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Chapter 1

Latent factor models: a tool for dimension
reduction in joint species distribution models

1.1. Introduction

Understanding how species are distributed in space has been one of the main goals
of Ecology [Von Humbolt, GUI 05]. In particular, investigating which factors drive
species distributions within communities, across regions or along environmental gra-
dients can improve our understanding of fundamental ecological processes under-
lying such patterns, as well as our ability to anticipate future biodiversity changes
[GUI 17; THU 13]. When building models to explain and predict the distribution of
organisms, we necessarily need to ask the same questions as the early biogeographers.
It is now clear that three main conditions need to be met for a species to occupy a site
and maintain populations [see Figure 1.1, PUL 00; LOR 04; SOB 07] :

– the species has to physically reach the site, i.e. to access the region [BAR 11];
– the abiotic environmental conditions (i.e. temperature, precipitation...) must be

physiologically suitable for the species ;
– the biotic environment (interactions with other species) must be suitable for the

species.

The first condition is a matter of species dispersal capacity from those areas pre-
viously occupied by the species. It includes the biogeographic history of the species,
and thus all factors limiting its distribution from the place where it first originated,
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Figure 1.1 – The three factors that determine the actual distribution of a species
[SOB 05].

such as barriers to migration, biotic and abiotic dispersal vectors, rare long distance
dispersal, etc.

The second condition is the matter of abiotic habitat suitability for the target
species, which means that the combination of abiotic environmental variables at the
site - often referred to as environmental suitability - are within the range of environ-
mental conditions that the species requires to grow and maintain viable populations.
These suitable environmental conditions are what ecologists call the environmental
niche [HUT 57].

The third condition concerns biotic interactions, i.e. interactions with other or-
ganisms, either positive (commensalism, mutualism) or negative (competition, preda-
tion), which themselves are influenced by the environment through their influence on
all organisms in the local community.

From a statistical point of view, the most common tools to model how species are
distributed in space are species distribution models (SDMs, [GUI 05]). There are a
variety of SDMs that differ in their underlying statistical algorithms and flexibility
[GUI 05; MER 14; GUI 17], but they all relate the presence or abundance, and some-
times the absence, of a species to a set of environmental variables and project this
relationship in space and/or time. While SDMs have proven to be very useful and re-
liable in many different areas and fields [see YAT 18; GUI 17, for reviews], they also
have well-known limitations and assumptions that run counter to ecological niche the-
ory [GUI 00] and that may question the robustness of their predictions. A first major
criticism of SDMs is that they model species independently of each other, making
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the assumption that species respond individualistically to the environment. As a con-
sequence, SDMs can only capture the implicit combined effect of both abiotic and
biotic environments. Despite these limitations, researchers have also used SDMs to
predict species communities in space and time. In that case, single species predictions
are simply stacked together (e.g. stacked SDMs, [GUI 05]) by summing either the
species’ probabilities of occurrence [CAL 14] or the binary-transformed predictions
[GUI 11]. In the end, going from single species predictions to species communities
commonly relies on a two-step procedure without any consideration of error propaga-
tion and without a joint-estimation of all model parameters.

With the increasing availability of community data (thanks to new sampling tech-
niques like environmental DNA (eDNA) metabarcoding [TAB 12]), researchers now
aim to model community as whole, and not as the stacked response of species [CLA 14].
The species are then modelled together, giving birth to Joint Species Distribution Mod-
els (JSDMs) [POL 14; OVA 17; CLA 16]. These models estimate the relationship
of each species with respect to environmental covariates through a regression, like
SDMs, and additionally infer a correlation matrix among species from the regression
residuals. This correlation matrix reflects species co-occurrence patterns not explained
by the environmental predictors and may arise from model mis-specifications, miss-
ing covariates or, importantly species interactions. Since the number of parameters in
the residual correlation matrix scale quadratically with the number of species, these
methods are computationally challenging. Latent factor models, that provide a low-
rank approximation of this matrix, have naturally raised as a computationally efficient
solution for JSDMs [WAR 15]. In this chapter we present latent factor models in the
context of JSDMs, emphasising their usefulness in community ecology. We apply
latent factor models to plant species along 18 elevation gradients in the French Alps,
belonging to the long-term observatory ORCHAMP (www.orchamp.osug.fr).

Within this book, two other chapters also develop methodologies for JSDMs: Chi-
quet et al. (Log-normal Poisson model) and Mortier et al. (Supervised component
generalized linear regression and extensions). Chiquet et al. chapter focuses on the
multivariate Poisson log-normal (PLN) model with abundance data, while ours es-
sentially covers presence-absence data. Inference for this PLN model is done in a
classical (non Bayesian) setting with a variational approximation, while we follow a
Bayesian approach and use a Markov chain Monte Carlo algorithm to sample from the
posterior distribution, thus offering posterior credible intervals. Mortier et al. chapter
has a slightly different focus on how to combine predictors into components in order
to lead to optimal learning. A classical (non Bayesian) approach is used, and the case
study tackles abundance data.

www.orchamp.osug.fr
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1.2. Joint species distribution models

To study species distribution we relate a response variable Yn to a set of p environ-
mental covariates Xn = (Xn`)

p
`=1, at each site n = 1, . . . , N . Yn ∈ RS is a vector

where each element Yns contains the observation for species s = 1, . . . , S at site n.
Most JSDMs are based an extension of Generalised Linear Models (GLMs), where
they assume that the response variable is distributed as F , whose mean is given by a
regression term and a residual multivariate random effect: For species s at site n, this
writes:

Yns ∼ F (µns, φs), (1.1)

g(µns) = β0s + t(βs)Xn + ens, (1.2)

en
iid∼ NS(0,Σ), (1.3)

where F is the assumed distribution for the data with mean µ and dispersion param-
eter φs (that is usually not accounted for when modelling presence-absence data),
and t(β) denotes the transposition of β. Function g is called the link function. The
vectors β0s and βs represent the intercept and regression coefficients for species s,
that describe the relationship between each species and the environmental covariates.
Thanks to these coefficients, we can therefore define the suitable environmental con-
ditions for each species, the environmental niche. Note here that the environmental
covariates could also integrate the abundance or presence-absence of species (REF).
Residual correlations among species are captured by Σ, a symmetric and positive-
definite variance-covariance matrix (that has the constrain to be a correlation matrix
for presence-absence data). The elements of Σ reflect species co-occurrence patterns
that are not explained by the environmental predictors, and can arise from noise in the
data, model mi-specification, missing predictors, and species associations.

The choice of the distribution F and the link function g depends on the response
variable Yn to be modelled. JSDMs typically model presence/absence, counts, biomass
and many others due to the heterogeneity of ecological data and of the sampling
campaigns. For presence-absence data, most models assume a Bernoulli distribu-
tion and a probit link function [see GLM MCC 89]. However, this is quite common
to remplace the probit link function by a latent variable parameterisation [CHI 98]
to make the model computationally more efficient. Since species community data
may contain observations of species documented in multifarious ways (e.g. presence-
absence and counts), several JSDMs have been implemented to address this challenge
[OVA 17; CLA 17].

Interestingly, many JSDMs can model the regression coefficients hierarchically:

βs
iid∼ Np(µ,V ). (1.4)
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This allows for a share of information across species on their response to the envi-
ronment, so that the estimation of the niche of rarely observed species could ’borrow
strength’ from those of common species assuming that they do not behave fundamen-
tally differently [OVA 11]. Moreover, it is possible to account for functional traits
and/or phylogeny by including them in µ and/or V [see e.g. OVA 20, Chapter 6 for
detailed description].

1.3. Dimension reduction with latent factors

The model described above suffers from the “curse of dimensionality”, since the
covariance matrix scales quadratically with the number of species. Indeed, the number
of free parameters of the covariance matrix when modelling S species is S(S + 1)/2.
For example, for S = 100 species, the number of parameters of the covariance matrix
is 5 000+. Nowadays, dealing with large datasets that contain observational data over
space and time, the number of modelled species can easily exceed several thousands,
making inference challenging and endless computational times. Hence, there is a need
for dimension reduction approaches in JSDMs.

To address this challenge, several authors proposed a low-rank approximation of
the covariance matrix of JSDMs, through the use of latent factors [WAR 15]. Starting
from the original model (1.2), we assume a factorized representation of the residual
random effects ens, as a product of factor loadings and latent factors:

ens = t(Ts)Zn where Zn
iid∼ NK(0, IK). (1.5)

The vector Ts ∈ RK is called the factor loading of species s; the collection of t(Ts),
s = 1, . . . , S, constitutes the rows of the so-called factor loadings matrix T (of di-
mension S ×K). The Gaussian random vectors Zn ∈ RK are called latent factors.
Crucially, note that under this factorised representation of the residual random effect,
the residual covariance becomes now: Σ = Tt(T). By taking the number of latent
factors K � S, the parameters to be modelled are drastically reduced.

Latent factors Zn can be seen as a set of unmeasured covariates at site n, and the
factor loadings Ts as the response of species s to these unmeasured covariates. A
common (or opposite) response to these unmeasured covariates introduces a positive
(or negative) correlation between species.

A critical feature of this dimension reduction is to appropriately select the number
of latent factors. On one hand, we need K � S to reduce model complexity. On
the other hand, we have to provide to the model the flexibility (that increases with a
higher K) that is necessary to fully capture the required information from the data.

The number of factors controls the complexity of the model. The challenge is to
find the appropriate number of factors such that the model is simple and tractable,
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yet appropriately capturing the covariance structure. Interestingly, this question arises
also in most multivariate analyses where an optimal number of components has to
be chosen. There are several approaches to address this issue in a Bayesian frame-
work. One way is to initially fix K and then run a model selection with a range of
K values. This is typically done by using information-theoretic criteria such as the
deviance information criterion (DIC) [SPI 02] or the Watanabe–Akaike information
criteria (WAIC) [WAT 10].

1.4. Inference

These models could be fitted either in the maximum likelihood framework or in the
Bayesian one. The key difference between the two approaches is that maximum likeli-
hood methods consider the model parameters as fixed (but unknown) quantities, while
in the Bayesian approach they are considered as random [ELL 04]. As a consequence,
the Bayesian framework allows to introduce a prior information on the parameters,
that might come from expert knowledge or previous studies. Bayesian methods also
differ in the quantification of uncertainty: while maximum likelihood methods usu-
ally provide point parameter estimates and confidence interval, the Bayesian approach
can provide the full distribution of the estimated parameters (the so-called posterior
distribution).

Bayesian inference is particularly suitable in Ecology due to its flexibility and com-
putational tractability when dealing with highly complex models. Indeed, modelling
Nature is challenging due to the complexity and stochasticity of its underlying pro-
cesses. This motivates the use of the Bayesian framework to analyse ecological data
[CLA 06]. Introducing prior information in Bayesian models allows to incorporate
various historical/external information and expert opinion for improving the models.
Additionally, parameter estimations in these complex models are uncertain, and the
Bayesian approaches are particularly suited for dealing with such an uncertainty.

As shortly mentioned above, a Bayesian framework implies to select suitable pri-
ors for model parameters: βs,Σ. Incorporating prior information in the model could
improve parameter estimates, but if priors are specified incorrectly, they could poten-
tially bias the model, especially when only few observations are available. In practice,
it is quite often difficult to specify correctly prior distributions reflecting prior knowl-
edge. In this chapter we present the case of more widespread or non-informative
priors, but informative choices are also possible [CLA 16; BYS 20]. The prior dis-
tribution for regression coefficients is usually a multivariate normal and an inverse
Wishart for the covariance matrix, and all hyperpriors are chosen to be vague.
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1.5. Ecological interpretation of latent factors

We described latent factors from the mathematical point of view, but what do
they imply in term of ecological hypotheses and interpretation? In model (1.3), we
described the residuals ei for site i as a Gaussian vector whose covariance matrix
Σ was unconstrained. This correlation reflects species co-occurrence patterns that
are not explained by the environmental predictors, and may arise from model mis-
specifications, missing covariates or species associations. We can also leverage on
the non-independence between species to improve the co-occurrence and conditional
predictions (see Section 1.6). Latent factors not only allow to reduce the dimension
of the model and to deal with a larger number of species, but they also yield crucial
ecological insights.

First of all, this new representation still makes it possible to infer the residual
covariance matrix among taxa: as shown previously, latent factors T factorise the
covariance matrix into Σ = Tt(T). Therefore, species that are highly correlated have
similar latent loadings. How can these latent loadings be interpreted?

In the latent factor representation of JSDMs it is natural to think as the term
t(Ts)Zn in Equation (1.5) as a random effect term of a vector of latent covariates
Zn and their related species-specific coefficients Ts. These latent covariates can be
seen as missing environmental predictors and therefore provide a means of solving the
longstanding problem of missing covariates modelling. So doing, species with similar
latent loadings share the same response to missing covariate and are thus expected to
share similar occurrence patterns. Therefore, they are more correlated.

Latent factors can also be thought as ordination axes, that represent the main axes
of (co)variations of abundances across taxa. By forcing the number of latent factors
to K = 2, it is possible to visualise on a biplot both the sites ordination, thanks to the
latent variables Zn, and the ordination of taxa, with the latent loadings Ts. There-
fore, species that have close latent loadings will be close in the low dimensional space
represented by the biplot, and therefore highly correlated. By evaluating this model-
based ordination before and after the inclusion of measured environmental covariates,
we can understand how much the co-occurrence suggested by an unconstrained model
(i.e. without environmental covariates) can be explained by a shared response to envi-
ronmental covariates.

1.6. On the interpretation of JSDMs

Although JSDMs are receiving increasing attention, there has been a lack of clar-
ification on both the ecological processes they incorporate and on their specific com-
monalities and advantages with respect to SDMs. Since JSDMs infer a correlation
matrix from the residual, it is tempting to think these residual correlations can inform
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about biotic interactions [POL 14] or even that JSDMs “account for biotic interactions
in species distribution models” [WIL 19]. As highlighted by [POG 21], these tempt-
ing ideas should be avoided. JSDMs can provide additional information on species
co-occurrences, but cannot separate the biotic and the abiotic effects, and their pre-
dictions on species distribution inevitably coincide with those of SDMs. However,
JSDMs have the great advantage of leveraging on the residual correlation matrix to
provide conditional predictions, which can be of great help in empirical studies, as we
show in the case study below.

1.7. Case study

1.7.1. Introduction of the dataset

We present hereafter an application of latent factor models to a plant community
dataset recently published by [MAR 20]. The data are being collected within OR-
CHAMP, a long-term observatory of mountain ecosystems aiming to observe, under-
stand and model biodiversity and ecosystem functioning over space and time. OR-
CHAMP is built around multiple elevational gradients that range from about 900 m
to 3000 m, and have been chosen to have a homogeneous exposure and slope along
the gradient, a typical vegetation for the elevation levels (with woods dominating the
lower parts and alpine meadows the higher parts), so that all the gradients as a whole
are representative of the environmental and topographical variability of the French
Alps. Between 2016 and 2018, at least five sampling plots were installed along 18
gradient, with an average of 200m elevation difference, for a total of 99 plots (Figure
1.2). Here, we study the response of plant species to climate, the physico-chemistry
properties and the microbial activities of the soil. We applied latent factor models to
a selection of 44 plant species, whose occurrences were recorded in at least 20 sites
over the 99 sites, together with climatic variables, soil physico-chemical properties
and exoenzymatic activities. Latent factor models are particularly suitable to study
the response of plant communities for the reasons described above. We aim to under-
stand which species share the same response to the environment, and how eventual
changes of climate and soil could affect these plants. Moreover, we are interested in
the inference of the residuals correlation among species, the correlation matrix Σ that
is given by Λt(Λ). Thanks to the latent factor representation, we will be able not only
to infer the residual associations among species, but also to represent species and sites
on ordination axes, after filtering from the environment.

Using this dataset, [MAR 20] highlighted how Growing Degree Days, (GDD, the
annual sum of average daily degrees above zero), the total potential exoenzymatic
activity (total EEA, the sum of all measured exoenzyme activities), soil pH and the
ratio between soil carbon and nitrogen (soil C/N) determine the distributions of the44
plant species. We therefore choose to include these four variables as the covariates of
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Figure 1.2 – Localisation and names of the 18 gradients of ORCHAMP.

the latent factor model. In line with [MAR 20] we considered the square of the GDD,
due to the unimodal response of species to this variable.

1.7.2. R package used

To analyse the dataset, we used the R package Hmsc [TIK 19; TIK 20]. This pack-
age makes inference on the parameters of the models by sampling from the posterior
distribution through Markov chain Monte Carlo (MCMC) sampling. Hmsc imple-
ments the latent factors methodology of [BHA 11], where the number of latent factors
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is automatically chosen via shrinkage. Although we shall not describe all the features
of this package, let us mention the interesting feature that it allows hierarchical mod-
elling of the regression coefficients, and allows both functional traits and phylogeny
to be included. This feat enables the user to study the dependence between functional
traits and the environment, and to quantify the importance of phylogeny on species
distribution. Moreover, it allows an explicit spatial and temporal dependence between
sites to be included, improving the performance of the model. Here, however, we do
not include any of these features to strictly describe the application of latent factor
models. 1

1.7.3. Implementation and convergence diagnosis

We run two MCMC chains of 1500 samples each, with 500 burn-in iterations and
no thinning. These models are usually computationally demanding, and the compu-
tations for this model notably took around 3 hours. Figure 1.3 shows that all the
models clearly converged. The effective sampling size (nESS) of the chains is very
high for most parameters, and the potential scale reduction factor (psrf) was always
close to one (the description of these measures can be found in [GEL 04]). Thanks
to the Bayesian framework, the full posterior distribution of the parameters was avail-
able and could then be used to compute a point estimate (posterior mean) and credible
intervals (through posterior quantiles) for all parameters.

1.7.4. Results and discussion

We evaluated the predictive performance of the model both in in-sample prediction
and in cross-validation (due to the high computational costs, we performed a 2-fold
cross-validation only). We evaluated the model on these tasks by calculating, for each
species, the True Skill Statistic (TSS), which has the advantage to account both for the
model sensitivity (i.e. proportion of observed presences predicted as presences) and
specificity (i.e. the proportion of observed absences predicted as absences, [ALL 06]).
TSS can vary from −1 to 1, where +1 indicates perfect fit and values of zero or
less indicate a performance no better or worse than random [ALL 06]). Since the
TSS requires a threshold to transform species’ probability of presence into binary
presence-absence data, we selected the threshold that maximises the TSS values. We
also evaluated the Root Mean Square Error (RMSE) of each species. In general, the
model has good abilities to fit the data (mean in-sample TSS is equal to 0.63, Figure
1.4), but a scarcer ability to generalize on new data (in cross-validation the mean TSS
drops by 0.5 and RMSE increases by 0.25). Model performances vary across species,
with some species that were poorly modelled (three species had a cross-validation TSS

1. The R code can be found at https://oliviergimenez.github.io/code_livre_variables_
cachees/bystrova.html.

https://oliviergimenez.github.io/code_livre_variables_cachees/bystrova.html
https://oliviergimenez.github.io/code_livre_variables_cachees/bystrova.html
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Figure 1.3 – Effective sample size (top panel) and potential scale reduction factor
(bottom panel) for the correlation matrix Σ (Sigma, left panel) and the regression
coefficient β (B, right panel).

score equal to 0) and others whose distribution was very explained (cross-validation
TSS over 0.3).

The regression coefficients tell us how species respond to the environment, and
in this example, their heterogeneity shows how plant species have different responses
to the environment (Figure 1.5). In general, climate (represented by GDD) has a
significant effect on the distribution of a few number of species only. Instead, soil
properties had a higher explanatory power. Many species notably show a trade-off
along the gradients of soil characteristics: species that have a positive response to soil
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Figure 1.4 – Distribution of TSS and RMSE score across species for in-sample pre-
diction (red) and 2-fold cross-validation (blue).

C/N, often have a negative one to soil pH and/or total EEA and vice-versa (Figure 1.5).
These results are consistent with [MAR 20], where the authors, that also considered
functional traits (but no residual correlation), showed how such a behaviour reflects
the functional trade-offs between conservatives and exploitative species. Exploitative
plants are advantaged in nutrient-rich places with mild climate, while conservative
species succeed in places were the soil condition are harsh thanks to their adaptation
that allow them to survive in stressful situations. As a concluding remark, note that
some species do not respond significantly to any of the environmental covariates, and
these are the same species for which the TSS and RMSE scores are particularly poor.
By analysing the residual correlation matrix, we can understand species co-occurrence
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Figure 1.5 – Posterior support values for species regression coefficients. Red if the
bounds of the 90% credible interval are both positive, white if the credible interval
overlaps 0 and blue if both bounds are negative.

patterns that are not described by the environment, and provide insights about the
phenomena that generate them. In the residual correlation matrix of this case study,
the species are interestingly divided into two groups. Most plants tend to be positively
correlated with species belonging to the same group, but negatively correlated with
those of the other group (Figure 1.6). One group (that contains most of the species)
is characterised by herbaceous plants that characterise alpine meadows (e.g. Festuca
violacea, Sesleria caerula, Carex curvula and Gentiana acaulis), while the other one
contains trees (e.g. Picea Abies), shade-preferring shrubs (e.g. Vaccinium myrtillus



24 Chapter

and Vaccinium vitis-ideae) and herbaceous species that are found in forests and humid
habitats (e.g. Melampyrum sylvaticum and Chaerophyllum villarsii).

This residual correlation matrix highlights ecological phenomena that are well
recognised. In fact, along elevational gradients, trees are limited by climatic condi-
tions that prevent their survival above certain altitudes. As a consequence, herbaceous
plants that need a high amount of light are excluded from the forests and are only
found in open habitats, whereas other herbaceous plants (and shade-friendly shrubs)
need the shade provided by the trees, and are therefore found in closed and/or humid
habitats. The residual co-occurrence matrix not only endorses the biotic phenomena
we described above, but also suggests to include habitat as an additional covariate,
that might explain some of this residual co-occurrence patterns and improve model
predictions.

Thanks to the latent factor representation, we can try to better understand where
these correlations come from. A natural way of doing so is via ordination, as explained
in Section 1.5. We project the species in the space of the first two latent loadings (the
first two columns of T) and the sites in the first two latent factors thanks to a biplot
(Figure 1.7). With such representation, we can think of latent factors as missing co-
variates, and represent sites depending on these missing covariates. Species loadings
are therefore the response of species to such missing covariates. If two species are
close on the biplot and far from the origin, they respond in the same way to these
missing covariates, and are thus more correlated. For example, we see that Picea
abies, Melampyrum sylvaticum and Vaccinium myrtillus tend to respond differently
from the other species to these missing variables, and in fact, as said above, they are
negatively correlated with them.

The type of habitat of the sites is one of the environmental predictors that we
haven’t included in the study, and that could potentially impact species distribution,
and interestingly some of the species highlighted in the previous biplot (Figure 1.7)
tend to prefer close rather than open habitats compared to other species. We therefore
marked each site as forest (indexed by 1) or grassland (0), re-run the model including
this additional covariate and analyse its updated ordination plot (Figure 1.8). The
above mentioned species, that tend to behave as outliers when the habitat information
was not include, are now closer to the rest of species. The species pool now tend
to be more evenly distributed in the ordination space, even if some trends are still
remarkable. Notably, we can still see a gradient, with sub-alpine species in the upper-
right corner of the biplot and alpine species in the bottom-left one. If this can this be
still partially due to some unmeasured environmental variable, this might also be due
to the influence of species on each others, with Picea Abies that provides the shade for
other species.

We finally want to leverage on the information that we assessed in the residual cor-
relation matrix to improve the predictions of the model. We saw how the Picea abies
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Figure 1.6 – The residual correlation matrix. Only significant values (i.e. 95% credible
interval do not overlap zero) are shown.

provides the shade and moisture that allows shrub species like the Vaccinium. (Vac-
cinium myrtillus and Vaccinium vitis-ideae) and shadow-friendly herbaceous species
such as Melampyrum sylvaticum and Chaerophyllum villarsii) to thrive, while at the
same time preventing the survival of herbaceous species that need lots of light, such
as Festuca violacea. To improve our ability to predict one (or more) of the species
described above, we predict the probability of occurrence of species conditionally on
the presence (or absence) of Festuca violacea, an herbaceous plants that characterises
alpine grasslands. This is very similar to include Festuca violacea as predictor for the
unobserved species. While including the other species as predictors is a doable op-
tion for communities with small number of species, it is not straightforward to do it if
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Figure 1.7 – Model based ordination analysis. The two latent variables can be seen
as missing covariates, and the position of species (black triangle) on the plot the way
species respond to those missing covariates. Species close in the the latent variable
species are positively correlated and viceversa.

there are tens or hundreds of species. In contrast, conditional prediction can be made
also for a great number of species, without the need to run the model again. When
conditioning on Festuca violacea, the predictive power of the model improve, in par-
ticular concerning cross-validation predictions, where the mean TSS score gains 80%
(from 0.1 to 0.19) with respect to the non-conditional predictions. This is particularly
true for species that show a particular residual correlation (negative or positive) with
Festuca violacea. Therefore, we focused on Poa Alpina, Campanula scheuchzeri, Sol-
danella alpina, Viola calcarata and Euphrasia minima, which, like Festuca violacea,
characterize sub-alpine pastures and are often found together, and on the tree Picea
abies, which as said before, takes the light that would allow the Festuca violacea to
survive. For example, we consider an alpine meadow in the region of Devoluy (south
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Figure 1.8 – Model based ordination analysis, as above, but when we include the
habitat as an additional covariate of the model.

of France), at an altitude of 2100m, where all the above mentioned herbaceous species
are present, and Picea abies is absent. Figure 1.9a shows how cross-validation predic-
tions conditioned by the presence of Festuca violacea increase the probability of the
species that are actually present, and decrease the one of the tree, which is absent. This
leads more generally to a marked improvement in the cross-validation AUC (Figure
1.9b).
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Figure 1.9 – Cross-validation predicted probability of presence (a) and cross-
validation AUC (b) of Poa Alpina, Campanula scheuchzeri, Soldanella alpina, Vi-
ola calcarata, Euphrasia minima and Picea Abies conditionally on Festuca violacea
(green) and unconditionally (yellow). At site Devoluy 2100 all the herbaceous species
of above were present (green box) while Picea abies was absent (red box).

1.8. Conclusion

Joint species distribution models (JSDMs) have been recently proposed as an ex-
tension of species distribution models (SDMs) that infers residual correlations be-
tween species, reflecting co-occurrence patterns not explained by the environmental
predictors. These models should be interpreted with care [POG 21], but they still
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provide important insights on community assemblage processes. In particular, the ap-
plication of latent factors to JSDMs can provide further advantages. Indeed, latent
factors reduce the dimension of the residual covariance matrix, and the related com-
putational costs that were one of the strongest limitations of early JSDMs. Moreover,
by measuring the main axes of residual co-variation between species, they also allow
for a residual model based ordination of species and sites. This is particularly interest-
ing when one aims at studying species response to missing environmental variables,
that is naturally measured by latent variables. Nevertheless, considering latent factors
instead of a full residual covariance matrix can have some drawbacks. First, latent
factor models increase their dimension with the number of sites. As a consequence,
when dealing with many sites and few species, it is computationally more interesting
to model a full residual covariance matrix. Moreover, it is not possible to sparsify the
residual covariance matrix induced by latent factor models, a feature that has just been
proposed as a solution to improve the interpretability of JSDMs [see PIC 20] in the
case of the full residual covariance matrix.

JSDMs have been implemented in many R packages, each with its particular fea-
tures [see WIL 19, for a review]. In our case study we chose to work with Hmsc be-
cause of its broad documentation and the large number of options it includes. Among
them, it allows to take into account functional traits and phylogeny, and easily com-
putes conditional predictions. Hmsc is a complete package, easy to start working
with, but it is computationally heavy. In order to have faster results, we suggest to
work with the package proposed by [PIC 20], whose features remain quite limited for
now.
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