optimize affine programs, some methods are based on analytical
models and operation research. This is the main approach used by polyhedral based compilers [18, 8, 29,
28, 13, 4] that exploit the power of parametric integer linear programming. Although such approaches
are suited to expose parallelism [14, 15] and coarse grain locality [8], we believe it may not be the right
formalism for tile size selection or register level optimizations.

On the other hand, counting points in a polyhedral, with the Barvinok [5] library, is useful to auto-
matically generate (non-linear) cost models that can be used to optimize neural networks at the graph
level [28]. Our implementation uses the Barvinok [5] library to generalize the approach of Li et al. [20]
for the selection of an optimized schedule to our class of problems.

Cloog [6] is a powerful algorithm from the polyhedral model that allows to automatically generate
imperative code for scanning a union of polyhedra. Polyhedral compilers such as [4, 18] leverage such
code generation algorithms. But the approach faces the challenge of dealing with a very general class
of imperfect nests and transformations, making it difficult to compete with domain-specific optimiza-
tions, eliminating control flow and overhead and missed optimization opportunities. Our code generation
involves simple polyhedron scanning algorithms, and the divisibility constraint allows to generate high-
quality compiler friendly code without heroic efforts [19].

Optimization of machine learning programs There exist many compilers specialized for machine
learning:
PlaidML [9] using polyhedral techniques, XLA [2] for TensorFlow [3], Halide [24], or TVM [10]. TVM, as
opposed to most approaches does not rely on the use of architecture-specific CNN/linear-algebra libraries.
The strategy of TVM is to select the best schedule using autotuning with a ML-based performance model.
Contrary to our approach that decouples the search into micro-kernel optimization and loop tiling and
permutation search, the TVM search space is flat. In TVM, optimizations related to strength reduction
and register tiling are left to the compiler. Telamon [7] tackles this problem by building a very large,
flat search space where optimization choices are tied together by dependency constraints. Then the
exploration combines an elaborate performance model to prune the search space with feedback from
actual executions.

Linear algebra and CNN libraries Frameworks such as TBLIS [22] or TCCG [26] aim at creating
portable optimized code for BLAS or tensor contraction kernels. These frameworks implement an efficient
predefined scheduling scheme which is very effective, in particular for matrix-matrix multiplication [17].
These frameworks take advantage of advanced optimizations: tensor transposition, tensor blocking, or
sub-viewing, data prefetching, vectorization, block scheduling, unrolling and scalar promotion. The
register tile shape is predefined using expert knowledge on instruction level and register pressure. Thanks
to aggressive autotuning and JIT/AoT code versioning, MKL [30] and oneDNN [1] are the best available
Intel libraries which implement all those techniques today.

8 Conclusion
The main contribution of this paper is a method to find a good optimization strategy for the single-
threaded execution of a convolution kernel with static shape. Unique among code generators and opti-
mization methodologies for convolutions, our strategy considers a wide range of µkernels, omits to pack
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tensors for stride-1 access in µkernels, and forbids partial tiles. Instead of partial tiles and the associ-
ated overhead, our method consists in enforcing strict divisibility constraints while allowing to combine
two well-performing µkernels when problem or tile sizes cannot be decomposed (without control flow or
padding overhead) over a single, efficient µkernel. As a result, we consider a larger optimization space
than state-of-the-art approaches while also allowing simpler, more efficient code generation. We propose
a staged optimization algorithm to explore this optimization space effectively. It starts by characterizing
the best performing µkernels on a given architecture, independently of the shape of the convolution.
Then the algorithm specializes a on a given convolution kernel, leveraging an analytical model of the
footprint, data transfer and reuse at different cache levels. Single-thread execution on AVX512 achieves
performance competitive with Intel oneDNN, actually over-performing it in a majority of cases.

Having a highly-optimized CPU execution is the first-step to build a full multithreaded convolution
framework. We plan to extend our model to generate a multithreaded implementation of a convolution.
Another target is to support any kind of layout with reordering and data copying. Last but not least, we
also plan to support other type of tensor operations such as tensor-contraction, which can be seen as a
generalization of convolution and matrix-multiplication.
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