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We study the orientational order of an immobile fish school. Starting from the second Newton law, we show
that the inertial dynamics of orientations is ruled by an Ornstein-Uhlenbeck process. This process describes the
dynamics of alignment between neighboring fish in a shoal—a dynamics already used in the literature for mobile
fish schools. First, in a fluid at rest, we calculate the global polarization (i.e., the mean orientation of the fish),
which decreases rapidly as a function of noise. We show that the faster a fish is able to reorient itself the more
the school can afford to reorder itself for important noise values. Second, in the presence of a stream, each fish
tends to orient itself and swims against the flow: so-called rheotaxis. So, even in the presence of a flow, it results
in an immobile fish school. By adding an individual rheotaxis effect to alignment interaction between fish, we
show that in a noisy environment individual rheotaxis is enhanced by alignment interactions between fish.
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I. INTRODUCTION

The appearance of self-organization within a group of
active entities is a fascinating phenomenon [1]. It has been
studied for micro-organisms [2,3] as well as for active syn-
thetic particles [4,5] and at larger scales for animals [6].
Nontrivial self-organization is also observed within fish shoals
[7–10]. Milling and schooling are collective phenomena oc-
curring on scales much larger than an individual fish. This
phenomenon has been studied since the beginning of the 20th
century [11]. The structure and the sensitivity to external
factors such as water temperature, light, and darkness were
analyzed by Breder [12]. Individual fish in a school were
observed to swim for a longer duration when aligned, with
lower tail-beat frequencies and smaller energy dissipation and
respiratory rates, compared to fish swimming alone [13–15].
In addition, shoaling and alignment between fish are estab-
lished as a result of many social and sensory factors like
metabolism [16] and alignment by vision [17] or food [18].
Recently, the study of out-of-equilibrium active systems [19]
allowed scientists to substantially improve their knowledge in
modeling this remarkable phenomenon. In the seminal work
of Vicsek et al. [20], an individual animal (bird or fish) adopts
instantaneously the average orientation of its neighbors in the
group, resulting in a collective motion that can be destroyed
by noise. The noise source can be intrinsic to the fish or due to
external conditions such as turbulent fluid flow [9]. Since then,
more sophisticated force models have emerged that reproduce
quite well the real behavior of schools of fish [21–23]. That
class of social model allows one to study several situations
with some flexibility [24].

If collective motions have been extensively studied [1],
quite little literature is devoted to immobile groups of fish
[25] which stay at the same place relative to their living en-
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vironment. Immobile fish schools can be observed in various
situations and especially in reef regions [26]. Origins of such
an immobile state are diverse. It is likely that schools of fish
that stop their movements and remain motionless for a period
of time may achieve perceptual benefits [10]. Simultaneous
stopping of a school of fish provides relatively quiet inter-
vals to allow reception of potentially critical environmental
signals; fish under predator threat that form nonmoving look
around shoals [7] may be an example. However, the most
frequent origin of immobile school is a rheotactic effect that
allows the fish to orient against a stream [8] and is the object
of the present model. This effect was studied in detail by
Potts [27]. A school of the snapper Lutjanus monostigma
was observed during several days and self-organized into a
polarized and immobile school when submitted to tidal flow.
Each fish was heading towards the current in order to maintain
its position by positive rheotaxis. This is done by swimming
gently at an equal and opposite speed to the current. Indeed,
pointing ahead in a direction opposed to the flow can help
the school to maintain its immobility in a region where food
is present. A fish can individually find the direction of flow
through sensitive captors [28,29] and can also try to align with
its congeners. Note that within our simple model the notion of
rheotaxis can be extended to taxis in general: each fish tends to
orient itself in a particular direction while maintaining a fixed
position in space.

In the following, we will first present the model of fish ori-
entation with respect to neighbors and flow. We then show that
alignment interactions within a shoal can increase rheotaxis
efficiency of a single fish.

II. MODEL

Let us consider a motionless fish (Fig. 1) located at a fixed
position and with a time-varying orientation, living in a school
and interacting with its neighbors while attempting to orient it-
self in a direction opposite to a uniform flow (rheotaxis). Here,
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FIG. 1. Fish in a flow. The flow is oriented toward the y < 0
direction. Angles: φi is the angle between orientation ei of the ith fish
and the horizontal x axis; θi j is the angle between fish i orientation
ei and fish i- j orientation vector ei j ; finally φi j is the angle between
orientations of fish i and j.

for simplicity we use a two-dimensional fish shoal [22,23]
with a circular shape of radius R. Each of the N fish is a
discoid of radius a. When we vary N , we maintain the density
ρ = N (a/R)2 constant, typically, ρ ≈ 0.5. This corresponds
to a quite dense school which can be often encountered [30]
and which allows us to have small fluctuations of the local
density of fish. In the spirit of the social force model origi-
nally developed by Helbing et al. [31,32], we consider here
social torques. These “torques” are a measure for the internal
motivations of each individual to perform certain movements
(rotation) depending on its environment. Each fish needs to
orient itself in the same direction as its neighbors within a
chosen radius of 5a (i.e., 2.5 times its own size) and against the
flow. The typical size 5a has been chosen to capture neighbors
that are closely neighboring a given fish regarding the chosen
density ρ ≈ 0.5, and represents on average 12.5 fish. For
N = 200 fish, the total school size is R = 20a, which is four
times bigger than the radius of interaction. Starting with the
second Newton law for rotating bodies we can write

Iω̇i = −ζωi +
∑
j∈Vi

T I
i j (φi j ) + T R

i (φi ) + η(ri, t ), (1)

where I is the moment of inertia of any fish (supposed iden-
tical), and ωi is the angular velocity of fish i located in ri and
oriented with an angle φi with the x axis at time t . The angular
acceleration is ω̇i. Fluid friction is ζ . The ith fish interacts
with its close congeners indexed by j in the Vi ensemble
of its Ni neighbors (i.e., within a circle of radius 5a around
fish i). This interaction is represented by a social torque T I

i j
which depends on the relative orientation between fish i and
j: φi j = φi − φ j . The torque associated with the rheotaxis is
T R

i , which depends on the orientation of the fish i with the y
axis chosen as the direction of the incident and uniform flow.
Finally, the dynamics is perturbed by a noise term η(r, t ) with
< η(r, t ) >= 0 and < η(r, t )η(r′, t ′) >∼ δ(r − r′)δ(t − t ′).
Note that, in our model, we do not consider an interaction term
that depends explicitly on fish interdistance. This equation can

be rewritten as

ω̇i = − 1

τ
ωi + 1

τ
ω∗

i (φi j ) + η(ri, t )/I, (2)

which expresses that each fish adjusts its angular velocity
ω(t ) towards a time-dependent target value ω∗

i = ωI∗
i + ωR∗

i ,
depending both on the fish-fish interaction (ωI∗

i ) and on the
rheotaxis (ωR∗

i ) within an external flow. Expressions of ωI∗
i

and ωR∗
i are given below. We use the time τ associated with

dissipation as the characteristic time and we rescale by τ

the other times associated with alignments and rheotaxis.
Let us consider a fish as a rigid and prolate ellipsoid with
a size around a few centimeters at a fixed position in a
flow with a velocity U0 at intermediate Reynolds numbers
(≈100). The torque exerted by the fluid on the ellipsoid is
T ≈ 1/2ρU 2

0 (π/8d3) [33] where d is the diameter of the
equivalent sphere and ρ is the water density. The momen-
tum of inertia of a prolate ellipsoid rotating around its minor
axis is I = m(b2 + c2)/5 where b and c are the semiminor
and semimajor axis, respectively, and m is the mass of the
fish supposed to be neutrally buoyant, i.e., m = 4/3ρπb2c =
1/6ρπd3. Thus, the angular acceleration is T/I. If we assume
that the fish rotate at an angle π/2 on a time scale τ , it
gives τ 2 = (π/2) I/T . This leads to a time τ of about a few
seconds, which is much larger than the typical time of reaction
for alignment (of the order of a few tenths of a second [21]).
However, the time associated with dissipation can be much
shorter if we consider that usually a fish is flexible and a
change of orientation is driven by a deformation of its body
which can greatly reduce its inertia [34]. Following the spirit
of [22,23] in order to describe the interaction between close
fish, we write

ωI∗
i = I

τ

1

Ni

∑
j∈Vi

sin(
φi j

2
)

1 + cos(θi j )

2
, (3)

where I is the dimensionless amplitude of alignment inter-
action. The term sin(φi j/2) accounts for alignment between
fish i and j. If fish i and j are aligned in the same direc-
tion, it reads sin(φi j/2) = 0 and then ω∗

i = 0 since fish i has
no reason to rotate. But if fish i and j are antiparallel, i.e.,
φi j = ±π , then sin(φi j/2) = ±1, since fish i must rotate. The
term (1 + cos θi j )/2 is designed to ensure a frontal preference
and some kind of rear blind angle [23]. In order to model the
alignment against the flow (rheotaxis), we have

ωR∗
i = F

τ
sin

(
π/2 + φi

2

)
. (4)

The term F is dimensionless and represents the amplitude of
the rheotaxis. If φi = −π/2, the fish does not rotate since it is
already aligned against the flow (i.e., pointing in the y > 0
direction), which reads ωR∗

i = 0. But if the fish is aligned
along the flow, (φi = +π/2), the fish must turn back in
order to point against the flow with the target angular
velocity ωR∗

i = F/τ .
Using an Euler-Maruyama integration [35], Eq. (2) reads

dωi(t ) = −dt

τ
[ωi(t ) − ω∗

i (t )] + σN
√

dt, (5)

also known as an Ornstein-Uhlenbeck process [21,22]. The
noise amplitude is σ and N is a random Gaussian variable of
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mean zero and variance 1. For large values of time, this equa-
tion becomes stationary (see the Appendix). In the absence of
rheotaxis (F = 0), we can rescale time and angular velocities
by τ/I and I/τ , respectively. At stationarity, it is easy to show
that there is only one dimensionless number σ̃ = στ 3/2/I1/2

that compares the amplitude of noise and the amplitude of
alignment interaction (see the Appendix).

In the presence of rheotaxis (F �= 0), three terms should
be compared: the alignment interaction (amplitude I), the
rheotaxis (amplitude F ), and the noise term (amplitude σ ).
Since we would like to vary F at constant I , we choose
to rescale time and angular velocities by τ/F and F/τ , re-
spectively. Then, we get two dimensionless numbers I/F and
F 1/2/(στ 3/2), the last term being equal to (F/I )1/2/σ̃ .

In the following, we will integrate numerically Eq. (5) in
the absence or in the presence of rheotaxis. For each situa-
tion, we will plot the global polarization (defined below) as a
function of the above dimensionless numbers.

III. RESULTS

We first analyze the alignment within an immobile school
of N = 200 fish as a function of the noise σ̃ and without
rheotaxis (F = 0). Note that we tried different numbers of
fish: N = 400, 200, 100, and 50 (see the Appendix). Since
results are quite close for N = 400 and 200, we choose to
work with N = 200 fish for this paper.

We compute the mean value of the global polarization
[20,22] defined as P = 1

N | ∑N
i=1 ei|:

P = 1

N

√√√√(
N∑

i=1

cos φi(t )

)2

+
(

N∑
i=1

sin φi(t )

)2

. (6)

To calculate P, we run 20 simulations for each set of param-
eters. Each simulation is done with a different configuration
of fish. This number of runs seems sufficient to reduce the
fluctuations of P due to the choice of configuration. The global
polarization of the school is P = 1 when all fish point in
the same direction while P = 0 means that the fish point in
different directions.

The school initial orientation is polarized in a given ran-
dom direction. After a transient time of order τ/I , fish can
lose partially their mutual alignment because of the noise.
Thus, we measure P for large values of time (t 	 τ/I) as a
function of σ̃ (see Fig. 2). We found that P drops abruptly
for σ̃ ∼ 0.27. Here, the rescaled noise being σ̃ = στ 3/2/

√
I ,

which means that fast reacting fish (small values of τ/I) are
more able to line up in a more noisy environment (large value
of σ ) than fish with a larger τ/I value that cannot sustain the
same amplitude of noise to form a polarized school. Note also
that when P = 0.6 ± 1 we obtain a maximum of polarization
fluctuations whatever N (see the Appendix, Fig. 8). This is
reminiscent of phase transitions where fluctuations of a finite
system are maximum at the transition.

To visualize the loss of orientation when noise increases,
let us first consider the map of individual polarizations around
σ̃ = 0.27. In Fig. 3, we plot the time averaged value of each
direction ēi(t ) = 1/tmax

∫ tmax
0 eidt for different values of σ̃ .

We use tmax/(τ/I ) = 104 and dt/(τ/I ) = 10−2. Starting with

FIG. 2. Decrease of the global polarization for N = 200 fish as
a function of the dimensionless noise σ̃ without rheotaxis (F = 0).
Each point is averaged over 20 runs. The total time of each simulation
is tmax/(τ/I ) = 104 with a time step dt/(τ/I ) = 10−2.

σ̃ = 0.18, the group of fish is well polarized [Fig. 3(a)].
Then, we increase the rescaled noise value. We see that
for σ̃ = 0.27 [Fig. 3(b)] a weak polarized region appears.
Around σ̃ = 0.54 [Fig. 3(c)] several weak polarized zones
have invaded the school, leading to islands of polarized fish
separated by unpolarized zones. For larger values σ̃ = 1.0
[Fig. 3(d)], an entire unpolarized fish school (a so-called
shoal) remains. We also calculate the correlation function C =
ei.e j = 1/tmax

∫ tmax
0 ei.e jdt for different distances d between

fish i and j. As shown in Fig. 4, C decreases exponentially as
a function of the fish-to-fish distance with a typical correlation
length λ. This correlation length decreases by increasing the
noise (Fig. 5). We observe a small plateau for λ close to the
school size R probably due to a boundary effect.

To study the effect of the alignment interaction between
fish on the rheotaxis of the whole group, we now consider
nonzero values of F . In the absence of alignment interactions
between individuals (I = 0), each fish tends to orient itself
against the flow (pointing toward the y > 0 direction). The
presence of noise perturbs the rheotactic behavior of each fish
and the polarization drops by increasing the noise σ or τ and
decreasing the rheotaxis F (Fig. 6). We assume that even if
a given fish is not perfectly oriented against the flow it still
maintains its position within the shoal in order to stay with its
congeners.

Now, by switching on the alignment interaction between
fish (i.e., for nonzero and positive values of I), we observe
a clear increase of the global polarization [see Fig. 6 (black
arrow)]. Note that the x axis [

√
F/(στ 3/2)] is inversely pro-

portional to σ . In Fig. 6(b), we plot the polarization difference

P = P(I/F ) − P(I/F = 0) between the global polarization
P of the school in the presence of interactions and in the ab-
sence of social interaction (I = 0). We see that for large values
of I/F a strong increase of the polarization against the flow is
obtained and reaches a maximum around F 1/2/(στ 3/2) ≈ 1.
For small rheotaxis or strong noise the global polarization
drops to zero since the fish are pointing in all directions. In
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FIG. 3. Time averaged orientations of each fish for different values of the noise without rheotaxis (F = 0). A short or large arrow indicates
small or large polarization of a given fish, respectively. (a) For σ̃ = 0.18, fish are well polarized. (b) For σ̃ = 0.27, a small zone of weak
polarization appears (bottom right). (c) For a larger value σ̃ = 0.54, only a few islands of polarized fish remain. (d) Then, for σ̃ = 1.0, no
polarization remains (time averaged value ēi ≈ 0).

contrast, for large rheotaxis or small noise all the fish are
pointing in the direction opposed to the flow and P saturates.
In both cases, the role of fish-fish interaction is inefficient. But
between these two extreme cases [F 1/2/(στ 3/2) ≈ 1] we ob-
serve a maximum of 
P corresponding to a significant gain of
rheotaxis by the interplay of the fish-to-fish interactions. It can
be concluded that a strong fish-to-fish interaction improves
the collective rheotaxis even if the individual rheotaxis is
weak.

IV. CONCLUSION

In this paper, we have studied the collective orientation
of an immobile group of fish with two ingredients: a so-
cial torque to align fish with their close neighbors and an
environmental torque to align fish with an external flow.
We have modeled the inertial dynamics of groups of fish in
the presence of noise. In the absence of an external flow, we
show that for large values of a dimensionless noise σ̃ 	 1 the
group cannot globally polarize. In the presence of a flow, we
show that strong social interactions help the group to detect

and align even with weak individual rheotaxis. We believe
that this model, despite its simplicity, could be extended to
describe important features regarding the behavior of groups
of animals and in particular predator-prey systems. Indeed,
pack interactions can improve hunting efficiency for predators
or improve the protection of a group of prey.

Beyond the scope of this paper, our model can be extended
in many ways to take into account more specific character-
istic properties depending on fish species. First, a distance
dependent alignment interaction could be included. We can
consider that a fish alignment smoothly decreases with the
interdistance between individuals (an exponential decay, for
example). This decay should depend on density. Indeed, if the
density is small, visual interaction range can be large, while
at high density the range is very much reduced (as in our
model). Second, the ratio between the size of the shoal and
the interaction range could also be increased since information
propagation delays have been numerically observed in large
mobile schools as well as the disappearance of milling con-
figurations [23]. Third, a three-dimensional study would also
be very interesting to see the effect of an additional degree
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FIG. 4. Correlation function C as a function of the fish-to-fish
distance d rescaled by R. The first part of the curves is associated
with the correlation between close neighbor fish (d < 5a). Then,
for d > 5a, an exponential decay is observed. Orange circles, σ̃ =
0.09; green left triangles, σ̃ = 0.13; red squares, σ̃ = 0.18; magenta
down triangles, σ̃ = 0.22; black diamonds, σ̃ = 0.27; orange down
triangles, σ̃ = 0.36; green up triangles, σ̃ = 0.45; purple crosses,
σ̃ = 0.54; brown plus, σ̃ = 0.63; blue stars, σ̃ = 0.72. Each solid
line is a fit with an exponential decay such as exp(−d/λ), where λ

is a correlation length (fitting parameter).

of freedom on both the polarization and the coupling between
fish-fish interaction and rheotaxis.

Our model could also be extended to the case of moving
fish like larval zebrafish, which are able to detect low gradients
of velocities (in a Poiseuille flow) [36]. In this case, it would
be interesting to study whether collective social interactions
can improve the efficiency of this specific rheotactic behavior.

All those possible extensions show that our model is quite
plastic and can be easily adapted to several situations and can
capture several rheotaxis dynamics of a school in a complex
environment.

FIG. 5. Correlation length λ as a function of noise σ̃ . λ decreases
as a function of σ̃ and reaches a plateau when becoming comparable
to the school size R around σ̃ ≈ 0.27. Above this noise it continues
to decrease below R.
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FIG. 6. (a) Polarization P of the school against the flow as a func-
tion of F 1/2/(στ 3/2) for different values of the parameter I/F . I/F =
20.0 (green crosses), I/F = 10.0 (magenta triangles), I/F = 2.0
(orange stars), I/F = 1.0 (blue diamond), I/F = 0.5 (red squares),
I/F = 0 (black circles). A significant increase of P is observed
when I/F increases. The arrow indicates the polarization difference
between I/F = 20.0 and 0 at F 1/2/(στ 3/2) = 1. (b) Polarization
difference of the school 
P = P(I/F ) − P(I/F = 0). The colors
and symbols represent the same I/F values as in figure (a). The
presence of alignment interaction is very efficient for rheotaxis when
I/F is large and F 1/2/(στ 3/2) ≈ 1.
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APPENDIX

1. Different numbers of fish

We vary the number of fish, from N = 50 to 400 (see
Fig. 7). Depending on N , the drop of polarization occurs in
the range of noise 0.25 < σ̃ < 0.5, however the amplitude of
fluctuation always occurs around P = 0.6 ± 0.1 (Fig. 8). By
changing N , we maintain the density ρ = N/(πR2) constant
and equal to ρ ≈ 0.5.
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FIG. 7. Polarization of the school as a function of noise σ̃ for dif-
ferent numbers of fish N . Green triangles, N = 50; black diamonds,
N = 100; red squares, N = 200; blue circles, N = 400.

2. Dimensionless numbers

In the absence of rheotaxis (F = 0) the rescaling of Eq. (5)
at stationarity (see Sec. II) leads to

0 = −d̃t[ω̃i(t ) − ω̃∗
i (t )] + στ 3/2

I1/2
N

√
d̃t, (A1)

FIG. 8. Fluctuation of the school polarization as a function of
polarization for different numbers of fish N . Green triangles, N = 50;
black diamonds, N = 100; red squares, N = 200; blue circles, N =
400. Whatever N , the fluctuation maximum is around P = 0.6 ± 0.1.

FIG. 9. Term T1 [left-hand side of Eq. (A6)] as a function of T2

[right-hand side of Eq. (A6)]. Data are circles and the red solid line
represents the first bisector, showing that T1 = T2.

where t̃ = t I/τ and ω̃ = ωτ/I . The dimensionless target is

ω̃∗
i = 1

Ni

∑
j∈V

sin

(
φi j

2

)
1 + cos(θi j )

2
. (A2)

Now, in the presence of rheotaxis (F �= 0) the rescaling of
Eq. (5) at stationarity leads to

0 = −d̃t[ω̃i(t ) − ω̃∗
i (t )] + στ 3/2

F 1/2
N

√
d̃t, (A3)

where t̃ = tF/τ and ω̃ = ωτ/F . The target is

ω̃∗
i = I

F

1

Ni

∑
j∈V

sin

(
φi j

2

)
1 + cos(θi j )

2
− sin

(
π/2 + φi

2

)
,

(A4)
In this case, two dimensionless numbers are to be consid-

ered: I/F and
√

F/(στ 3/2).

3. Stationarity

For large values of time (t̃ 	 1), we can assume stationar-
ity. In the presence of rheotaxis, if this hypothesis is true, we
should have

[ω̃i − ω̃∗
i ]d̃t = στ 3/2

F 1/2
N

√
d̃t . (A5)

But this equality is not easy to prove numerically because
of the presence of noise. So let us average each member of
Eq. (A5) on time and fish. By integrating on time and using
Ito isometry we obtain the following equality:

〈{
1

t̃max

∫ t̃max

0
[ω̃ − ω̃∗]d̃t

}2〉
=

(
στ 3/2

F 1/2

)2

(A6)
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where t̃max = tmax/(τ/F ) = 104 and < . > represents
the averaging over the N fish. Let us set T1 = 〈{ 1

t̃max∫ t̃max

0 [ω̃ − ω̃∗]d̃t}2〉 and T2 = ( στ 3/2

F 1/2 )
2
. In Fig. 9, we plot

T1 as a function of T2 for different values of σ , τ , I , and
F . We show that these two terms are identical and thus the
stationarity hypothesis is true when t̃max 	 1.
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