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ABSTRACT
In this work, a new distribution-free Phase II EWMA-type chart based on the
Wilcoxon signed rank statistic is introduced and its exact Run Length properties are
discussed. A proper discrete Markov-chain approach is used for the determination
of the Average Run Length in the in-control and out-of-control process operating
conditions and its exact performance is derived without any knowledge of the dis-
tribution of sample observations. In addition, an algorithm for the determination of
the chart’s optimal design has been developed. Moreover, the performance of our
proposed chart is compared with several existing nonparametric schemes available
from literature. Finally, two illustrative examples are provided to show the practical
implementation of our proposed chart.

KEYWORDS
nonparametric control chart; Wilcoxon signed rank statistic; Phase II control chart

1. Introduction

Quality improvement is of high importance for the manufacturing industries and, as a
result, statistical methods play a vital role in this direction. SPM (Statistical Process
Monitoring) techniques allow the on-line monitoring of the product’s characteristic
to be performed during production. Control charts are the most important tool
to perform statistical process monitoring. They are an on-line process monitoring
technique whose purpose is to detect shifts in the process as quickly as possible. One
of the most commonly used control chart is the Shewhart-type control chart, see
[1]. Shewhart control charts are easy to design and able to detect large shifts in the
parameter of interest during the process monitoring. On the other hand, in cases
where small shifts of process parameters are likely to occur, memory-type control
charts like the EWMA (Exponentially Weighted Moving Average, see [2]) or the
CUSUM (Cumulative Sum, see [3]) charts are preferable.

It should be noted that the design and operations of control charts are commonly
based on the assumption that the observations, collected over time, are random
variables following the Normal distribution or at least some continuous distribution.
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However, in many cases this assumption is violated since, in practice, the actual
distribution of the characteristic to be monitored is unknown. As a result, a new
class of distribution-free (nonparametric) control schemes have been introduced into
the literature. Chakraborti et al. presented in [4] an extensive literature review,
illustrating the design and operations of several univariate nonparametric control
charts. Recently, Chakraborti and Graham presented in [5] an updated version of the
former review by adding recent publications related to univariate and multivariate
nonparametric charting techniques in SPM. Regarding the use of nonparametric
techniques in EWMA-type control charts, Amin and Searcy introduced in [6] a
nonparametric EWMA procedure for monitoring the location of a measurement based
on the Wilcoxon signed rank statistic. Li et al. suggested in [7] two nonparametric
extensions of the CUSUM and EWMA control charts using the Wilcoxon rank-sum
test. Graham et al. investigated in [8] a distribution-free EWMA sign chart for
location based on individual measurements and they presented in [9] a nonparametric
EWMA chart based on the Wilcoxon signed rank statistic. Yang et al. introduced
in [10] a modified EWMA sign chart using the arcsine transformation. Graham
et al. proposed in [11] a modified distribution-free binomial-type EWMA chart
called the EWMA-EX chart, in which exceedance statistics are used. Extensions
of nonparametric EWMA-type schemes based on the sign statistic can be found in
[12–14]. Chakraborty et al. proposed in [15] a distribution-free Generally Weighted
Moving Average (GWMA) control chart based on the Wilcoxon signed rank statistic.
Abid et al. investigated in [16] the performance of an EWMA signed rank chart under
ranked set sampling. Haq presented in [17] a new nonparametric EWMA sign chart
using an auxiliary-information-based (AIB) estimator of the process mean and, in [18],
he proposed a new synthetic EWMA (SynEWMA) sign chart based on the arcsine
transformation for monitoring the process mean. Recently, Raza et al. presented in
[19] a Double Exponentially Weighted Moving Average (DEWMA) control chart
based on the Wilcoxon signed rank statistic. Finally, Abbas et al. proposed in [20]
two DEWMA schemes based on the Wilcoxon signed rank statistic in which simple
random and rank set sampling techniques are investigated.

It is worth stretching that, regarding the design phase of an EWMA-type control
chart a proper computation of its RL (Run length) properties is crucial. Specifically,
for the determination of the design parameters λ (smoothing parameter) and K
(control limit parameter) of an EWMA-type chart, a search algorithm needs to be
run, for a particular shift in the process, in order to find the optimal pair (λ∗,K∗)
which minimizes the out-of-control ARL, under the constraint ARL = ARL0 where
ARL0 is a predefined value of the in-control ARL. In conventional EWMA-type
schemes the RL properties are often obtained by using the Markov Chain approach of
Brook and Evans presented in [21], which is based on a discretization of the control
limits interval into m subintervals. In the case of measurement data (usually assuming
normality) as the number of subintervals, m, increases the method of Brook and
Evans tends to give reliable approximations of the chart’s RL properties. Generally,
the nonparametric statistics (such as sign, Wilcoxon signed rank, etc.) used by
the distribution-free schemes mentioned above, are defined on a discrete domain.
When the standard continuous EWMA chart is applied to discrete data, a common
technique in order to compute its RL properties is to use simulation-based techniques.
The main disadvantage of this approach is that it leads to approximated results which
depend on the number of runs. Additionally, Weiß in [22] stated that the approach
presented in [21], when applied to an EWMA control chart for count data, leads
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to an approximation of the chart’s actual statistical performance, which does not
necessarily converge as the number of the Markov chain states increases. In a recent
work of Wu et al. in [23] where a distribution-free EWMA-TBEA (Time Between
Events and Amplitude) control chart based on the sign statistic is considered, they
showed that the approach of Brook and Evans yields to unreliable results since it is
seriously affected by the number of subintervals, m. In order to overcome this prob-
lem, Castagliola et al. in [24] introduced a new class of EWMA-type nonparametric
scheme using the sign statistic called as the CEWMA SN chart. The design of the
CEWMA SN chart is based on the approach of Rakitzis et al. who introduced in
[25] a new memory type EWMA chart (denoted as the CEWMA control chart) for
monitoring count data from a Poisson distribution. This chart is able to monitor
the process location when the observations have an unknown distribution and, at
the same time, it guarantees exact results for their run length distribution without
any approximation. Tang et al. in [26] extended the approach of [24] and proposed
an adaptive distribution-free EWMA sign chart using an adaptive feature in the
smoothing parameter. As Castagliola et al. pointed out in [24], the design of the
CEWMA chart can be utilised for any other nonparametric test statistics besides the
sign test statistic. As far as we are concerned, in EWMA-type schemes based on the
Wilcoxon signed rank statistic presented in the literature, their out-of-control RL
properties are derived based on a specified distribution and using simulation-based
techniques. In this current work, we aim to present a new nonparametric EWMA
chart based on the recursive formula proposed in [25] in which the Wilcoxon signed
rank statistic will be utilised. We also aim to provide a methodology for the exact
determination of the RL properties of a EWMA-type chart based on signed ranks not
only for the in-control but also for the out-of-control cases.

The paper is organized as follows. In section 2, the CEWMA SN chart is reviewed.
Section 3, consists of a brief review of the statistical properties and operations of the
Wilcoxon signed rank statistic and an exact formula for the computation of its general
distribution is provided. In sections 4 and 5, our proposed nonparametric scheme based
on the Wilcoxon signed rank statistic is introduced along with a specified algorithm
for the computation of the exact in- and out-of-control ARL values based on a proper
discrete Markov Chain model. In Section 6, the optimal design parameters are provided
for different shifts of the process location. Moreover, our proposed chart is numerically
compared with several nonparametric control charts proposed in the SPM. In Section
7, two illustrating examples are discussed to show a practical implementation of the
operation of our proposed chart. Finally, in Section 8, some concluding remarks and
suggestions for future work are discussed.

2. The CEWMA SN control chart

As it was noted before, when the standard EWMA chart is applied to discrete data,
the Markov chain method of Brook and Evans (see [21]) leads to an approximation
of its actual statistical performance. Using the approach presented in [25] and the
Shewhart sign control chart proposed in [27], Castagliola et al. introduced in [24]
a new nonparametric EWMA-type chart based on the sign statistic (CEWMA SN
chart) for monitoring shifts in the location parameter providing exact results for its
Run Length distribution.
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Let X be a quality characteristic following an unknown continuous distribution with
c.d.f. (cumulative distribution function) FX(x|θ) where θ is the location parameter to
be monitored. With reference to the Phase II implementation of the control chart, when
the process is in-control we have θ = θ0, (assumed as known). On the other hand,
when the process is out-of-control, we have θ = θ1. Suppose that at each sampling
point t = 1, 2, . . . a subgroup {Xt,1, Xt,2, . . . , Xt,n} of size n is collected. The plotting
statistic, Yt, for the CEWMA SN control chart is obtained through the following
formula:

(γx + γy)Yt +Rt = γxSNt + γyYt−1 +Rt−1︸ ︷︷ ︸
Bt−1

,

SNt =

n∑
j=1

sign(Xt,j − θ0),

where sign(x) = −1, 0 or +1 if x < 0, x = 0 or x > 0, respectively. Note that,
the condition sign(x) = 0 corresponds to occasional events occurring in practice due
to rounding-off errors of the measurement system. Additionally, (γx, γy) ∈ N2 are two

fixed positive integer-valued parameters, Bt−1
def
= γyYt−1 +Rt−1, and Yt is the quotient

of the Euclidean division ⌊
γxSNt +Bt−1

γx + γy

⌉
,

where b. . . e denotes the rounded towards zero integer and Rt is the remainder of
this Euclidean division defined as:

Rt = γxSNt +Bt−1 − (γx + γy)Yt.

As stated in [24], when the initial values Y0 = y0, R0 = r0 and the current values
SNt, Yt−1, Rt−1 are fixed, both Yt and Rt are uniquely defined. The initial values
y0 and r0, are set equal to y0 = r0 = 0. However, if a head-start feature is desired,
any choice of y0 6= 0 or r0 6= 0 can be considered. For a better understanding of the
operation and design of the CEWMA SN plotting statistic the reader is advised to
refer to [24].

The Run length properties of the CEWMA SN chart are obtained based on the fact
that SNt is defined on {−n,−n+ 2, . . . , n− 2, n} and its distribution can be obtained
based on the relationship SNt = 2Dt − n, where Dt is the number of observations
{Xt,1, Xt,2, ...Xt,n} larger than θ0. If the process is in-control, P(Xt,j > θ0|θ = θ0) =
P(Xt,j < θ0|θ = θ0) = p0 = 0.5. As a result, Dt is a binomial random variable with
parameters n and p0 = 0.5. On the other hand, let p1 = P(Xt,j > θ0|θ = θ1) =
1 − FX(θ0|θ1) be the probability of having an observation larger than the in-control
median θ0 when the process runs out-of-control with median θ = θ1. Assuming that the
median is the location parameter of interest, values of p1 close to p0 = 0.5 correspond
to small shifts, while values of p1 close to 0 or 1 correspond to large shifts from θ0

to θ1. In addition, since the in-control distribution of SNt is symmetric about 0, the
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control limits (UCL,LCL) and the center line (CL) are equal to LCL = −K, CL = 0
and UCL = K where K = {2, 4 . . . , n} (if n is an even integer) or K = {1, 3 . . . , n}
(otherwise). The process is declared to be in-control if −K < Yt < K and out-of-
control otherwise. Regarding the computation of the optimal design parameters of the
CEWMA SN chart a discrete Markov chain approach is used which will be also utilised
in our proposed scheme.

3. The Wilcoxon signed rank (WSR) statistic

Suppose that at each sampling point a subgroup {Xt,1, Xt,2, . . . , Xt,n} of size n,
following a continuous symmetric distribution, is collected at time t = 1, 2, . . ..
Let Lt,j ∈ {1, 2, . . . , n} denote the rank of the absolute value of the differences
|Xt,j − θ0| , j = 1, 2, ..., n for subgroup t = 1, 2, . . . . By definition, the Wilcoxon signed
rank statistic SRt is equal to

SRt =

n∑
j=1

sign(Xt,j − θ0)Lt,j ,

and it is defined on {−n(n+1)
2 ,−n(n+1)

2 + 2, . . . , n(n+1)
2 − 2, n(n+1)

2 }. Therefore, SRt

is the sum of the signed ranks. It should be noted that the domain on which SRt is

defined contains zero only if n(n+1)
2 is an even integer. The statistic SRt can also be

expressed as:

SRt = 2SR+
t −

n(n+ 1)

2
,

where SR+
t is the sum of the positive ranks only. Under the null hypothesis (i.e. for

p = 0.5), the p.m.f. (probability mass function) fSR+
t

(s|n) of SR+
t can be easily and ex-

actly obtained (see [28], for instance) by recursively evaluating the number NSR+
t

(s|n)

of subsets of integers in {1, . . . , n} having a sum equal to s ∈ {0, 1, . . . , n(n+1)
2 }, i.e.

NSR+
t

(s|n) = NSR+
t

(s|n− 1) +NSR+
t

(s− n|n− 1),

and by computing

fSR+
t

(s|n) =
NSR+

t
(s|n)

2n
.

Computing the p.m.f. fSR+
t

(s|n, p) of SR+
t (exactly, without any approximation)

under the alternative hypothesis (i.e. p 6= 0.5) is more tricky. The solution we opted
in this paper consists in evaluating firstly the p.g.f. (probability generating function)
GSR+

t
(ω) of SR+

t as (see [29])

GSR+
t

(ω) =

n∏
i=1

(pωi + q),

where q = 1 − p and to obtain the p.m.f. fSR+
t

(s|n, p) of SR+
t by differentiating
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GSR+
t

(ω), s times, for ω = 0, using the formula

fSR+
t

(s|n, p) =
1

s!
G

(s)

SR+
t

(ω)

∣∣∣∣
ω=0

,

where G
(s)

SR+
t

(ω) is the sth derivative of GSR+
t

(ω). As GSR+
t

(ω) is a polynomial of

degree n(n+1)
2 then, for s ∈ {0, 1, . . . , n(n+1)

2 }, G(s)

SR+
t

(ω) is a polynomial of degree
n(n+1)

2 − s and we can write

1

s!
G

(s)

SR+
t

(ω) =

n(n+1)

2
−s∑

j=0

cs,jw
j ,

where cs,j is the coefficient of degree j corresponding to the polynomial 1
s!G

(s)

SR+
t

(ω).

For a better understanding of this approach let us consider the following example with
n = 4 and p = 0.2. In this case SR+

t ∈ {0, 1, . . . , 10} and we have

• 1
0!GSR+

t
(ω) = 0.0016ω10 + 0.0064ω9 + 0.0064ω8 + 0.032ω7 + 0.032ω6 + 0.0512ω5

+ 0.128ω4 + 0.128ω3 + 0.1024ω2 + 0.1024ω + 0.4096. The coefficients c0,j are
listed in the first row (for s = 0) of Table 1. Replacing ω = 0 in this polynomial
gives fSR+

t
(0|4, 0.2) = 0.4096.

• Now, if we evaluate the first derivative, we have 1
1!G

(1)

SR+
t

(ω) = 0.016ω9 + 0.0576ω8

+ 0.0512ω7 + 0.224ω6 + 0.192ω5 + 0.256ω4 + 0.512ω3 + 0.384ω2 + 0.2048ω +
0.1024. The coefficients c1,j are listed in the second row (for s = 1) of Table 1.
Replacing ω = 0 in this polynomial gives fSR+

t
(1|4, 0.2) = 0.1024.

...
• If we evaluate the 9th derivative, we have 1

9!G
(9)

SR+
t

(ω) = 0.016ω + 0.0064. The

coefficients c9,j are listed in the row corresponding for s = 9 of Table 1. Replacing
ω = 0 in this polynomial gives fSR+

t
(9|4, 0.2) = 0.0064. A final derivative gives

1
10!G

(10)

SR+
t

(ω) = 0.0016 and we have fSR+
t

(10|4, 0.2) = 0.0016.

Because polynomials can be efficiently coded as vectors of coefficients, fast arith-
metic operations (addition, multiplication and power) and derivation can be efficiently
implemented (as in Matlab for instance) and the evaluation of fSR+

t
(s|n, p) can be ob-

tained in a very fast way. It should be noted that this method can also be applied
when p = 0.5, i.e. for the null hypothesis case.

4. Design of the CEWMA WSR control chart

As for the design of the CEWMA SN control chart, at each sampling point, the plotting
statistic Yt for the CEWMA WSR control chart is obtained through the following
formula:

(γx + γy)Yt +Rt = γxSRt + γyYt−1 +Rt−1︸ ︷︷ ︸
Bt−1

. (1)
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Table 1. Computation of the p.m.f. of SR+
t for n = 4 and p = 0.2

s cs,10 cs,9 cs,8 cs,7 cs,6 cs,5 cs,4 cs,3 cs,2 cs,1 cs,0 f
SR+

t
(s|4, 0.2)

0 0.0016 0.0064 0.0064 0.0320 0.0320 0.0512 0.1280 0.1280 0.1024 0.1024 0.4096 0.4096
1 - 0.0160 0.0576 0.0512 0.2240 0.1920 0.2560 0.5120 0.3840 0.2048 0.1024 0.1024
2 - - 0.0720 0.2304 0.1792 0.6720 0.4800 0.5120 0.7680 0.3840 0.1024 0.1024
3 - - - 0.1920 0.5376 0.3584 1.1200 0.6400 0.5120 0.5120 0.1280 0.1280
4 - - - - 0.3360 0.8064 0.4480 1.1200 0.4800 0.2560 0.1280 0.1280
5 - - - - - 0.4032 0.8064 0.3584 0.6720 0.1920 0.0512 0.0512
6 - - - - - - 0.3360 0.5376 0.1792 0.2240 0.0320 0.0320
7 - - - - - - - 0.1920 0.2304 0.0512 0.0320 0.0320
8 - - - - - - - - 0.0720 0.0576 0.0064 0.0064
9 - - - - - - - - - 0.0160 0.0064 0.0064
10 - - - - - - - - - - 0.0016 0.0016

Table 2. An example
of calculation of Yt and

Rt given SRt

t SRt Yt Rt

0 - 0 0
1 -17 -2 -5
2 15 0 0
3 21 3 3
4 -7 1 5
5 -15 0 -5
6 -13 -3 0
7 -31 -7 -4
8 -9 -8 0
9 37 0 -3
10 47 7 2
11 25 10 2
12 13 10 5
13 27 13 4
14 21 15 0
15 47 20 2

Concerning the initial values y0 and r0 for Y0 and R0 they are both set to y0 = r0 =
0. The process is declared to be in-control if−K < Yt < K and out-of-control otherwise

where K ∈ {2, . . . , n(n+1)
2 }. Let us consider an example presented in Table 2 in order

to clarify the design and operations of the charting statistic Yt of our proposed scheme.
A simulated dataset containing m = 15 subgroups of size n = 10 have been simulated
where the first 10 subgroups are considered as in-control samples (p0 = 0.5) and the
other 5 subgroups as out-of-control samples (p1 = 0.8). For illustrative purposes the
design parameters are γx = 1 and γy = 5, respectively and no head-start feature is
used (i.e. Y0 = 0 and R0 = 0). The values of Yt are computed as follows:

• For t = 1 we have Y0 = 0, R0 = 0, SR1 = −17 and the equation to be solved is
6×Y1 +R1 = 1× (−17) + 5× 0 + 0 = −17. The unique solution of this equation
(as an Euclidean division) is Y1 = −2 and R1 = −5.
• For t = 2 we have Y1 = −2, R1 = −5, SR2 = 15 and the equation to be solved is

6× Y2 +R2 = 1× (15) + 5× (−2)− 5 = 0. The unique solution of this equation
is Y2 = 0 and R2 = 0.
...
• For t = 15 we have Y14 = 15, R14 = 0, SR15 = 47 and the equation to be solved

is 6 × Y15 + R15 = 1 × (47) + 5 × (15) + 0 = 122. The unique solution of this
equation is Y15 = 20 and R15 = 2.
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It is interesting to note that the values of the charting statistic, Yt react similarly
as for a classical EWMA chart, i.e. they are randomly distributed around zero when
the process is in-control (samples 1 − 10) and they start to increase when a shift
occurs (samples 11− 15). This fact has also been mentioned in [24].

Also note that, our proposed scheme can both be extended to monitor any
particular quantiles (provided that the sample size n is large enough) by changing the
value p0 = 0.5 to any other value of interest.

It is well acknowledged into the literature that in a conventional EWMA chart
varying the value of the smoothing parameter, λ, allows more weight to be assigned
to the past, or to the current observations. As pointed out in [25], if γx < γy then the
CEWMA scheme assigns more weight to the past observations while, if γx > γy, this
scheme assigns more weight to the most recent ones. Additionally, the corresponding
limiting conditions for the CEWMA WSR chart in the case where λ = 1 or λ = 0 can
be expressed respectively as:

• for γx > 0 and γy = 0 we have Yt = SRt and Rt = r0, t = 1, 2, . . .. Consequently,
in this situation, the CEWMA WSR chart coincides with the nonparametric
Shewhart-type control chart based on signed ranks proposed in [30].
• for γx = 0 and γy > 0 we have Yt = y0 and Rt = r0, t = 1, 2, . . .

5. Run length properties of the CEWMA WSR chart

In order to obtain the exact RL properties of our proposed scheme, the discrete-
time Markov chain approach presented for the CEWMA SN control chart is used.
Specifically, the transition probability matrix P is defined as:

P =

(
Q r
0ᵀ 1

)
=


q−b,−b q−b,−b+1 . . . q−b,b−1 q−b,b r−b
q−b+1,−b q−b+1,−b+1 . . . q−b+1,b−1 q−b+1,b r−b+1

...
...

. . .
...

...
...

q−b+1,−b qb−1,−b+1 . . . qb−1,b−1 qb−1,b rb−1

0 0 . . . 0 0 1


where Q is the (2b+1, 2b+1) matrix of transient probabilities qi,j , 0

ᵀ = (0, 0, . . . , 0)
and r = 1 − Q1. Similar to the approach used for the CEWMA and CEWMA SN
charts, at time t − 1 the transient states of the discrete-time Markov chain will be
defined as the integers bt−1 ∈ {−b,−b+1, . . . ,+b} where b = γx+Kγy−1. More specif-
ically, assuming that at time t−1, as long as yt−1 ∈ {−K+1, . . . ,K−1} the process is
declared to be in-control, the transient states of the discrete-time Markov chain are de-
fined as the integers bt−1 ∈ {γy×yt−1+rt−1} where rt−1 ∈ {−γx−γy+1, . . . , γx+γy−1}.
As a consequence, the minimum, bmin, and the maximum, bmax, numbers of
states are defined as bmin = γy(−K + 1) − γx − γy + 1 = −γx − Kγy + 1 and
bmax = γy(K − 1) + γx + γy − 1 = γx +Kγy − 1 respectively where b = bmax = −bmin.
As a result, the total number of transient states is 2b + 1 = 2(γx + Kγy − 1) + 1.
Finally, the transient probabilities qi,j will be computed as detailed in Algorithm 1.

The RL properties of the CEWMA WSR chart will be obtained using the fact
that RL is a Discrete Phase-type (DPH) random variable of parameters (Q,q) (see
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Algorithm 1 Computation of transient probabilities qi,j
Define n, K, γx, γy and p1.
b← γx +Kγy − 1.
for i = −b,−b+ 1, . . . , b− 1, b do

for SR = −n(n+1)
2 ,−n(n+1)

2 + 2, . . . , n(n+1)
2 − 2, n(n+1)

2 do

y ←
⌊
γx×SR+i
γx+γy

⌉
.

if −K < y < K then
r ← γx × SR + i− (γx + γy)× y.
j ← γy × y + r.

qi,j ← qi,j + fSR+

(
SR+n(n+1)

2

2 |n, p1

)
.

end if
end for

end for

[31,32]). Specifically, the p.m.f. fRL(t|Q,q) and the c.d.f. FRL(t|Q,q) of RL are defined
for t = 1, 2 . . . and they are respectively, equal to:

fRL(t|Q,q) = qᵀQt−1r,

FRL(t|Q,q) = 1− qᵀQt1.

So, the Average Run Length ARL = E(RL) and the Standard Deviation Run Length
SDRL = σ(RL) will be computed as:

ARL = qᵀ(I−Q)−11,

SDRL =
√

2qᵀ(I−Q)−2Q1 + ARL(1−ARL),

where q = (q−b, q−b+1, . . . , qb−1, qb)
ᵀ is the vector of initial probabilities associated

with the 2b + 1 transient states. Assuming that y0 = r0 = 0 then qi = 0 for i ∈
{−b,−b+ 1, . . . ,−1, 1, . . . , b} and q0 = 1.

6. Performance Comparisons

In this work, the parameter θ0 will be considered as the median of the process
distribution, so we assume p0 = 0.5. For fixed values of the sample size n and
p1 = P(Xt,j > θ0|θ = θ1), in order to obtain the optimal combination of the de-
sign parameters (K∗, γ∗x, γ

∗
y) which will provide the minimum corresponding out-of-

control ARL, a specific search algorithm is used aiming to select the optimal values of
(K, γx, γy) which guarantee the following conditions:

(K∗, γ∗x, γ
∗
y) = argmin

(K,γx,γy)
ARL(K, γx, γy, n, p1)

ARL(K∗, γ∗x, γ
∗
y , n, p0) = ARL0

9



where ARL0 = 370.4 is the target in-control ARL value. Due to the fact that the
charting statistic, Yt, is a discrete random variable, it is not possible to find an optimal
combination (K∗, γ∗x, γ

∗
y) that exactly meets the constraint ARL(K∗, γ∗x, γ

∗
y , n, p0) =

ARL0. Similarly to the design of the CEWMA SN chart, we suggest to accept, as ten-
tative design parameters, all those combinations of parameters (K∗, γ∗x, γ

∗
y) satisfying

the following condition:

D(K∗, γ∗x, γ
∗
y , n) =

∣∣ARL(K∗, γ∗x, γ
∗
y , n, p0)−ARL0

∣∣
ARL0

≤ δ (2)

where δ is a predefined constant. For the determination of the optimal parameters
for n = {10, . . . , 25} in the CEWMA SN chart, Castagliola et al. set δ = 0.05 (see [24]),
to ensure that the corresponding optimal combination of (K∗, γ∗x, γ

∗
y) will be obtained

successfully. Based on our findings, we saw that in general the CEWMA WSR chart
guarantees a smaller error than the CEWMA SN chart with respect to the constraint
on the nominal in-control performance. As a consequence, for the determination
of the design parameters of the CEWMA WSR control chart we suggest to set
δ = 0.01. Additionally, since ARL(K, γx, γy, n, p1) = ARL(K, γx, γy, n, 1− p1) we will
only focus on shifts p1 ∈ (0, 0.5) as the same results would have been obtained for
p1 ∈ (0.5, 1). As a consequence, for given values of n and p1, the optimal combination of
the design parameters (K∗, γ∗x, γ

∗
y) will be obtained through the searching Algorithm 2.

Algorithm 2 Computation of optimal combination (K∗, γ∗x, γ
∗
y)

Define n and p1 ∈ (0, 0.5).
ARL0 ← 370.4.
ARL∗ ←∞.
for K = 1, . . . , n(n+1)

2 do
for γx = 1, 2, . . . do
γy ← 0.
repeat
γy ← γy + 1

until D(K, γx, γy, n) ≤ 0.01
if ARL(K, γx, γy, n, p1) < ARL∗ then

ARL∗ ← ARL(K, γx, γy, n, p1),
K∗ ← K, γ∗x ← γx and γ∗y ← γy.

end if
end for

end for

In the following tables some results regarding the performance of our proposed
chart are provided, including comparisons with the CEWMA SN chart. In Table 3,
the optimal combinations (K∗, γ∗x, γ

∗
y) for our proposed chart are given, along with

the corresponding in-control and out-of-control ARLs for n = {10, . . . , 25}. Based on
the results presented in Table 3 it can be concluded that when p1 < 0.5, for large
values of the sample size or large shifts (p1 ' 0) the corresponding optimal ARL1

values tend to decrease. In addition, for fixed values in the sample size, as the value
of p1 < 0.5 becomes closer to 0.5 the “smoothing ratio” γx

γx+γy
and the value of the

control limit K of our proposed chart also tend to decrease. For example for n = 20
and p1 ∈ {0.05, . . . , 0.2}, we have γx

γx+γy
= 10

10+3 = 0.77 and the control limit equals to

10



K = 117. On the other hand for p1 = 0.4 the corresponding smoothing ratio equals
to γx

γx+γy
= 4

4+27 = 0.13 and K = 39. It is worth mentioning that these findings are

consistent with the ones of the CEWMA (see [25]) and CEWMA SN (see [24]) charts.

In Table 4 the performance of our proposed chart is compared to the CEWMA SN
chart for n ∈ {5, . . . , 25} and p1 ∈ {0.05, 0.1, . . . , 0.45}. In order to make fair com-
parisons, we obtained the optimal design parameters of the CEWMA SN with corre-
sponding D(K∗, γ∗x, γ

∗
y , n) ≤ 0.01 (except from some values of n where the bound 0.01

in (2) has been replaced by 0.02), for n ∈ {5, 6, . . . , 25} and p1 ∈ {0.05, 0.1, . . . , 0.45}.
The ∆ values are defined as:

∆ = 100× ARLSR −ARLSN

ARLSN
,

where ARLSN and ARLSR are the ARL values of the CEWMA SN and CEWMA
WSR charts respectively. A negative value for ∆ corresponds to an outperformance of
the CEWMA WSR scheme versus the CEWMA SN chart. According to our findings,
it can be concluded that when 5 ≤ n ≤ 15, for large shifts (p1 ≤ 0.2) in 55% of the
cases the CEWMA WSR scheme has a better performance. In addition for small
to moderate shifts (p1 > 0.2) in 60% of the cases the CEWMA WSR chart also
outperforms the CEWMA SN chart. On the other hand, for n > 15, when p1 ≤ 0.2
or p1 > 0.2 the CEWMA WSR chart performs better only in 38% of the cases. As a
consequence, in most cases, our proposed scheme has an overall better performance
when n < 15 and as the sample size increases the CEWMA SN chart performs better.

In Tables 5 (for n = 10) and 6 (for n = 20) the CEWMA WSR chart is compared
with other nonparametric schemes presented in the literature. More specifically, we
examined the performance of the CEWMA WSR chart against the CEWMA SN
chart, the two EWMA sign charts proposed by Yang et al. in [10], denoted as standard
sign EWMA (EWMA) and arcsine sign EWMA (A-EWMA), the distribution free
cumulative sum mean chart (CUSUM) of Yang et al. in [33] and the modified sign
EWMA chart proposed by Lu in [14] (S-GWMA). For the computation of the in- and
out-of-control ARL values of the competitors of the CEWMA WSR chart, a Monte
Carlo simulation was performed, except for the CEWMA SN chart where the exact
Markov chain approach was used. Regarding the design parameters of each chart,
for the CEWMA WSR and CEWMA SN charts (K, γx, γy) have been selected to get
the optimal performance for each chart; for the EWMA charts proposed in [10], the
pair (λ,W ) corresponds to the optimal values of the smoothing parameter λ and the
distance W . Moreover, the pair (k, h) corresponds to the values of the reference value
k and the decision interval h of the CUSUM chart. Finally, (q, α,W ) correspond to
the values of the design parameters for the S-GWMA chart. For more information
regarding the design and operations of the above schemes the reader is advised to see
[10,14,33].

Based on the results presented in Tables 5 and 6 it can be concluded that the
CEWMA WSR chart outperforms its competitors for moderate to large shifts (p1 <
0.3). On the other hand, for small shifts, i.e. when p1 tends to be close to 0.5 the
standard or the arcsine transformed EWMA chart have better performance. Finally,
in cases where 0.25 < p1 < 0.3 the use of the S-GWMA chart or the SN EWMA can
be considered.
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Table 3. Optimal combinations (K∗, γ∗x, γ
∗
y ) (first line of each block) for the CEWMA WSR chart along with the cor-

responding in-control ARL’s (second line) and the out-of-control (ARL,SDRL) (third line) for n ∈ {10, . . . , 25} and

p1 ∈ {0.05, 0.1, . . . , 0.45}

p1
n 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

10

(26,8,15)

369
(2.2,0.4)

(26,8,15)

369
(2.6,0.7)

(26,8,15)

369
(3.2,1.1)

(26,8,15)

369
(4.1,1.8)

(22,10,28)

369.4
(5.5,2.5)

(19,7,27)

368.4
(7.8,4)

(15,9,57)

369.3
(12.3,6.7)

(9,1,16)

367.7
(22.4,12.1)

(5,6,249)

367.8
(57.6,35.4)

11

(47,5,2)

373.9
(1.5,0.7)

(47,5,2)

373.9
(2.1,1.1)

(36,10,11)

369.3
(2.9,1.1)

(27,5,12)

367.4
(3.8,1.5)

(25,7,20)

374
(5.1,2.3)

(20,8,37)

368.9
(7.3,3.4)

(16,8,58)

371.6
(11.5,5.9)

(12,9,110)

370.3
(21,12)

(6,3,115)

366.9
(54.2,33.4)

12

(55,9,3)

367.3
(1.5,0.7)

(53,5,2)

368.1
(2,1)

(34,6,11)

370.4
(2.8,0.9)

(34,6,11)

370.4
(3.6,1.5)

(29,10,27)

370.5
(4.8,2.1)

(25,10,38)

371.2
(6.9,3.3)

(21,7,38)

369.9
(10.8,5.9)

(13,7,92)

366.7
(19.7,10.8)

(7,7,255)

370.3
(51.5,31.6)

13

(43,3,4)

368.4
(2,0.2)

(43,3,4)

368.4
(2.2,0.5)

(43,9,12)

368.4
(2.7,0.9)

(43,9,12)

368.4
(3.4,1.5)

(32,6,17)

373.2
(4.6,1.9)

(30,8,26)

368.2
(6.5,3.2)

(22,6,37)

368.7
(10.1,5.2)

(15,7,87)

368.1
(18.6,10.2)

(7,1,43)

368.2
(49.1,28.5)

14

(73,8,2)

369.1
(1.4,0.6)

(73,8,2)

369.1
(1.9,0.9)

(57,9,7)

367.6
(2.4,1)

(49,4,5)

368
(3.2,1.4)

(36,9,25)

369.9
(4.3,1.8)

(34,7,22)

367.3
(6.1,3)

(24,5,32)

371.1
(9.6,4.7)

(16,3,40)

369.1
(17.8,9.3)

(9,3,103)

369.1
(46.7,28.2)

15

(81,4,1)

366.8
(1.3,0.5)

(81,4,1)

366.8
(1.7,0.9)

(71,4,2)

371.5
(2.3,1.1)

(57,10,11)

373.6
(3,1.3)

(49,9,15)

368.8
(4.1,1.9)

(34,7,27)

367.2
(5.8,2.6)

(29,8,43)

366.8
(9.1,4.6)

(21,6,59)

368.9
(16.9,9.5)

(11,4,117)

372.6
(44.8,27.7)

16

(91,9,2)

367
(1.3,0.5)

(91,9,2)

367
(1.7,0.8)

(67,9,8)

370.7
(2.2,0.8)

(55,7,11)

366.8
(2.9,1.1)

(45,5,13)

371.3
(3.9,1.6)

(47,9,21)

368.6
(5.6,2.9)

(31,3,17)

372.8
(8.7,4.3)

(23,6,59)

368.3
(16.1,8.9)

(12,3,88)

366.7
(42.8,26.1)

17

(96,7,2)

369.2
(1.2,0.4)

(96,7,2)

369.2
(1.6,0.7)

(83,7,4)

372.4
(2.1,0.9)

(74,7,6)

367.4
(2.8,1.3)

(60,5,8)

371.3
(3.7,1.7)

(45,7,22)

369.8
(5.3,2.4)

(37,4,19)

371.2
(8.3,4.2)

(23,2,23)

368.3
(15.4,8)

(14,3,79)

367.8
(41.2,25.4)

18

(117,8,1)

367.1
(1.1,0.4)

(117,8,1)

367.1
(1.5,0.8)

(98,5,2)

372.5
(2,1)

(77,10,10)

371.7
(2.7,1.1)

(69,8,11)

368.6
(3.6,1.7)

(51,8,23)

370.6
(5.1,2.3)

(40,5,24)

368.3
(8,4)

(30,7,58)

367.3
(14.8,8.3)

(14,1,30)

369.6
(39.7,23.4)

19

(108,8,3)

370.5
(1.1,0.4)

(108,8,3)

370.5
(1.4,0.6)

(96,8,5)

367.5
(1.9,0.8)

(96,8,5)

367.5
(2.5,1.3)

(71,7,11)

370.5
(3.4,1.5)

(60,8,19)

370
(4.9,2.4)

(48,7,27)

367.8
(7.7,4)

(29,6,61)

368.4
(14.2,7.4)

(16,2,55)

370.3
(38.3,22.8)

20

(117,8,3)

372.7
(1.1,0.3)

(117,8,3)

372.7
(1.4,0.6)

(117,8,3)

372.7
(1.8,0.9)

(102,9,6)

373.6
(2.5,1.2)

(75,3,5)

370.5
(3.3,1.4)

(57,7,22)

369.5
(4.7,2)

(51,8,32)

371.8
(7.4,3.8)

(39,4,27)

368.2
(13.8,8)

(17,2,56)

368
(37,21.7)

21

(131,10,3)

373.1
(1.1,0.3)

(131,10,3)

373.1
(1.3,0.5)

(131,10,3)

373.1
(1.8,0.9)

(118,10,5)

370.8
(2.4,1.2)

(85,9,13)

367.3
(3.2,1.4)

(70,3,7)

371.3
(4.5,2.1)

(52,7,31)

368.8
(7.1,3.4)

(37,2,17)

368.9
(13.2,7)

(23,3,58)

370.6
(36.1,23)

22

(156,7,1)

367.8
(1.1,0.2)

(156,7,1)

367.8
(1.3,0.5)

(148,9,2)

368.6
(1.7,0.9)

(107,10,9)

367.5
(2.3,0.9)

(91,9,13)

370.4
(3.1,1.3)

(80,7,14)

367.3
(4.4,2.1)

(63,9,31)

367.9
(6.9,3.6)

(44,4,28)

366.9
(12.8,7.1)

(23,2,43)

367.1
(34.7,21.3)

23

(164,6,1)

368.8
(1.1,0.2)

(164,6,1)

368.8
(1.2,0.5)

(139,9,4)

373.2
(1.6,0.7)

(123,7,5)

370.2
(2.2,1)

(107,9,10)

369.2
(3,1.4)

(92,9,15)

373.1
(4.3,2.2)

(69,4,13)

371.8
(6.7,3.5)

(41,1,9)

370.8
(12.4,6.3)

(28,3,52)

368.8
(34,21.9)

24

(157,6,2)

371.3
(1,0.2)

(148,9,4)

367.6
(1.2,0.5)

(157,9,3)

371.3
(1.6,0.7)

(131,7,5)

373.4
(2.1,0.9)

(109,8,10)

368
(2.9,1.2)

(88,6,13)

366.8
(4.1,1.9)

(71,4,14)

372.5
(6.5,3.2)

(49,4,29)

368.5
(12,6.4)

(17,1,42)

372
(33.7,17.1)

25

(163,8,3)

373
(1,0.2)

(148,7,4)

372.1
(1.2,0.5)

(163,8,3)

373
(1.5,0.7)

(148,7,4)

372.1
(2,0.9)

(104,3,5)

369.6
(2.8,1.1)

(102,8,14)

366.9
(4,1.9)

(78,4,13)

368.7
(6.2,3.2)

(56,3,19)

370.6
(11.7,6.5)

(29,1,20)

369.2
(31.9,19.3)
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Table 4. Comparison between the CEWMA SN and CEWMA WSR chart for n ∈ {5, . . . , 25}
and p1 ∈ {0.05, 0.1, . . . , 0.45}

p1
n 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

5 -37.21 -22.45 -10.53 -2.90 3.45 11.21 18.75 6.91 -11.55
6 37.50 26.67 12.20 0.00 -14.89 -31.93 -32.31 -18.97 1.42
7 -22.58 -8.82 0.00 8.16 12.70 15.91 9.72 -6.23 -2.05
8 9.09 11.54 15.62 16.67 8.33 12.20 12.50 1.16 -3.06
9 57.14 35.00 21.43 -2.22 -24.36 -44.44 -38.32 -25.00 -3.61
10 -69.01 -67.09 -64.44 -60.58 -55.65 -49.68 -40.00 -27.04 -5.73
11 -28.57 -12.50 3.57 8.57 15.91 17.74 16.16 -1.41 -6.39
12 0.00 11.11 21.74 16.13 6.67 -8.00 -28.95 -50.50 -63.14
13 81.82 57.14 42.11 21.43 2.22 -24.42 -44.20 -31.11 -8.74
14 16.67 26.67 20.00 10.34 -6.52 -25.61 -44.19 -30.74 -8.61
15 -35.00 -26.09 -14.81 -6.25 5.13 11.54 18.18 19.01 5.66
16 30.00 41.67 37.50 31.82 11.43 16.67 19.18 20.15 9.18
17 -77.78 -74.19 -70.00 -65.43 -61.46 -55.46 -47.47 -34.47 -11.59
18 -63.33 -57.14 -50.00 -42.55 -35.71 -27.14 -14.89 0.68 16.08
19 0.00 7.69 11.76 13.64 6.25 -10.91 -35.29 -36.61 -13.93
20 0.00 7.69 5.88 19.05 17.86 14.63 15.62 21.05 15.62
21 -78.00 -76.79 -71.43 -67.12 -63.22 -58.33 -50.35 -38.03 -14.45
22 -35.29 -31.58 -15.00 0.00 10.71 18.92 21.05 17.43 -11.93
23 10.00 0.00 6.67 15.79 20.00 19.44 3.08 -6.06 14.48
24 0.00 9.09 23.08 23.53 20.83 13.89 12.07 20.00 11.22
25 0.00 9.09 15.38 17.65 21.74 14.29 19.23 20.62 19.03

Table 5. ARL values of the CEWMA WSR chart, the CEWMA SN chart, the standard and

the arcsine transformed EWMA chart, the CUSUM chart and the S-GWMA chart (n = 10,

p0 = 0.50, ARL0 ≈ 370)

p CEWMA WSR CEWMA SN EWMA A-EWMA CUSUM S-GWMA

0.50 369.0 371.4 366.3 367.6 370.0 370.6
0.45 131.4 61.1 51.4 51.4 63.2 58.0
0.40 38.0 30.9 19.0 19.0 20.2 19.0
0.30 8.6 15.5 8.1 7.9 7.9 7.2
0.25 5.6 12.4 6.3 6.1 6.0 5.4
0.20 4.0 10.4 5.2 4.9 4.9 4.3
0.15 3.2 9 4.4 4.1 4.2 3.6
0.10 2.6 7.0 3.9 3.4 3.6 3.1
0.05 2.2 7.0 3.4 2.9 3.2 2.7

γX 8 1 - - - -
γY 15 1 - - - -
K 26 58 - - - -
λ - - 0.05 0.05 - -
W - - 2.487 2.487 - 2.698
k - - - - 0.5 -
h - - - - 10.65 -
q - - - - - 0.9
α - - - - - 0.9
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Table 6. ARL values of the CEWMA WSR chart, the CEWMA SN chart, the standard and

the arcsine transformed EWMA chart, the CUSUM chart and the S-GWMA chart (n = 20,

p0 = 0.50, ARL0 ≈ 370)

p CEWMA WSR CEWMA SN EWMA A-EWMA CUSUM S-GWMA

0.50 370.6 370.2 370.0 367.6 373.7 370.9
0.45 84.7 37.3 31.0 30.9 40.3 33.0
0.40 20.2 11.4 12.3 12.2 11.7 11.5
0.30 4.9 4.5 5.6 5.4 4.5 4.7
0.25 3.3 3.5 4.4 4.2 3.5 3.7
0.20 2.6 2.9 3.7 3.5 2.9 3.0
0.15 2.1 2.4 3.2 2.9 2.4 2.5
0.10 1.8 2.1 2.9 2.5 2.1 2.2
0.05 1.5 2.0 2.6 2.1 2.0 2.0

γX 3 3 - - - -
γY 5 16 - - - -
K 75 4 - - - -
λ - - 0.05 0.05 - -
W - - 2.487 2.487 - 2.709
k - - - - 1.0 -
h - - - - 11.62 -
q - - - - - 0.9
α - - - - - 0.9

7. Illustrative Examples

Motivated by existing works related to applications of nonparametric schemes for mon-
itoring the characteristic of interest in a process, we present two examples, originally
discussed by Celano et al. in [34] and [35] respectively, to show a practical Phase
II implementation of the design and operations of our proposed chart. In should be
noted that the distributions of the observations are unknown and so no control chart
based on normality assumption can be implemented. In the first one (entitled as the
Radial example), the quality characteristic to be monitored is the radial error, which
is defined as “a quality characteristic frequently monitored in hole drilling processes
of mechanical parts and assembly processes of printed circuit boards”. In the second
one (entitled as the Beverage example), the quality characteristic of interest is the
quantity of CO2 dissolved in soft drink PET (polyethylene terephthalate) bottles.

7.1. Radial example

In this example, at each sampling point t, a subgroup of size n = 20 is collected in order
to detect a shift in the median of the quality of interest such that p0 = 0.5 shifts to
p1 = 0.3. As shown in Table 3, the optimal parameters to be used are K∗ = 57, γ∗x = 7,
and γ∗y = 22. In addition, the in-control value of the median for the radial error is
θ0 = 0.338. In Table 7 the differences between Xt,j and θ0 for t ∈ {1, 2 . . . , 10} are
provided and the values of SRt, Yt and Rt are also reported. Using the recursive formula
presented in (1) the values of the charting statistic Yt are computed as follows:

• For t = 1 we have Y0 = 0, R0 = 0, SR1 = 45 and the equation to be solved is
29× Y1 +R1 = 7× 45 + 22× 0 + 0 = 315. The unique solution of this equation
(as an Euclidean division) is Y1 = 10 and R1 = 25.
• For t = 2 we have Y1 = 10, R1 = 25, SR2 = 27 and the equation to be solved

is 29 × Y2 + R2 = 7 × (27) + 22 × (10) + 25 = 434. The unique solution of this
equation is Y2 = 14 and R2 = 28.
...
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Table 7. Radial error example: Phase II dataset of t = 1, . . . 10 subgroups of size n = 20 and the corre-

sponding values for SRt, Yt and Rt

Xt,j

t 1 2 3 4 5 6 7 8 9 10

1 0.289 0.380 0.483 0.288 0.544 0.390 0.567 0.512 0.433 0.168
2 0.447 0.599 0.207 0.317 0.256 0.433 0.218 0.329 0.432 0.674
3 0.081 0.368 0.435 0.216 0.246 0.229 0.623 0.455 0.394 0.616
4 0.954 0.537 0.621 0.513 1.540 0.609 0.801 1.080 1.069 0.954
5 0.316 0.237 0.286 0.879 0.190 0.104 0.570 0.448 0.269 0.746
6 0.342 0.378 0.287 0.328 0.589 0.233 0.255 0.119 0.284 0.499
7 0.370 0.391 0.525 0.459 1.280 0.470 0.482 0.032 0.525 0.628
8 0.352 0.264 0.759 0.154 0.256 0.426 0.363 0.310 0.303 0.316
9 0.305 0.352 0.468 0.224 0.739 0.234 0.171 0.250 0.308 0.431
10 0.603 0.363 0.628 0.314 0.029 0.436 0.207 0.553 0.645 0.122

Xt,j

t 11 12 13 14 15 16 17 18 19 20 SRt Yt Rt

1 0.128 0.428 0.081 0.575 0.396 0.574 0.730 0.407 0.367 0.452 45 10 25
2 0.233 0.570 0.748 0.364 0.372 0.798 0.218 0.405 0.060 0.632 27 14 28
3 0.116 0.611 0.666 0.262 0.410 0.234 0.692 0.719 1.033 0.376 44 22 6
4 0.852 0.425 1.389 0.794 1.081 0.900 0.521 0.576 0.761 0.535 210 67 17
5 0.344 0.191 0.366 0.315 0.408 0.522 0.598 0.232 0.671 0.448 0 51 12
6 0.410 0.668 0.385 0.594 0.390 0.265 0.409 0.434 0.628 0.316 -11 36 13
7 0.686 0.584 0.300 0.245 0.555 0.113 0.194 0.932 0.597 0.523 84 48 1
8 0.807 0.235 0.173 0.183 1.105 0.068 0.368 0.736 0.097 0.060 -54 23 12
9 0.092 0.326 0.455 0.569 0.354 0.475 0.530 0.312 0.102 0.651 -31 10 11
10 0.759 0.296 0.691 0.425 0.441 0.323 0.287 0.310 0.194 0.582 18 12 9

• For t = 10 we have Y9 = 10, R9 = 11, SR10 = 18 and the equation to be solved
is 29× Y10 +R10 = 7× (18) + 22× (10) + 11 = 357. The unique solution of this
equation is Y10 = 12 and R10 = 9.

In Figure 1 the differences Xt,j − θ0 for t ∈ {1, 2 . . . , 10} are plotted, where at each
sampling point t, some values are tied together. The values of the charting statistic
Yt are plotted in Figure 2. It can be seen that at the 4th sampling point (t = 4) an
out-of-control signal is given stating that the process median has changed.

7.2. Beverage example

In this example, at each sampling point t, a subgroup of size n = 7 is collected in order
to detect a shift in the median of the quality of interest such that p0 = 0.5 shifts to p1 =
0.4. Based on the results obtained by the optimization method presented in Section 6
(Algorithm 3) the optimal parameters are equal to K∗ = 6, γ∗x = 10, and γ∗y = 140. In
Table 8 the deviations between Xt,j and θ0 for t ∈ {1, 2 . . . , 10} are illustrated, (Figure
3), along with the corresponding values of SRt, Yt and Rt, (for confidentiality reasons,
the in-control / target median value θ0 of the quality characteristic is not provided).
Regarding the computation of the ranks, Lt,j , in presence of ties, we have used the
average rank method:, i.e., for the rank allocated to a group of ties / ex-aequos we have
assigned the average of the ranks that would have been allocated to these observations
if they would have been all different. Consequently, similarly to the above example,
using the recursive formula presented in (1) the values of the charting statistic Yt are
computed as:

• For t = 1 we have Y0 = 0, R0 = 0, SR1 = 2 and the equation to be solved is
150× Y1 +R1 = 10× 2 + 140× 0 + 0 = 20. The unique solution of this equation
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Figure 1. Radial error example: individual value plot of the observations
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Figure 2. Radial error example: the CEWMA WSR chart for the Phase II sample presented in Table 7
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Table 8. Beverage example: Phase II dataset of t = 1, . . . 10 subgroups of size

n = 7 and the corresponding values for SRt, Yt and Rt

Xt,j − θ0
t 1 2 3 4 5 6 7 SRt Yt Rt

1 -0.01 -0.04 0.08 -0.08 0.03 -0.02 0.08 2 0 20
2 -0.05 0.01 0.01 0.06 0.00 0.00 0.11 15 1 20
3 0.06 -0.05 -0.01 -0.03 0.04 0.05 0.07 13 1 140
4 0.03 -0.02 0.02 0.04 0.02 -0.01 0.08 20 3 30
5 0.02 0.07 0.01 0.03 0.01 0.01 0.08 28 4 130
6 0.11 0.10 0.08 0.10 0.11 0.04 0.06 28 6 70
7 0.08 0.11 0.12 0.12 0.13 0.12 0.06 28 7 146
8 0.07 0.04 0.06 0.07 0.07 0.05 0.07 28 9 50
9 0.04 0.01 0.01 0.00 -0.02 0.03 0.08 19 10 0
10 -0.01 0.04 0.02 0.00 0.01 0.01 0.14 21 10 110
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Dissolved C02

Figure 3. Beverage example: individual value plot of the observations

(as an Euclidean division) is Y1 = 0 and R1 = 20.
• For t = 2 we have Y1 = 0, R1 = 20, SR2 = 15 and the equation to be solved is

150 × Y2 + R2 = 10 × 15 + 140 × (0) + 20 = 170. The unique solution of this
equation is Y2 = 1 and R2 = 20.
...
• For t = 10 we have Y9 = 10, R9 = 0, SR10 = 21 and the equation to be solved is

150× Y10 +R10 = 10× 21 + 140× (10) + 0 = 1610. The unique solution of this
equation is Y10 = 10 and R10 = 110.

In Figure 4 the values of the charting statistic Yt are plotted. It can be seen that
the control chart triggers a signal at sample #6. Anyway, the evidence of an upward
trend in the EWMA statistics suggests to look for factors affecting the occurrence of
assignable causes since sample #4.
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Figure 4. Beverage example: the CEWMA WSR chart for the Phase II sample presented in Table 8

8. Concluding Remarks

In this paper, we designed a new EWMA distribution-free control chart based on
signed ranks using a new memory-type EWMA technique, introduced by Rakitzis
et al. in [25] and extended by Castagliola et al. in [24] to the nonparametric case.
As it was explained in the previous sections, the use of the conventional approach
of Brook and Evans [21] in nonparametric EWMA charts yields to an unreliable
determination of their exact RL properties. The proposed CEWMA WSR scheme
is designed with guaranteed exact Run Length properties obtained by a specific
finite state Markov chain approach without any approximations. In addition, for
almost all the nonparametric schemes based on the Wilcoxon signed rank statistic,
their out-of-control performances are examined via Monte-Carlo simulation-based
techniques for a given distribution. On the other hand, for our proposed chart the
run length properties are examined and computed exactly for both the in-control and
the out-of-control conditions regardless of the observations’ underlying distribution.
Moreover, the performance of the CEWMA WSR chart was examined and compared
to several existing distribution-free control charts available from the literature. Our
results show that the CEWMA WSR chart can be an efficient means in detecting
moderate to large shifts in the process.

Many future work directions are worth of interest in this field of research. For in-
stance, it would be interesting to improve our chart’s overall shift detection properties
by using the adaptive feature in the smoothing parameter, as it was proposed in [26],
where the sign statistic was used. In addition, it would be challenging to extend the
CEWMA WSR chart to the multivariate case. Finally, the use of of the proposed
EWMA control chart can be extended to other non-parametric statistics as, for in-
stance, the Mann-Whitney, and the Ansari-Bradley statistics.
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