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Semiparametric inference for mixtures of circular data

We consider X1, . . . , Xn a sample of data on the circle S 1 , whose distribution is a two-component mixture. Denoting R and Q two rotations on S 1 , the density of the Xi's is assumed to be g

, where p ∈ (0, 1) and f is an unknown density on the circle. In this paper we estimate both the parametric part θ = (p, R, Q) and the nonparametric part f . The specific problems of identifiability on the circle are studied. A consistent estimator of θ is introduced and its asymptotic normality is proved. We propose a Fourier-based estimator of f with a penalized criterion to choose the resolution level. We show that our adaptive estimator is optimal from the oracle and minimax points of view when the density belongs to a Sobolev ball. Our method is illustrated by numerical simulations.

Introduction

Circular data are collected when the topic of interest is a direction or a time of day. These particular data appear in many applications: earth sciences (e.g. wind directions), medicine (e.g. circadian rhythm), ecology (e.g. animal movements), forensics (crime incidence). Different surveys on statistical methods for circular data can be found: [START_REF] Mardia | Directional statistics[END_REF], Jammalamadaka and Sen-Gupta (2001), [START_REF] Ley | Modern directional statistics[END_REF] or more recently [START_REF] Pewsey | Recent advances in directional statistics[END_REF]. In the present work, we consider a mixture model with two components equal up to a rotation. We observe X 1 , . . . , X n a sample of data on S 1 with probability distribution function:

g(x) = p 0 f (R -1 0 x) + (1 -p 0 )f (Q -1 0 x) = p 0 f (x -α 0 ) + (1 -p 0 )f (x -β 0 ). (1)
In the right hand side we have identified f : S 1 → R and its periodized version on R. Here R 0 and Q 0 are two unknown rotations of the circle. R 0 is a rotation with angle α 0 and Q 0 is a rotation with angle β 0 . The aim is to estimate both θ 0 = (p 0 , α 0 , β 0 ) and the nonparametric part f . Bimodal circular data are commonly encountered in many scientific fields, for instance in climatology, animal orientations or in earth sciences. For the analysis of wind directions, see [START_REF] Hernández-Sánchez | A wrapped flexible generalized skew-normal model for a bimodal circular distribution of wind directions[END_REF] and for animal orientations, the dragonflies data set presented in [START_REF] Batschelet | Circular Statistics in Biology[END_REF]. In geosciences, one can cite the cross-bed orientations data set obtained in the middle Mississipian Salem Limestone of central Indiana and which was presented by the Seminar Sedimentation (Sedimentation Seminar (1966)). Last but not least, the paper of [START_REF] Lark | Modelling complex geological circular data with the projected normal distribution and mixtures of von mises distributions[END_REF] analyzes some geological data sets and clearly favours for some of them a two component mixture of von Mises distributions.

Mixture models for describing multimodal circular data date back to [START_REF] Pearson | Contributions to the mathematical theory of evolution[END_REF] and have been largely used since then. An important case in the literature is the mixture of two von Mises distributions which has been explored in numerous works. Let us cite among others papers by [START_REF] Bartels | Estimation in a bidirectional mixture of von mises distributions[END_REF], [START_REF] Spurr | On estimating the parameters in mixtures of circular normal distributions[END_REF] or [START_REF] Chen | Testing homogeneity in a mixture of von Mises distributions with a structural parameter[END_REF]. From a practical point of view, algorithms have also been proposed to deal with mixture of two von Mises distributions, including maximum likelihood algorithms by [START_REF] Jones | Analysis of bimodal orientation data[END_REF] or a characteristic function based procedure by [START_REF] Spurr | A comparison of various methods for estimating the parameters in mixtures of von Mises distributions[END_REF]. Note that on the unit hypersphere, [START_REF] Banerjee | Clustering on the unit hypersphere using von Mises-Fisher distributions[END_REF] investigated clustering methods for mixtures of von Mises Fisher distributions. In our framework, we shall not assume any parametric form of the density and hence the model is said to be semiparametric. To the best of our knowledge, this is the first work devoted to the study of the semiparametric mixture model for circular data. This semiparametric model is more complex and intricate than the usual parametric one encountered in the circular literature. In the spherical case, [START_REF] Kim | Directional mixture models and optimal estimation of the mixing density[END_REF] studied the general mixture framework for a location parameter but assuming that the nonparametric part f is known. On the real line, this semiparametric model has been studied by [START_REF] Bordes | Semiparametric estimation of a two-component mixture model[END_REF], [START_REF] Hunter | Inference for mixtures of symmetric distributions[END_REF], [START_REF] Butucea | Semiparametric mixtures of symmetric distributions[END_REF] or [START_REF] Gassiat | Nonparametric finite translation hidden Markov models and extensions[END_REF] for dependent latent variables. For the multivariate case, see for instance [START_REF] Hall | Nonparametric estimation of component distributions in a multivariate mixture[END_REF], [START_REF] Hall | Nonparametric inference in multivariate mixtures[END_REF], [START_REF] Gassiat | Efficient semiparametric estimation and model selection for multidimensional mixtures[END_REF], [START_REF] Hohmann | Two-component mixtures with independent coordinates as conditional mixtures: nonparametric identification and estimation[END_REF]. When dealing with the specific case of one of the two components being parametric, one refers to work by [START_REF] Ma | Flexible estimation of a semiparametric twocomponent mixture model with one parametric component[END_REF] and references therein.

Note that we can rewrite model (1) as

X i = Y i + ε i (mod 2π), i = 1, . . . , n, (2) 
where Y i has density f and ε i is a Bernoulli angle, which is equal to α 0 with probability p 0 and β 0 otherwise. Accordingly, model (1) can be viewed as a circular convolution model with unknown noise operator ε. The circular convolution model has been studied by [START_REF] Goldenshluger | Density deconvolution in the circular structural model[END_REF] in the case of known noise operator whereas [START_REF] Johannes | Adaptive circular deconvolution by model selection under unknown error distribution[END_REF] dealt with unknown error distribution but have at their disposal an independent sample of the noise to estimate this latter. It is worth pointing out that [START_REF] Goldenshluger | Density deconvolution in the circular structural model[END_REF] and [START_REF] Johannes | Adaptive circular deconvolution by model selection under unknown error distribution[END_REF] made the usual assumptions on the decay of the Fourier coefficients of the density of ε, whereas in model ( 1) the Fourier coefficients are not decreasing.

Identifiability questions are at the heart of the theory of mixture models and the circular context is no exception. Thus, our first task is to study the identifiability of the model. From a mathematical point of view, the topology of the circle makes the problem very different from the linear case. In the circular parametric case, [START_REF] Fraser | Identifiability of finite mixtures of von Mises distributions[END_REF] obtained identifiability results for the von Mises distributions, which were extended in [START_REF] Kent | Identifiability of finite mixtures for directional data[END_REF] to generalized von Mises distributions while [START_REF] Holzmann | Identifiability of finite mixtures-with applications to circular distributions[END_REF]) focused on wrapped distributions, basing their analysis on the Fourier coefficients. Here, the Fourier coefficients turn out to be very useful as well but the nonparametric paradigm makes the study quite different and intricate. Our identifiability results are obtained under mild assumptions on the Fourier coefficients. We require that the coefficients are real which can be related to the usual symmetry assumption in mixture models (see for instance [START_REF] Hunter | Inference for mixtures of symmetric distributions[END_REF]) and we impose that only the first 4 coefficients do not vanish. Interestingly enough, some not intuitive phenomena appear. A striking case occurs when the angles α 0 and β 0 are distant from 2π/3, model ( 1) is then nonidentifiable which is quite surprising at first sight.

Once the identifiability of the model is obtained, we resort to a contrast function in the line of [START_REF] Butucea | Semiparametric mixtures of symmetric distributions[END_REF] to estimate the Euclidian parameter θ 0 . In that regard, we prove the consistency of our estimator and an asymptotic normality result. Thereafter, for the estimation of the nonparametric part, a penalized empirical risk estimation method is used. The estimator of the density turns out to be adaptive (meaning that it does not require the specification of the unknown smoothness parameter), a property which was not reached so far for this semiparametric model even in the linear case. The procedure devised is hence relevant for practical purposes. We prove an oracle inequality and minimax rates are achieved by our estimator for Sobolev regularity classes. Eventually, a numerical section shows the good performances of the whole estimation procedure.

The paper is organized as follows. Section 2 is devoted to the identifiability of the model. Section 3 tackles the estimation of the parameter θ 0 whereas Section 4 focuses on the estimation of the nonparametric part. Finally Section 5 presents numerical implementations of our procedure. Proofs are gathered in Section 6.

Identifiability

In this section, to keep the notation as light and clear as possible, we drop the subscript 0 in the parameters. For any function g and any angle α, denote g α (x) := g(x -α). For any complex number a, a is the complex conjugate of a. For any integrable function φ : S 1 → R, we denote for any l ∈ Z, φ l = Let us now study the identifiability of our model (1) where the data have density pf (x -α) + (1 -p)f (x -β). First, it is obvious that if p = 0, α is not identifiable, and if p = 1, β is not identifiable. In the same way, p is not identifiable if α = β. Moreover, as explained in [START_REF] Hunter | Inference for mixtures of symmetric distributions[END_REF] for a translation mixture on the real line, the case p = 1/2 has to be avoided. Indeed, denoting g a density and for instance f

= 1 2 g 1 + 1 2 g -1 and f = 1 2 g 2 + 1 2 g -2 we have f 1 + f 5 = f 2 + f 4 .
In addition, it is well known that, in such a mixture model, (p, α, β) cannot be distinguished from (1 -p, β, α): it is the so-called label switching problem. So we will assume that p ∈ (0, 1/2) (for mixtures on R it is assumed alternatively that α < β but ordering angles is less relevant). Now let us study the specific problems of identifiability on the circle, that do not appear on R. First, if f is the uniform probability, the model is not identifiable, so we have to exclude this case. Another case to exclude is the case of δ-periodic functions. Indeed in this case f α = f α+δ . These functions have the property that f l = 0 for all l / ∈ (2π/δ)Z. So we will require that the Fourier coefficients of f do not cancel out too much. Here we will assume for all l ∈ {1, 2, 3, 4}, f l = 0, and

f l = f l .
This last assumption can be related to the symmetry of f . Indeed if f is zero-symmetric then all its Fourier coefficients are real. Symmetry is a usual assumption in this mixture context, to distinguish between the translations of f : for any δ ∈ R,

pf (x -α) + (1 -p)f (x -β) = pf δ (x -α + δ) + (1 -p)f δ (x -β + δ)
More precisely, [START_REF] Hunter | Inference for mixtures of symmetric distributions[END_REF] show that symmetry is a sufficient and necessary condition for identifiability of the model mixture on R. In the circle framework, it is natural to work with Fourier coefficients rather than Fourier transform as on R. A lot of circular densities have their Fourier coefficients real, provided that their location parameter is µ = 0: for example the Jones-Pewsey density, which includes the cardioid, the wrapped Cauchy density, and the von Mises density. Here we require the assumption only for the first 4 Fourier coefficients of f (due to our proof), which is milder than symmetry.

Let us now state our identifiability result under these assumptions. Note that [START_REF] Holzmann | Identifiability of finite mixtures-with applications to circular distributions[END_REF] have studied the identifiability of this model when f belongs to a parametric scale-family of densities, but here we face a nonparametric problem concerning f .

Theorem 1. Assume that θ = (p, α, β) and θ = (p , α , β ) belong to (p, α, β) ∈ (0, 1/2) × S 1 × S 1 , α = β (mod 2π)
and that f, f belongs to

f : S 1 → R density such that, for all l ∈ {1, 2, 3, 4}, f l ∈ R\{0} . Suppose pf α + (1 -p)f β = p f α + (1 -p )f β . Then 1. either (p , α , β )=(p, α, β) and f = f , 2. or (p , α , β ) = (p, α + π, β + π) and f = f π 3. or if β -α = π (mod 2π), then f is a linear combination of f and f π ,
and either (α , β ) = (α, β), or (α , β ) = (β, α).

or if

β-α = ±2π/3 (mod 2π), then f is a linear combination of f π/3 , f -π/3 , f π and p = (1 -2p)/(2 -3p) and (a) if β -α = 2π/3, (α , β ) = (α + π, β -π/3) or (α , β ) = (α, β + 2π/3), (b) if β -α = -2π/3, (α , β ) = (α+π, β +π/3) or (α , β ) = (α, β -2π/3).
Case 2. arises from a specific feature of circular distributions: if f is symmetric with respect to 0 then it is symmetric with respect to π. Unlike the real case, a symmetry assumption does not exclude the case f (x) = f (x -π).

To bypass this we could assume for instance f 1 > 0. Indeed for each l ∈ Z, (f π ) l = f l (-1) l , so the Fourier coefficients of f and f π have opposite sign for any odd l. With our assumption, we recover among f and f π the one with positive first Fourier coefficient, i.e. with positive mean resultant length. Nevertheless our estimation procedure begins with the parametric part so that this assumption concerning only the nonparametric part will not allow us to distinguish α from α + π in this first parametric estimation step. That is why we rather choose to assume that α and β belong to [0, π) (mod π).

Case 3. concerns bipolar data since α and β are diametrically opposed (separated by π radians). In this case α and β are identifiable, but p and f not. Indeed, for any density f and any 0 < p ≤ p < 1/2, we can find q ∈ (0, 1] such that f = qf + (1 -q)f π verifies pf α + (1 -p)f β = p f α + (1 -p )f β . Thus our result demonstrates that bimodal data sets with opposite modes lead to non-identifiability issues, and this highlights a fundamental issue in considering a too large class of possible densities.

Let us now discuss the case 4., which is the most curious (we shall only comment the first case (a), the other is similar). Let us set

f (x) = (1 -p)f x - π 3 + (1 -p)f x + π 3 + (2p -1)f (x -π).
This function is symmetric if f is symmetric, verifies S 1 f = 1 and may be positive for some values of p (depending on f ): see Figure 1. Then we can write f π/3 :

f x - π 3 = (1 -p)f x - 2π 3 + (1 -p)f (x) + (2p -1)f x - 4π 3 ,
as well as f π :

f (x -π) = (1 -p)f x - 4π 3 + (1 -p)f x - 2π 3 + (2p -1)f (x). -6 -4 -2 0 2 4 6 0.0 0.1 0.2 0.3 0.4 x f(x) f f' f f'
Figure 1: Plot of a circular density f (dashed blue), and

of f = (1 -p)f π 3 + (1 - p)f -π 3 + (2p -1)f π (solid red).
Here f is the von Mises density with mean 0 and concentration 1. In this case, f is positive as soon as p ≥ 0.36, here p = 0.4. Hence a mixture of f π and f π/3 gives a mixture of f (x), f (x -2π

3 ), f (x -4π 3 ):

p f (x -π) + (1 -p )f x - π 3 = [p (2p -1) + (1 -p )(1 -p)]f (x) +[p (1 -p) + (1 -p )(1 -p)]f x - 2π 3 +[p (1 -p) + (1 -p )(2p -1)]f x - 4π 3 If now p = (1 -2p)/(2 -3p), then p (1 -p) + (1 -p )(2p -1) = 0 and the third component f (x -4π 3 ) vanishes. Thus p f (x -π) + (1 -p )f x - π 3 = pf (x) + (1 -p)f x - 2π 3 .
In such a particular case, we cannot identify θ nor f . However this happens only when β -α = ±2π/3. So, to exclude these cases, we will now assume β = α (mod 2π/3).

Finally, we shall assume that f ∈ F with some assumptions for F:

Assumption 1. F ⊂ f : S 1 → R density s.t. for all l ∈ {1, 2, 3, 4}, f l ∈ R\{0} or Assumption 2. F ⊂ f : S 1 → R density s.t. for all l ∈ {1, 2, 3, 4}, f l ∈ R\{0}, f 1 > 0
and we shall assume that θ ∈ Θ with some assumptions for Θ:

Assumption 3. Θ ⊂ (p, α, β) ∈ 0, 1 2 × S 1 × S 1 , α = β (mod π, 2π/3) where α = β (mod 2π/3, π) means β -α / ∈ {-2π 3 , 0, 2π 3 , π} + 2πZ, or Assumption 4. Θ ⊂ (p, α, β) ∈ 0, 1 2 × [0, π) × [0, π), α = β (mod 2π/3)
Note that Assumption 4 implies Assumption 3, and Assumption 2 implies Assumption 1. We can write the following result.

Corollary 2. Under Assumptions 1 and 4, or under Assumptions 2 and 3, model (1) is identifiable. Under Assumptions 1 and 3, model (1) is identifiable modulo π, that is to say that if

pf α + (1 -p)f β = p f α + (1 -p )f β then p = p and either (α , β )=(α, β) and f = f , or (α , β ) = (α + π, β + π) and f = f π .
Moreover, the proof of Theorem 1 provides the following statement.

Lemma 3. Under Assumption 3, denoting M l (θ) := pe -iαl + (1 -p)e -iβl , for all θ, θ ∈ Θ,

∀1 ≤ l ≤ 4, M l (θ )M l (θ) = 0 ⇔ θ = θ or θ =θ + π.
where

θ =θ + π means (p , α , β ) = (p, α + π, β + π).
3 Estimation for the parametric part

Now, let us denote for all l ∈ Z M l (θ) := pe -iαl + (1 -p)e -iβl .

In model (1) the Fourier coefficients of g satisfy for any l:

g l = (p 0 e -iα0l + (1 -p 0 )e -iβ0l )f l .
Thus g l = M l (θ 0 )f l and the previous lemma gives that θ = θ 0 (or θ 0 + π) if and only if, for each l ∈ {1, . . . , 4},

M l (θ 0 )M l (θ) = 0 ⇔ g l M l (θ) = 0
using that f l are non-zero real numbers. This invites us to consider

S(θ) := 4 l=-4 g l M l (θ) 2 = 4 l=-4 g l {pe iαl + (1 -p)e iβl } 2 .
Note that g 0 M 0 (θ) = 1/(2π) and that

g (-l) M -l (θ) = g l M l (θ) =
-g l M l (θ) so that we can also write

S(θ) = 2 4 l=1 g l M l (θ) 2 .
The empirical counterpart of S(θ) is

Sn (θ) = 4 l=-4 g l M l (θ) 2 = 4 l=-4 1 2πn n k=1 e -ilX k M l (θ) 2 = 1 4π 2 n 2 4 l=-4 1≤k,j≤n e ilX k M l (θ) e ilXj M l (θ) .
Next, we consider a slightly modified version of Sn (θ) by removing the diagonal terms

S n (θ) = 1 4π 2 n(n -1) 4 l=-4 1≤k =j≤n e ilX k M l (θ) e ilXj M l (θ) . (3) Let us denote Z l k (θ) := e ilX k 2π M l (θ) and J l (θ) := g l M l (θ) . Hence S n (θ) = 1 n(n -1) 4 l=-4 1≤k =j≤n Z l k (θ)Z l j (θ).
Note that we have E(Z l k (θ)) = J l (θ), and S n (θ) is an unbiased estimator of S(θ).

Let the estimator of θ 0 be θn = argmin θ∈Θ S n (θ). ( 4)

For this estimator we can prove the following consistency result.

Theorem 4. Consider Θ a compact set included in

(p, α, β) ∈ (0, 1/2) × S 1 × S 1 , α = β (mod 2π/3, π)
and the estimator θn = argmin θ∈Θ S n (θ). We have θn → θ 0 (mod π) in probability.

The last convergence means that for all > 0, the probability P( θn -θ 0 ≤ or θn -θ 0 -π ≤ ) tends to 1 when n goes to +∞, where . denotes the Euclidean norm.

Proof. Θ is a compact set and S is continuous. Lemma 13 ensures that S n is Lipschitz hence uniformly continuous, and Proposition 14 ensures that for all θ, |S n (θ) -S(θ)| tends to 0 in probability. Then it is sufficient to apply a classical Lemma to conclude. See the details in Section 6.2

From now on, we assume that Θ is a compact set included in 0, 1 2 × [0, π) × [0, π), as in Assumption 4. Then, θ 0 + π is excluded and under Assumption 4, θn → θ 0 in probability. Moreover this estimator is asymptotically normal. We denote φ(θ) the gradient of any function φ with respect to θ = (p, α, β), φ(θ) the Hessian matrix and for any matrix A, we denote A its transpose.

Theorem 5. Consider Θ a compact set included in

{(p, α, β) ∈ (0, 1/2) × [0, π) × [0, π), α = β (mod 2π/3)}
and the estimator θn = argmin θ∈Θ S n (θ). Assume that θ 0 ∈ Θ. Let A be the Hessian matrix of S in θ

0 : A = S(θ 0 ) = 2 4 l=-4 Jl (θ 0 ) Jl (θ 0 ) . Then, if A is invertible, √ n( θn -θ 0 ) d -→ N (0, Σ),
where

Σ = A -1 V A -1 , V = 4E(U U ) and U = 4 l=-4
Jl (θ 0 )Z l 1 (θ 0 ). The proof can be found in Section 6.3. Note that A can be estimated by S( θn ) and V by

4 n 3 1≤k,j,j ≤n -4≤l,l ≤4 Z l k ( θn )Z l k ( θn ) Żl j ( θn )( Żl j ( θn ))
(see details in Section 6.4). Thus we can estimate the covariance matrix Σ and deduce an asymptotic confidence region. We also prove the following result on the quadratic risk of the estimator θn , which is useful for the sequel (see Section 6.5 for a proof). Proposition 6. Under the assumptions of Theorem 5, there exists a numerical constant K such that, for all θ 0 ∈ Θ and for all n ≥ 1

E θn -θ 0 2 ≤ Kn -1 ,
where the norm is the Euclidean norm in R 3 .

Nonparametric part

Let us now estimate the nonparametric part. We shall use the following norm: for any function φ, we denote

φ 2 = 1 2π S 1 φ 2 (x)dx 1/2 .
Recall that for all l ∈ Z, g l = M l (θ 0 )f l where g is the density of the observations X k and g l its Fourier coefficient. Then f l = g l /M l (θ 0 ). We can verify that M l (θ 0 ) = 0. Indeed, for any θ ∈ Θ,

|M l (θ)| 2 = p 2 + (1 -p) 2 + 2p(1 -p) cos[l(β -α)] ≥ (1 -2p) 2 > 0.
Nevertheless this division by M l (θ 0 ) requires us to impose a new assumption. We assume that there exists P ∈ (0, 1/2) such that 0 < p < P for any p, i. e.

Assumption 5. Θ is a compact set included in

{(p, α, β) ∈ (0, P ) × [0, π) × [0, π), α = β (mod 2π/3)} .
Under this assumption, |M l (θ)| is always bounded from below by 1 -2P . Now, to estimate g l = S 1 e -ilx g(x)dx/(2π), it is natural to define

g l = 1 2πn n k=1 e -ilX k .
If θ = θn is the previous estimator of the parametric part, we set the plugin estimator of the Fourier coefficient:

f l = 1 2πn n k=1 M l ( θ) -1 e -ilX k . Finally, for L an integer, set fL (x) = L l=-L f l e ilx .
To measure the performance of this estimator, we use Parseval equality to write

f -fL 2 2 = |l|>L |f l | 2 + L l=-L |f l -f l | 2
which is the classical bias variance decomposition. Moreover it is possible to prove that the variance term satisfy

L l=-L E|f l -f l | 2 = O( 2L+1 n ) (see Lemma 18 below).
To control the bias term we recall the definition of the Sobolev ellipsoid:

W (s, R) = {f : S 1 → R, l∈Z (1 + l 2 ) s |f l | 2 ≤ R 2 }.
For such a smooth f , the risk of estimator fL is then bounded in the following way:

E f -fL 2 2 ≤ R 2 1 + L 2 -s + C 2L + 1 n .
It is clear that an optimal value for L is of order n 1/(2s+1) but this value is unknown. We rather choose a data-driven method to select L. We introduce a classical minimization of a penalized empirical risk. Set

L = argmin L∈L - L l=-L | f l | 2 + λ 2L + 1 n (5)
where L is a finite set of resolution level, and λ a constant to be specified later.

The next theorem states an oracle inequality which highlights the bias variance decomposition of the quadratic risk and justifies our estimation procedure.

Theorem 7. Assume Assumption 1 and Assumption 5 . Assume that f belongs to the Sobolev ellipsoid W (s, R) with s ≥ 1. Let L defined in (5) with L = {0, 1, . . . , cn 1 2s 0 +1 } for some s 0 > 1 and some positive constant c. Let > 0.

If the penalty constant verifies λ > (3/π 2 )(1 + -1 )(1 -2P ) -2 then, E f L -f 2 2 ≤ (1 + 2 )E min L∈L fL -f 2 2 + 2λ 2L + 1 n + C(1 + R 2 ) n
where C is a positive constant depending on P, s 0 , c, , λ. Moreover, if s ≥ s 0 ,

sup f ∈W (s,R) sup θ0∈Θ E θ0,f f L -f 2 2 = O R 2 n -2s/(2s+1) .
In consequence our estimator has a quadratic risk in n -2s/(2s+1) . Regarding the lower bound note that for any estimator fn

sup f ∈W (s,R) sup θ0∈Θ E θ0,f fn -f 2 2 ≥ sup f ∈W (s,R) E θ,f fn -f 2 2
for some arbitrary θ ∈ Θ, so that the problem is reduced to a purely nonparametric lower bound. In the case of direct observations this quantity is lower bounded by Cn -2s/(2s+1) , see Theorem 11 and its proof in [START_REF] Baldi | Adaptive density estimation for directional data using needlets[END_REF] (case d = 1 for the circle S 1 ). We can use this proof to prove the lower bound in our mixture case. Indeed, for any densities

f 1 and f 2 , if g i (x) = pf i (x-α)+(1-p)f i (x-β) is
the associated density of our observations, then the Kullback-Leibler divergence verifies

K(g 1 dx, g 2 dx) ≤ (g 1 -g 2 ) 2 g 2 ≤ 2 (f 1 -f 2 ) 2 f 2
and the rest of the proof is identical. Thus

sup f ∈W (s,R) sup θ0∈Θ E θ0,f f L -f 2 2 ≥ Cn -2s/(2s+1)
and our estimator is optimal minimax.

Remark 1. Note that the penalty only depends on P which is some safety margin around 1/2, that can be chosen by the statistician. For the practical choice of the penalty, see Section 5.

Eventually, note that some densities may be supersmooth, in the following sense:

l∈Z exp(2b|l| r )|f l | 2 ≤ R 2 .
In this case, the quadratic bias is bounded by R 2 exp(-2bL r ) which gives the following fast rate of convergence:

E f L -f 2 2 = O (log n) 1/r n .

Numerical results

All computations are performed with Matlab software and the Optimization Toolbox.

We shall implement our statistical procedure to both estimate the parameter θ 0 and the density f . We consider three popular circular densities, namely the von Mises density, the wrapped Cauchy and the wrapped normal densities. We remind their expression (see [START_REF] Ley | Modern directional statistics[END_REF]). The von Mises density is given by:

f V M (x) = 1 2πI 0 (κ) e κ cos(x-µ) ,
with κ ≥ 0, I 0 (κ) the modified Bessel function of the first kind and of order 0.

The wrapped Cauchy distribution has density:

f W C (x) = 1 2π 1 -γ 2 1 + γ 2 -2γ cos(x -µ) ,
with 0 ≤ γ ≤ 1. The wrapped normal density expression is:

f W N (x) = 1 σ √ 2π ∞ k=-∞ e -(x-µ+2kπ) 2 2σ 2
, σ > 0. For more clarity, we set σ 2 =: -2 log(ρ). Hence, we have 0 ≤ ρ ≤ 1. All these densities are characterized by a concentration parameter κ, γ or ρ and a location parameter µ. Remind that values κ = 0, γ = 0 and ρ = 0 correspond to the uniform density on the circle. To meet symmetry assumptions of Theorem 1, we consider in the sequel that the location parameter is set to µ = 0.

First, let us focus on the parametric part. We set

θ 0 = (p 0 , α 0 , β 0 ) = ( 1 4 , π 8 , 2π 
3 ). Obtaining the estimate θn of θ 0 (see ( 4)) requires to solve a nonlinear minimization problem. To this end, we resort to the function fmincon of the Matlab Optimization toolbox. The function fmincon finds a constrained minimum of a function of several variables. Two parameters are to be specified: the domain over which the minimum is searched and an initial value. We consider the domain

{(0, 1 2 )×[0, π)×[0, π)}.
For more stability and to avoid possible local minimums, we perform the procedure over 10 initials values uniformly drawn on

{(0, 1 2 ) × [0, π) × [0, π)}.
The final estimator θn corresponds to the minimum value of the empirical contrast S n (θ) given in (3) over the 10 trials.

Table 1 gathers mean squared errors for our estimation procedure. When analyzing Table 1, one clearly sees that increasing the number of observations improves noticeably the performances. As expected, von Mises densities with smaller concentration parameter are more difficult to estimate. Nonetheless, the overall performances are satisfying. Table 2 displays the performances of the method-of-moments estimation procedure developed by [START_REF] Spurr | A comparison of various methods for estimating the parameters in mixtures of von Mises distributions[END_REF] to handle the problem of estimating the parameters in mixtures of von Mises distributions. To fairly compare the two methods, Table 3 gives the [START_REF] Spurr | A comparison of various methods for estimating the parameters in mixtures of von Mises distributions[END_REF] performances but this time when estimating on the same domain than ours e.g {(0, 1 2 ) × [0, π) × [0, π)}. At closer inspection, the Spurr and Koutbeiy (1991) method seems to behave better to estimate angles α 0 and β 0 while our method may appear more competitive for estimating p 0 . It is worth noticing that the method by [START_REF] Spurr | A comparison of various methods for estimating the parameters in mixtures of von Mises distributions[END_REF] is completely parametric and takes advantage of the knowledge of the distributions. In this regard, our procedure which is semiparametric is competitive with a parametric method.

Figure 2 illustrates the asymptotic normality of our estimator θn stated in Theorem 5. Now, let us turn to the nonparametric estimation part namely the estimation of the density f . The estimator of f is given by f L (see Theorem 7). It requires the computation of a data-driven resolution level choice L (given in ( 5)) which implies a tuning parameter λ. To select the proper λ, we follow the data-driven slope estimation approach due to Birgé and Massart (see [START_REF] Birgé | Gaussian model selection[END_REF] and [START_REF] Birgé | Minimal penalties for Gaussian model selection[END_REF]). An overview in practice is presented in [START_REF] Baudry | Slope heuristics: overview and implementation[END_REF]. To implement the slope heuristics method, one has to plot for L = 0 to L max the couples of points ( 2L+1 n ,

L l=-L | f l | 2 ).
For L ≥ L 0 , one should observe a linear behaviour (see Figure 3). Then, once the slope is density 

n = 100 n = 1000 p α β p α β f V M , κ = 2 0.
(0, 1) × [0, 2π) × [0, 2π)} density n = 100 n = 1000 p α β p α β f V M ,
κ = 2 0.0231 0.2117 0.0351 0.0112 0.0635 0.0081 f V M , κ = 5 0.0032 0.0409 0.0042 4.1489e-04 0.0022 6.3122e-04 f V M , κ = 7 0.0026 0.0094 0.0029 2.3197e-04 0.0010 2.8350e-04 

) × [0, π) × [0, π)}
estimated, say a, by a linear regression method, one eventually takes λ = 2a and the final resolution level is:

L = argmin L∈L - L l=-L | f l | 2 + λ 2L + 1 n .
Finally, Figure 4 shows reconstructions of the density f and the mixture density g as well. The estimates are good.

Remark 2. Note that for the two exceptional cases, when p 0 = 0 or f is the uniform density, our procedure performs well. Indeed, if p 0 = 0, our method yields that α = β and retrieves that there is only one component in the mixture. When f is the uniform density, our algorithm selects L = 0 which yields the uniform distribution. 

Denote M l (θ) := pe -iαl + (1 -p)e -iβl . Suppose pf (x -α) + (1 -p)f (x -β) = p f (x -α ) + (1 -p )f (x -β ).
The calculation of the Fourier coefficients gives, for all l ∈ Z,

f l M l (θ) = (f ) l M l (θ ) which implies f l |M l (θ)| 2 = (f ) l M l (θ )M l (θ).
Then, our assumptions on f and f entail

M l (θ )M l (θ) is real ∀l ∈ {1, 2, 3, 4}.
Let us now study the consequence of this fact. Denote the 4 angles. Denote also the associated weights in (0, 1):

γ 1 = α -β, γ 2 = α -α, γ 3 = β -β, γ 4 = β -α 0 
λ 1 = p (1 -p), λ 2 = p p, λ 3 = (1 -p )(1 -p), λ 4 = (1 -p )p.
With this notation

M l (θ )M l (θ) = λ 1 e -iγ1l + λ 2 e -iγ2l + λ 3 e -iγ3l + λ 4 e -iγ4l .
Then M l (θ )M l (θ) is real if and only if 4 k=1 λ k sin(lγ k ) = 0 and we have to solve the equations ∀l = 1, 2, 3, 4,

4 k=1 λ k sin(lγ k ) = 0. ( 6 
)
This system of equations is studied in Lemmas 8 and 9 below.

Let us now reason with the representatives of the γ k in (-π, π]. Lemma 9 says that the possible values for the γ k 's are 0, π, γ, -γ, for some γ ∈ (0, π). Note that here

γ 1 -γ 2 = γ 3 -γ 4 = α -β = 0 and γ 1 -γ 3 = γ 2 -γ 4 = α -β = 0 (7)
and then the γ k 's take at least 2 different values: either 4 different values; or γ 2 = γ 3 and the other distinct; or γ 1 = γ 4 and the other distinct; or γ 2 = γ 3 and γ 1 = γ 4 .

• Let us first study the case where all the γ k 's are distinct. There are 4!=24 ways of having (γ i1 , γ i2 , γ i3 , γ i4 ) = (-γ, 0, γ, π). But 16 combinations lead to In red, the density, in dotted lines its estimate. From top to bottom: the von Mises density with κ = 5, the wrapped Cauchy with γ = 0.8 and the wrapped normal density with ρ = 0.8. p = 1/2 or p = 1/2. For example, if (γ 1 , γ 2 , γ 3 , γ 4 ) = (-γ, 0, γ, π) then ( 6) becomes λ 1 sin(-lγ) + λ 2 sin(0) + λ 3 sin(lγ) + λ 4 sin(lπ) = 0.

f g -4 -3 -2 -1 0 1 2 3 4 -0.2 0 0.2 0.4 0.6 0.8 1 -4 -3 -2 -1 0 1 2 3 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 -4 -3 -2 -1 0 1 2 3 4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 -4 -3 -2 -1 0 1 2 3 -0.2 0 0.2 0.4 0.6 0.8 1 1.2 -4 -3 -2 -1 0 1 2 3 
Thus λ 1 = λ 3 , which gives p = 1/2. In the same way, there are 4 possibilities giving λ 1 = λ 3 , 4 possibilities giving λ 1 = λ 2 , 4 possibilities giving λ 2 = λ 4 , 4 possibilities giving λ 3 = λ 4 . All of this is impossible, since p, p ∈ (0, 1)\{1/2}. In addition, in the 4 cases where γ 1 = -γ 4 , we obtain via ( 7)

γ 3 = -γ 2 which is impossible if {γ 2 , γ 3 } = {0, π}. Idem if γ 2 = -γ 3 and {γ 1 , γ 4 } = {0, π}.
Thus it is finally impossible that all the γ k 's are distinct.

• Let us now study the case where the γ k 's take 3 distinct values (γ 2 = γ 3 or γ 1 = γ 4 ) and belong to {0, π, γ} or {0, π, -γ}. In the case where γ 2 = γ 3 , coming back to equation ( 6), we understand that all the rearrangements lead to λ 4 = 0 or λ 1 = 0 or λ 2 + λ 3 = 0, which is impossible. In the same way, if γ 1 = γ 4 , equation ( 6) leads to λ 2 = 0 or λ 3 = 0 or λ 1 + λ 4 = 0, which is impossible.

• The next case is when the γ k 's take 3 distinct values and belong to {0, γ, -γ} or {π, γ, -γ}. If γ 2 = γ 3 , we can then list the 6 cases:

γ 1 γ 2 = γ 3 γ 4 consequence -γ 0/π γ p = p , α -α = β -β = 0 (mod π) γ 0/π -γ p = p , α -α = β -β = 0 (mod π) -γ γ 0/π λ 1 = λ 2 + λ 3 γ -γ 0/π λ 1 = λ 2 + λ 3 0/π γ -γ λ 4 = λ 2 + λ 3 0/π -γ γ λ 4 = λ 2 + λ 3 Note that λ 1 = λ 2 + λ 3 ⇔ p (2 -3p) = 1 -p, which is possible only if p < 1/2
and p > 1/2 (recall that we suppose p < 1/2 and p < 1/2). In the same way

λ 4 = λ 2 + λ 3 ⇔ p (1 -3p) = 1 -2p, which is possible only if p > 1/2 and p < 1/2.
Finally, if γ 1 = γ 4 , we have the 6 last cases:

γ 2 γ 1 = γ 4 γ 3 consequence -γ 0/π γ p = 1 -p γ 0/π -γ p = 1 -p, -γ γ 0/π p = p 3p-1 γ -γ 0/π p = p 3p-1 0/π γ -γ p = 1-2p 2-3p , β -α = ±2π/3 0/π -γ γ p = 1-2p 2-3p , β -α = ±2π/3
Note that the 4 first lines of this table are impossible since p, p ∈ (0, 1/2) and p = p/(3p -1) / ∈ (0, 1) if 0 < p < 1/2. Let us detail the lines 5 and 6. In these cases, λ 1 + λ 4 -λ 3 = 0 which provides p = (1 -2p)/(3 -2p). Moreover (7) implies that 3γ 1 = γ 2 = 0 (mod π) and 2γ 1 = β -α = α -β . According to the values of γ 1 and γ 2 , there are 4 possibilities β -α = 2π/3 and (α , β ) = (α, β + 2π/3), β -α = 2π/3 and (α , β ) = (α + π, β -π/3) β -α = -2π/3 and (α , β ) = (α, β -2π/3) β -α = -2π/3 and (α , β ) = (α + π, β + π/3) • The last case occurs when the γ k 's take 2 distinct values. If the γ k 's take exactly 2 different values, using (7), necessarily

γ 1 = γ 4 and γ 2 = γ 3 (mod 2π) ⇒ 0 = γ 1 -γ 4 + γ 3 -γ 2 = 2(α -β) (mod 2π)
which is possible only if α-β = π (mod 2π) (recall that α-β is always assumed = 0). And in the same way α -β = π (mod 2π). Then γ 1 -γ 2 = α -β = π (mod 2π). Thus the two different values of the γ k 's are at a distant of π.

The first possibility is that these two values are 0 and π, which corresponds to the first case of Lemma 9. There are two subcases: 1a. (γ 1 , γ 2 , γ 3 , γ 4 ) = (π, 0, 0, π) or 1b. (γ 1 , γ 2 , γ 3 , γ 4 ) = (0, π, π, 0). In the subcase 1a. (α , β ) = (α, β).

Equations pf + (1 -p)f π = p f + (1 -p )f π pf π + (1 -p)f = p f π + (1 -p )f entails that f is a linear combination of f and f π . In the subcase 1b. (α , β ) = (α + π, β + π) = (β, α).
The second possibility is that the two distinct values γ 1 = γ 4 and γ 2 = γ 3 are not multiples of π, which corresponds to the fourth case of Lemma 9. Then (γ 1 , γ 2 , γ 3 , γ 4 ) = (γ 1 , -γ 1 , -γ 1 , γ 1 ) and

γ 1 -(-γ 1 ) = γ 1 -γ 2 = π (mod 2π) which entails γ 1 = π/2 (mod π). Equation (6) becomes (λ 1 -λ 2 -λ 3 + λ 4 ) sin(lπ/2) = 0 so that λ 1 + λ 4 = λ 2 + λ 3 , which gives p (1 -p) + p(1 -p ) = p p + (1 -p )(1 -p) ⇒ p + p -2pp = 1/2 ⇒ p = 1/2
which is impossible.

• Let us recap the only possible cases that we have obtained: p = p , α -α = β -β = 0 (mod π), p = 1-2p 2-3p , β -α = ±2π/3, with the four possibilities described above, β -α = π, (α , β ) = (α, β) or (α , β ) = (β, α). This completes the proof of the theorem. Lemma 8. Let γ 1 , . . . , γ 4 be four reals. Let A be the matrix (sin(iγ j )) 1≤i,j≤4 . Then

det A = 64 4 k=1 sin(γ k ) 1≤i<j≤4 (cos(γ i ) -cos(γ j )).
Proof. From matrix A, doing line modification L 3 ← L 3 -L 1 , and L 4 ← L 4 -L 2 , we obtain (recall that sin(2p) = 2 sin(p) cos(p) and sin(p) -sin(q) = 2 sin( p-q 2 ) cos( p+q 2 ))

det A = sin(γ 1 ) sin(γ 2 ) sin(γ 3 ) sin(γ 4 ) 2 sin(γ 1 ) cos(γ 1 ) 2 sin(γ 2 ) cos(γ 2 ) 2 sin(γ 3 ) cos(γ 3 ) 2 sin(γ 4 ) cos(γ 4 ) 2 sin(γ 1 ) cos(2γ 1 ) 2 sin(γ 2 ) cos(2γ 2 ) 2 sin(γ 3 ) cos(2γ 3 ) 2 sin(γ 4 ) cos(2γ 4 ) 2 sin(γ 1 ) cos(3γ 1 ) 2 sin(γ 2 ) cos(3γ 2 ) 2 sin(γ 3 ) cos(3γ 3 ) 2 sin(γ 4 ) cos(3γ 4 ) Using 4-linearity of the determinant: 2γ 1 ) cos(2γ 2 ) cos(2γ 3 ) cos(2γ 4 ) cos(3γ 1 ) cos(3γ 2 ) cos(3γ 3 ) cos(3γ 4 ) .

det A = 8   4 j=1 sin(γ j )   1 1 1 1 cos(γ 1 ) cos(γ 2 ) cos(γ 3 ) cos(γ 4 ) cos(
Now, denote x k = cos(γ k ) and remark that cos(iγ k ) = T i (cos γ k ) = T i (x k )
where T i is the ith Chebyshev polynomial:

T 0 = 1, T 1 = X, T 2 = 2X 2 -1, T 3 = 4X 3 -3X. We have T 2 + T 0 = 2X 2 and T 3 + 3T 1 = 4X 3 . Then, doing L 3 ← L 3 + L 1 , and L 4 ← L 4 + 3L 2 : det A = 8   4 j=1 sin(γ j )   1 1 1 1 x 1 x 2 x 3 x 4 2x 2 1 2x 2 2 2x 2 3 2x 2 4 4x 3 1 4x 3 2 4x 3 3 4x 3 4 = 64   4 j=1 sin(γ j )   1 1 1 1 x 1 x 2 x 3 x x 2 1 x 2 2 x 2 3 x x 3 1 x 3 2 x 3 3 x
This is a Vandermonde matrix, hence

det A = 64   4 j=1 sin(γ j )   1≤i<j≤4 (x i -x j ) = 64 4 k=1 sin(γ k ) 1≤i<j≤4 (cos(γ i )-cos(γ j )).
Lemma 9. Let γ 1 , . . . , γ 4 be four reals. Let λ 1 , . . . , λ 4 ∈ R\{0} such that

4 k=1 λ k sin(lγ k ) = 0, l = 1, . . . , 4. (8)
Then, one of the following cases holds:

1. All γ k are multiples of π.

2. Exactly two γ k are multiples of π: γ i1 = γ i2 = 0 (mod π) and γ i3 = ±γ i4 (mod 2π).

3. Only one γ k is multiple of π: γ i1 = 0 (mod π) and γ i2 = ±γ i3 = ±γ i4 (mod 2π).

4. No γ k is multiple of π and γ 1 = ±γ 2 = ±γ 3 = ±γ 4 (mod 2π).

Proof. First observe that, since

4 k=1 λ k sin(lγ k ) = 0 with λ = 0 R 4 , necessarily det(A)=0 where A = (sin(iγ j )) 1≤i,j≤4 . Using Lemma 8 4 k=1 sin(γ k ) 1≤i<j≤4 (cos(γ i ) -cos(γ j )) = 0. (9)
Now, let us study the various cases that make this quantity vanish.

For the first case, note that if three γ k are multiples of π: γ i1 = γ i2 = γ i3 = 0 (mod π) then equation ( 8) becomes λ i4 sin(lγ i4 ) = 0 and the last angle is also null modulo π.

In case 2., equation ( 8) entails

λ i3 sin(lγ i3 ) + λ i4 sin(lγ i4 ) = 0, l = 1, 2 with γ i3 = 0 (mod π), γ i4 = 0 (mod π). Then, since (λ i3 , λ i4 ) = (0, 0), 0 = sin(γ i3 ) sin(γ i4 ) sin(2γ i3 ) sin(2γ i4 ) = 2 sin(γ i3 ) sin(γ i4 )(cos(γ i4 ) -cos(γ i3 )).
Then cos(γ i3 ) = cos(γ i4 ). Either γ i3 = γ i4 (mod 2π), or γ i3 = -γ i4 (mod 2π).

Let us now study case 3. For the sake of simplicity we assume that γ 4 = 0 (mod π) and γ k = 0 (mod π) for k = 1, 2, 3. Equation ( 8) gives

λ 1 sin(lγ 1 ) + λ 2 sin(lγ 2 ) + λ 3 sin(lγ 3 ) = 0, l = 1, 2, 3.
With the same proof as Lemma 8, we obtain

3 k=1 sin(γ k ) 1≤i<j≤3 (cos(γ i ) -cos(γ j )) = 0.
Then γ 1 = ±γ 2 (mod 2π) or γ 1 = ±γ 3 (mod 2π) or γ 2 = ±γ 3 (mod 2π). Moreover, if, for example, γ 1 = ±γ 2 (mod 2π) then (λ 1 ± λ 2 ) sin(lγ 1 ) + λ 3 sin(lγ 3 ) = 0, l = 1, 2

We are reduced to the previous case, then γ 1 = ±γ 3 (mod 2π).

In the case 4., equation ( 9) becomes 1≤i<j≤4 (cos(γ i ) -cos(γ j )) = 0, which provides 6 possible equalities. Assume, for example, cos(γ 1 ) -cos(γ 2 ) = 0 and consequently γ 1 = ±γ 2 (mod 2π). Then (λ 1 ± λ 2 ) sin(lγ 1 ) + λ 3 sin(lγ 3 ) + λ 4 sin(lγ 4 ) = 0, l = 1, 2, 3.

Reasoning as in previous case, γ 1 = ±γ 3 = ±γ 4 (mod 2π).

Proof of Theorem 4 (consistency)

This proof and the following are inspired from [START_REF] Butucea | Semiparametric mixtures of symmetric distributions[END_REF]. Let us denote Θ = (0, 1/2) × S 1 × S 1 . Denote φ(θ) the gradient of any function φ with respect to θ = (p, α, β), and φ(θ) the Hessian matrix. The proof of Theorem 4 relies on some preliminary results, given in the sequel.

Proposition 10. Under Assumption 3 the contrast function S verifies the following properties: S(θ) ≥ 0, and S(θ) = 0 if and only if θ = θ 0 or θ = θ 0 + π.

Proof. It is clear that S(θ) ≥ 0 and that

S(θ 0 ) = 4 l=-4 g l M l (θ 0 ) 2 = 4 l=-4 f l |M l (θ 0 )| 2 2 = 0.
By Lemma 3, if θ = θ 0 (mod π), there exists l 1 ∈ {1, . . . , 4} such that

M l1 (θ 0 )M l1 (θ) = 0 so that S(θ) ≥ g l1 M l1 (θ) 2 > 0.
Lemma 11.

1. For all θ in Θ, |M l (θ)| ≤ 1.

2. For all 1 ≤ k ≤ n, for all l in Z,

sup θ∈ Θ |Z l k (θ)| ≤ 1 2π , sup θ∈ Θ |J l (θ)| ≤ 1 2π . 3. For all 1 ≤ k ≤ n, for all l in Z, sup θ∈ Θ Żl k (θ) ≤ 2 + |l| √ 2π , sup θ∈ Θ Jl (θ) ≤ 2 + |l| √ 2π .
where . is the Euclidean norm.

4. For all 1 ≤ k ≤ n, for all l in Z,

sup θ∈ Θ Zl k (θ) F ≤ |l| + l 2 π , sup θ∈ Θ Jl (θ) F ≤ |l| + l 2 π .
where . F is the Frobenius norm.

Proof. Point 1 is straightforward.

2. Let us start with Z l k (θ). We recall that Z l k (θ) =

e ilX k 2π M l (θ) . Then |Z l k (θ)| ≤ 1 2π |M l (θ)| ≤ 1 2π . Furthermore |J l (θ)| ≤ |g l ||M l (θ)| ≤ 1 2π S1 g ≤ 1 2π . 3. We have Żl k (θ) = 1 2π e ilX k Ṁ l (θ) = 1 2π   e ilX k   e -ilα -e -ilβ -ilpe -iαl -il(1 -p)e -iβl     and Jl (θ) = g l Ṁ l (θ) =   g l   e -ilα -e -ilβ -ilpe -iαl -il(1 -p)e -iβl     . We get Żl k (θ) ≤ 1 2π 2 2 + p 2 l 2 + (1 -p) 2 l 2 1/2 ≤ 2 + |l| √ 2π
and we have the same bound for Jl (θ) .

4. We have

Zl k (θ) = e ilX k 2π M l (θ) =   e ilX k 2π   0 -ile -ilα ile -ilβ -ile -ilα -l 2 pe -ilα 0 ile -ilβ 0 -l 2 (1 -p)e -iβl     . Thus Zl k (θ) F ≤ 1 2π 4l 2 + l 4 p 2 + l 4 (1 -p) 2 1/2 ≤ |l| + l 2 π .
We bound Jl (θ) F in the same way. This ends the proof of the lemma.

Lemma 12. There exists a numerical positive constant C such that the following inequalities hold.

1. For all 1 ≤ k ≤ n, for all l in Z ∀θ, θ ∈ Θ Żl k (θ) -Żl k (θ ) ≤ C θ -θ (1 + |l| + l 2 ). 2. We also have Zl k (θ) -Zl k (θ ) F ≤ C θ -θ (1 + |l| + l 2 + |l| 3 ). Proof.
We use Taylor expansions at first order and then apply same bounding techniques as in Lemma 11.

Lemma 13.

1. The function S is Lipschitz continuous over Θ.

2. The function S n (θ) is Lipschitz continuous over Θ.

3. The function Sn (θ) is Lipschitz continuous over Θ with respect to Frobenius norm, with Lipschitz constant not depending on n.

Proof. We will write C for a numerical constant that may change from line to line but is numerical. Let us start with point 1. We recall that S(θ) = l J l (θ) 2 . Let θ and θ in Θ. As Θ is a convex set, we get, thanks to the mean value theorem

|S(θ) -S(θ )| = 4 l=-4 J l (θ) 2 -J l (θ ) 2 = 2(θ -θ ) 4 l=-4 J l (θ u ) Jl (θ u ) ≤ C θ -θ 4 l=-4 (1 + |l|) ≤ C θ -θ
with θ u lying on the line connecting θ to θ , and using Lemma 11.

Let us shift to point 2. Due to the mean value theorem, we have

|S n (θ) -S n (θ )| = 1 n(n -1) k =j 4 l=-4 Z l k (θ)Z l j (θ) -Z l k (θ )Z l j (θ ) = 1 n(n -1) k =j 4 l=-4 (θ -θ ) ∇[Z l k (θ)Z l j (θ)]| θ=θu = 2(θ -θ ) n(n -1) k =j 4 l=-4 Żl k (θ u )Z l j (θ u ) ,
with θ u lying on the line connecting θ to θ . Then using 1. and 2. of Lemma 11 we get

|S n (θ) -S n (θ )| ≤ C θ -θ n(n -1) k =j 4 l=-4 (1 + |l|) ≤ C θ -θ
which ends the proof of the second point. Concerning point 3. we have that

Sn (θ) = 2 n(n -1) k =j 4 l=4 ( Zl k (θ)Z l j (θ) + Żl k (θ) Żl j (θ) ).
Hence

Sn (θ) -Sn (θ ) F ≤ 2 n(n -1) k =j 4 l=-4 ( Zl k (θ) -Zl k (θ ))Z l j (θ) F + Zl k (θ )(Z l j (θ) -Z l j (θ )) F + Żl k (θ )( Żl j (θ) -Żl j (θ ) ) F + ( Żl k (θ ) -Żl k (θ)) Żl j (θ) F
Using Taylor expansions and Lemma 11 and 12, we get that

Sn (θ) -Sn (θ ) F ≤ C θ -θ 4 l=-4 (1 + |l| + l 2 + |l| 3 ).
Proposition 14. There exist a positive constant C such that

sup θ∈ Θ E[(S n (θ) -S(θ)) 2 ] ≤ C n .
Proof. The definitions of S n and S provide

S n (θ) -S(θ) = 1 n(n -1) 4 l=-4 k =j Z l k (θ)Z l j (θ) -J l (θ) 2 = T n + V n
where

T n = 2 n(n -1) 4 l=-4 k<j (Z l k (θ) -J l (θ))(Z l j (θ) -J l (θ))
and

V n = 2 n 4 l=-4 n k=1 (Z l k (θ) -J l (θ))J l (θ). Note that E(Z l k (θ) -J l (θ)) = 0 which entails E[T n V n ] = 0. Then E (S n (θ) -S(θ)) 2 = E (T n + V n ) 2 = E T 2 n + E V 2 n .
Now, since the variables

4 l=-4 (Z l k (θ) -J l (θ))(Z l j (θ) -J l (θ)) k<j are uncor- related, E[T 2 n ] = 2 n(n -1) E   4 l=-4 (Z l 1 (θ) -J l (θ))(Z l 2 (θ) -J l (θ)) 2   ≤ 2 n(n -1) E   4 l=-4 2 2π • 2 2π 2   ≤ C 2n
using Lemma 11. We focus now on V n : in the same way

E[V 2 n ] = 4 n E   4 l=-4 (Z l 1 (θ) -J l (θ))J l (θ) 2   ≤ 4 n E   4 l=-4 2 2π • 1 2π 2   ≤ C 2n ,
using Lemma 11 again.

Theorem 4 is finally proved using the following lemma, its assumptions being ensured by Proposition 10, Lemma 13 and Proposition 14.

Lemma 15. Assume that Θ is a compact set and let S : Θ → R be a continuous function. Assume that

S(θ) = min Θ S ⇔ θ = θ 0 or θ = θ 0
where θ 0 , θ 0 ∈ Θ. Let S n : Θ → R be a function which is uniformly continuous and such that for all θ |S n (θ) -S(θ)| tends to 0 in probability. Let θn be a point such that S n ( θn ) = inf Θ S n . Then θn → θ 0 or θ 0 in probability. This is a classical result in the theory of minimum contrast estimators, when θ 0 = θ 0 (see [START_REF] Van Der Vaart | Asymptotic statistics, volume 3 of Cambridge Series in Statistical and Probabilistic Mathematics[END_REF] or [START_REF] Dacunha-Castelle | Probability and statistics[END_REF]). We reproduce the proof since it is slightly adapted to the case of two argmins.

Proof. Let > 0 and B be the union of the open ball with center θ 0 and radius and the open ball with center θ 0 and radius . Since S is continuous and B c ⊂ Θ is a compact set, there exists θ ∈ B c such that S(θ ) = inf B c S. Using the assumption, since θ = θ 0 , and θ = θ 0 δ := S(θ ) -S(θ 0 ) > 0.

Since S n is uniformly continuous, there exists α > 0 such that

∀θ, θ θ -θ < α ⇒ |S n (θ) -S n (θ )| ≤ δ/2.
Moreover B c is a compact set then there exists a finite set

(θ i ) such that B c ⊂ ∪ I i=1 B(θ i , α). Denote ∆ n := max 0≤i≤I |S n (θ i )-S(θ i )|.
The assumption ensures that ∆ n tends to 0 in probability. Let θ ∈ B c . There exists 1 ≤ i ≤ I such that θ -θ i < α, and then

|S n (θ) -S n (θ i )| ≤ δ/2. Thus S n (θ) -S n (θ 0 ) = (S n (θ) -S n (θ i )) + (S n (θ i ) -S(θ i )) + (S(θ i ) -S(θ 0 )) + (S(θ 0 ) -S n (θ 0 )) ≥ -δ/2 -∆ n + δ -∆ n using that S(θ i ) -S(θ 0 ) ≥ S(θ ) -S(θ 0 ) = δ. Then inf θ∈B c S n (θ) -S n (θ 0 ) ≥ δ/2 -2∆ n .
Now, if θn -θ 0 ≥ and θn -θ 0 ≥ then θn ∈ B c and inf θ∈Θ S n (θ) = S n ( θn ) = inf θ∈B c S n (θ).

In particular inf θ∈B c S n (θ) ≤ S n (θ 0 ) so that

P( θn -θ 0 ≥ and θn -θ 0 ≥ ) ≤ P(0 ≥ inf θ∈B c S n (θ) -S n (θ 0 ) ≥ δ/2 -2∆ n ) ≤ P(∆ n ≥ δ/4) -→ 0
since ∆ n tends to 0 in probability.

Proof of Theorem 5 (asymptotic normality)

The Taylor's theorem and the definition of θn give Ṡn ( θn ) = Ṡn (θ 0 ) + Sn (θ * n )( θn -θ 0 ) = 0, where θ * n lies in the line segment with extremities θ 0 and θn . Equivalently we have, Sn (θ * n )( θn -θ 0 ) = -Ṡn (θ 0 ).

We recall that

S n (θ 0 ) = 1 n(n -1) k =j 4 l=-4 Z l k (θ 0 )Z l j (θ 0 )
and

Ṡn (θ 0 ) = 2 n(n -1) k =j 4 l=-4 Żl k (θ 0 )Z l j (θ 0 )
and

Sn (θ 0 ) = 2 n(n -1) k =j 4 l=-4 Zl k (θ 0 )Z l j (θ 0 ) + Żl k (θ 0 ) Żl j (θ 0 ) .
Step 1-Let us prove that

√ n Ṡn (θ 0 ) d -→ N (0, V ).
We remind by Lemma 3 that J l (θ 0 ) = 0. Hence

E( Ṡn (θ 0 )) = 2 4 l=-4
Jl (θ 0 )J l (θ 0 ) = 0.

We can break down Ṡn (θ 0 ) in the following way:

Ṡn (θ 0 ) = 2 n(n -1) k =j 4 l=-4 ( Żl k (θ 0 ) -Jl (θ 0 ) + Jl (θ 0 ))Z l j (θ 0 ) = 4 n(n -1) k<j 4 l=-4 ( Żl k (θ 0 ) -Jl (θ 0 ))Z l j (θ 0 ) + 2 n n j=1 4 l=-4
Jl (θ 0 )Z l j (θ 0 ) =: A n + B n .

Note that A n and B n are centered variables. Let us show that √ nA n = o P (1).

Note that the variables W jk := 4 l=-4 ( Żl k (θ 0 ) -Jl (θ 0 ))Z l j (θ 0 ) k<j are centered and uncorrelated. Then

E( A n 2 ) = E    4 n(n -1) k<j W jk 2    = 8 n(n -1) E W 12 2 .
Using Lemma 11, there exists C > 0 such that

W 12 ≤ 4 l=-4 2(1 + |l|) √ 2π 1 2π ≤ C so that E( √ nA n 2 ) ≤ 8C 2 /(n -1)
. Finally, invoking Markov inequality we have that √ nA n = o P (1). We can write √ nB n in the following way:

√ nB n = 2 √ n n k=1 U k (θ 0 ),

Proof of Proposition 16

Let U k = 4 l=-4 Z l k (θ 0 ) Jl (θ 0 ). The law of large numbers gives

V = E(4U 1 U 1 ) = lim n→∞ 4 n n k=1 U k U k
where the convergence is almost sure. Moreover

U k U k = -4≤l,l ≤4 Z l k Z l k Jl ( Jl ) = lim n→∞ 1 n 2 -4≤l,l ≤4 Z l k Z l k 1≤j,j ≤n Żl j ( Żl j )
where the convergence is almost sure and we have dropped the θ 0 for the sake of simplicity. This convergence is uniform in k in the following sense: there exists a set with probability 1 for which for any ε > 0, there exists N ≥ 1 such that for all n ≥ N and for all 1

≤ k ≤ n 1 n 2 -4≤l,l ≤4 Z l k Z l k 1≤j,j ≤n Żl j ( Żl j ) -U k U k ≤ ε Indeed 1 n 2 -4≤l,l ≤4 Z l k Z l k 1≤j,j ≤n Żl j ( Żl j ) -U k U k = -4≤l,l ≤4 Z l k Z l k   1 n 2 1≤j,j ≤n Żl j ( Żl j ) -Jl ( Jl )   ≤ 1 4π 2 -4≤l,l ≤4   1 n 2 1≤j,j ≤n Żl j ( Żl j ) -Jl ( Jl )   .
Then we use the following lemma: "If v nk → v k uniformly, with (v nk ) and (v k ) bounded, and if

n -1 n k=1 v k → v then n -1 n k=1 v nk → v."
To prove this lemma, notice that, for a given positive ε, for n large enough

1 n n k=1 v nk -v ≤ 1 n N k=1 |v nk -v k | + 1 n n k=N +1 |v nk -v k | + 1 n n k=1 v k -v ≤ N n (sup kn |v nk | + sup k |v k |) + n -N n ε + ε ≤ 3ε.
That provides

V = lim n→∞ 4 n 3 1≤k,j,j ≤n -4≤l,l ≤4 Z l k Z l k Żl j ( Żl j )
where the convergence is almost sure. Here all the Z k are depending on θ 0 , but we can use the consistency of θn to finally assert

V = lim n→∞ 4 n 3
1≤k,j,j ≤n -4≤l,l ≤4

Z l k ( θn )Z l k ( θn ) Żl j ( θn )( Żl j ( θn )) .

Proof of Proposition 6

We use the proof of Theorem 5. We have seen that

Sn (θ * n )( θn -θ 0 ) = -Ṡn (θ 0 ),
with θ * n in the line segment with extremities θ 0 and θn . Recall that Ṡn (θ 0 ) = A n + B n with

A n = 4 n(n -1) k<j 4 l=-4 ( Żl k (θ 0 ) -Jl (θ 0 ))Z l j (θ 0 ) B n = = 2 n n k=1 U k (θ 0 )
where

U k (θ 0 ) := 4 l=-4
Jl (θ 0 )Z l k (θ 0 ). Note that the U k (θ 0 )'s are i.i.d and centered so that 

E( n(n -1)A n 2 ) = E    k<j W jk 2    = n(n -1)E W 12 2 ≤ n(n -1)c 2 . Then E A n 2 ≤ c 2 /n and sup n E n Ṡn (θ 0 ) 2 ≤ 8c 1 + 2c 2 < ∞.
In the proof of Theorem 5, we noted that Sn (θ * n ) tends to S(θ 0 ) in probability. Actually we can prove that the convergence is almost sure. Indeed the strong law of large numbers is true for uncorrelated variables if their second moments have a common bound (see e.g. [START_REF] Chung | A course in probability theory[END_REF]) so that Sn (θ 0 ) -S(θ 0 ) = Sn (θ 0 ) -E Sn (θ 0 ) a.s.

-→ 0.

Since Sn is continuous, it is sufficient to show that the convergence of θn towards θ is almost sure and this will imply that Sn (θ * n ) converges almost surely towards Sn (θ 0 ) (recall that θ * n in the line segment with extremities θ 0 and θn ). To do this, remark first that S n (θ) -S(θ) a.s.

-→ 0 by the strong law of large numbers for uncorrelated variables again (see the decomposition of S n -S in the proof of Proposition 14). Now, we come back to the proof of Lemma 15 (in the case of a unique minimum θ 0 ), with this new assumption that S n (θ) tends to S(θ) almost surely. The proof shows that for any > 0 there exist δ( ) > 0 and ∆ n ( ) which tends to 0 almost surely such that θn

-θ 0 ≥ ⇒ ∆ n ( ) ≥ δ( )/4. Let Γ = ∩ p≥1 {∆ n (1/p) → 0}
. This set has probability 1 and on this set, for any ε > 0, taking p ≥ 1/ε, there exists N ≥ 1 such that for any n ≥ N ∆ n (1/p) < δ(1/p)/4 and then θn -θ 0 < (1/p) ≤ ε.

This ensures that on the set Γ, θn tends to θ 0 , and finally Sn (θ * n ) tends to S(θ 0 ) almost surely. Now, since S(θ 0 ) is assumed invertible, there exists n 1 such that for all

n ≥ n 1 , Sn (θ * n ) is invertible and Sn (θ * n ) -1 op ≤ 2 Sn (θ 0 ) -1 op := C(θ 0 ) a.s. Then n θn -θ 0 2 ≤ C(θ 0 ) 2 n Ṡn (θ 0 ) 2 a.s. and E(n θn -θ 0 2 ) ≤ C(θ 0 ) 2 E(n Ṡn (θ 0 ) 2 ) ≤ C(θ 0 ) 2 (8c 1 + 2c 2 ).
Moreover sup θ∈Θ C(θ) < ∞ because Θ is a compact set and θ → Sn (θ) -1 op is continuous.

Proof of Theorem 7 (nonparametric estimation)

The proof of the oracle inequality is based on Lemma 17 and Lemma 18 below. The conclusion follows, choosing 2γ = /(1 + ) and λ = γ -1 κ(1 -2P ) -2 = 2κ(1 + -1 )(1 -2P ) -2 , and q = (2s 0 + 1)/3. Let us derive the rate of convergence, which is the second result of Theorem 7. We use the notation of Lemma 17 and the notation . for the natural norm of

2 (C Z ). Let L ∈ L. Since ν n (t) = l∈Z t l ( f l -f l ), L l=-L | f l -f l | 2 = ν n ( f L -f L ) ≤ sup t∈B L ν n (t) f L -f L where we denote f L the sequence in C Z such that (f L ) l = f l if -L ≤ l ≤ L and 0 otherwise. Hence f L -f L 2 ≤ sup t∈B L ν n (t) f L -f L so that f L -f L ≤ sup t∈B L ν n (t). Then, using Lemma 18 E L l=-L | f l -f l | 2 = E f L -f L 2 ≤ κ (1 -2P ) 2 2L + 1 n + C(1 + R 2 ) n ≤ C (1 + R 2 ) 2L + 1 n . Using Parseval's identity, E f -fL 2 2 = |l|>L |f l | 2 +C (1 + R 2 ) 2L + 1 n ≤ R 2 (1 + L 2 ) -s + C (1 + R 2 ) 2L + 1 n .
Thus, the oracle inequality gives (2s+1) . This choice is possible since s ≥ s 0 and then L 0 belongs to L.

E f L -f 2 2 ≤ (1 + 2 ) min L∈L R 2 (1 + L 2 ) -s + (C (1 + R 2 ) + 2λ) 2L + 1 n + C(1 + R 2 ) n ≤ C R 2 n -2s/(2s+1) choosing L = L 0 = Cn 1/
Lemma 17. Let λ > 0 and L be a finite set of resolution level and define

L = argmin L∈L - L l=-L | f l | 2 + λ 2L + 1 n .
Then, for all 0

< γ < 1/2, (1 -2γ) f L -f 2 2 ≤ min L∈L (1 + 2γ) fL -f 2 2 + 2λ 2L + 1 n + 1 γ max L∈L sup t∈B L ν 2 n (t) -λγ 2L + 1 n where B L = {t ∈ C Z , l∈Z |t l | 2 = 1, t l = 0 if |l| > L} and ν n (t) = l∈Z t l ( f l - f l ).
Proof. We recall that the dot product f, g means 1 2π f (x)g(x)dx and that . 2 is the associated norm. Usual Fourier analysis gives for any L:

fL -f 2 2 = -fL 2 2 + 2( fL 2 2 -fL , f ) + f 2 2 = - L l=-L | f l | 2 + 2 L l=-L f l ( f l -f l ) + f 2 2 = - L l=-L | f l | 2 + 2ν n ( f L ) + f 2 2
where we denote f L the sequence in C Z such that ( f L ) l = f l if -L ≤ l ≤ L and 0 otherwise. Now let L be an arbitrary resolution level in L. Using the definition of L,

- L l=-L | f l | 2 + λ 2 L + 1 n ≤ - L l=-L | f l | 2 + λ 2L + 1 n . Thus f L -f 2 2 -2ν n ( f L ) + λ 2 L + 1 n ≤ fL -f 2 2 -2ν n ( f L ) + λ 2L + 1 n which leads to f L -f 2 2 ≤ fL -f 2 2 + 2ν n ( f L -f L ) -λ 2 L + 1 n + λ 2L + 1 n .
But, denoting by . the natural norm of

2 (C Z ) 2ν n ( f L -f L ) = 2ν n f L -f L f L -f L f L -f L 2 ν n ( f L -f L ) ≤ γ f L -f L 2 + 1 γ ν n f L -f L f L -f L 2 ≤ 2γ( f L -f 2 2 + f -fL 2 2 ) + 1 γ sup t∈B L∨ L |ν n (t)| 2 where L ∨ L = max(L, L). Thus f L -f 2 2 (1 -2γ) ≤ fL -f 2 2 (1 + 2γ) + 1 γ sup t∈B L∨ L |ν n (t)| 2 -λ 2 L + 1 n + λ 2L + 1 n ≤ fL -f 2 2 (1 + 2γ) + 1 γ sup t∈B L∨ L |ν n (t)| 2 -λγ 2 L + 2L + 2 n + 2λ 2L + 1 n ≤ fL -f 2 2 (1 + 2γ) + 2λ 2L + 1 n + 1 γ max L ∈L sup t∈B L |ν n (t)| 2 -λγ 2L + 1 n .
Lemma 18. Assume Assumption Assumption 1 and 5. Assume that f belongs to the Sobolev ellipsoid W (s, R) with s ≥ 1. Assume that L = {0, . . . , L n } with L n such that L 3 n ≤ C L n 1/q for some q > 1. Then, with the notation of Lemma 17, for all κ > 3/(2π 2 ),

E max L∈L sup t∈B L |ν n (t)| 2 - κ (1 -2P ) 2 2L + 1 n ≤ C(1 + R 2 ) n ,
where C is a positive constant depending on P, q, C L , κ.

Proof. Denote R l = 1 M l ( θ) -1 M l (θ0) . First note that ν n (t) = 1 2πn n k=1 l∈Z t l e -ilX k M l ( θ) - 2πg l M l (θ 0 ) = ν n,1 (t) + ν n,2 (t) + ν n,3 (t) 
where

ν n,1 (t) = 1 2πn n k=1 l∈Z t l e -ilX k -2πg l M l (θ 0 ) ν n,2 (t) = 1 2πn n k=1 l∈Z t l e -ilX k -2πg l R l ν n,3 (t) = 1 n n k=1 l∈Z t l g l R l = l∈Z t l g l R l .
Thus |ν n | 2 ≤ 3|ν n,1 | 2 + 3|ν n,2 | 2 + 3|ν n,3 | 2 , and, if κ 1 = κ/3,

E max L sup B L |ν n | 2 - κ (1 -2P ) 2 2L + 1 n ≤ 3E L sup B L |ν n,1 | 2 - κ 1 (1 -2P ) 2 2L + 1 n + + 3E max L sup B L |ν n,2 | 2 + 3E max L sup B L |ν n,3 | 2
where a + = max(a, 0) denotes the positive part of a.

Control of ν n,3 First note that

g l R l = f l M l (θ 0 ) -M l ( θ) M l ( θ) ≤ |f l | 1 -2P
M l (θ 0 ) -M l ( θ) .

Thus, using Schwarz inequality sup 

t∈B L |ν n,3 (t)| 2 ≤ L l=-L |f l | 2 (1 -2P ) 2 M l (θ 0 ) -M l ( θ)
|f l | 2 |l| 2s θ 0 -θ 2 1 ≤ 4R 2 (1 -2P ) 2 θ 0 -θ 2 1 .
According to Proposition 6 and inequality x 2 1 ≤ 3 x 2 , there exists a constant K > 0 such that E(n θ -θ 0 2 1 ) ≤ K. Then

E max L∈L sup B L |ν n,3 | 2 ≤ C 3 R 2 n with C 3 = 4K/(1 -2P ) 2 .
Control of ν n,2 Note that Using Hölder's inequality, for any p, q ≥ 1 such that 1 p + 1 q = 1, E max l 2 (2π) -2 C (p) 1/p n -1 K (q) 1/q n -1/q ≤ C (q) (1 -2P ) 2 n -1-1/q L 3 n .

|R l | ≤ 1 (1 -2P ) 2 M l (θ 0 ) -M l ( θ) ≤ 2 (1 -2P ) 2 |l| θ -θ 0 1 , so for t ∈ B L ,
Since L 3 n ≤ C L n 1/q , we obtain

E max L∈L sup t∈B L |ν n,2 (t)| 2 ≤ C 2 n
with C 2 = C (q)C L /(1 -2P ) 2 .

Control of ν n,1

To control ν n,1 , we need Talagrand's inequality.

Lemma 19. Let X 1 , . . . , X n be i.i.d. random variables, and define ν n (t) =

1 n n k=1 ψ t (X k ) -E[ψ t (X k )], for t belonging to a countable class B of real-valued measurable functions. Then, for δ > 0, there exist three constants c l , l = 1, 2, 3, such that Inequality (10) is a classical consequence of Talagrand's inequality given in [START_REF] Klein | Concentration around the mean for maxima of empirical processes[END_REF]: see for example Lemma 5 (page 812) in [START_REF] Lacour | Adaptive estimation of the transition density of a particular hidden Markov chain[END_REF].

E sup t∈B |ν n (t)| 2 -c(δ)H 2 + ≤ c 1 v n exp -c 2 δ nH 2 v ( 10 
Using density arguments, we can apply it to the unit sphere of a finite dimensional linear space.

Here ν n,1 (t) = 1 n n k=1 ψ t (X k ) -E[ψ t (X k )] with ψ t (X) = 1 2π l∈Z t l e -ilX M l (θ 0 ) , E(ψ t (X)) = l∈Z t l g l M l (θ 0 )

Let us compute M 1 , H and v.

• Using Cauchy Schwarz inequality, for t ∈ B L ,

|ψ t (u)| 2 = 1 2π L l=-L t l e -ilu M l (θ 0 ) 2 ≤ 1 4π 2 L l=-L |t l | 2 L l=-L e -ilu M l (θ 0 ) 2 ≤ 1 4π 2 (1 -2p 0 ) 2 (2L + 1), thus M 1 = 1 2π(1-2p0) √ 2L + 1.
• Using Cauchy Schwarz inequality, for t ∈ B L , sup M l (θ 0 )M l (θ 0 )

Figure 2 :

 2 Figure 2: Histograms of the centered and standardized statistics θn for the von Mises density f V M with κ = 5, n = 1000 observations and 100 Monte Carlo replications

Figure 3 :

 3 Figure 3: For the wrapped Cauchy density f W C with γ = 0.8 and n = 1000: plot of couples ( 2L+1 n , L l=-L | f l | 2 ) for L = {1, . . . , 50}.

Figure 4 :

 4 Figure 4: Estimation of the density f and the mixture density g for n = 1000.In red, the density, in dotted lines its estimate. From top to bottom: the von Mises density with κ = 5, the wrapped Cauchy with γ = 0.8 and the wrapped normal density with ρ = 0.8.

  1j (θ 0 )) ≤ nc 1 using Lemma 11. Here c 1 is a numerical constant. Thus E B n 2 1 ≤ 4c 1 /n. In the same way the variables W jk := 4 l=-4 ( Żl k (θ 0 ) -Jl (θ 0 ))Z l j (θ 0 ) k<j are centered and uncorrelated, and also bounded. Then

  θ 0 ) -M l ( θ)| ≤ (p 0 -p)e -iα0l + p(e -iα0l -e -i αl ) + (1 -p 0 -1 + p)e -iβ0l + (1 -p)(e -iβ0l -e -i βl ) ≤ |p 0 -p| + |e -iα0l -e -i αl | + |p 0 -p| + |e -iβ0l -e -i βl | ≤ 2|p 0 -p| + |l||α 0 -α| + |l||β 0 -β| ≤ 2|l| θ 0 -θ 1(note that it is also true for l = 0 since M 0 (θ 0 ) = M 0 ( θ) = 1). Thus, for any L ∈ L

||

  |t l ( g l -g l )R l | g l -g l | 2 l 2 θg l -g l | 2 l 2 θ -| g l -g l | 2 l 2 θ -

  l 2 E 1/p (| g l -g l | 2p )E 1/q θ -θ 0 2q 1 But Proposition 6 gives us E θ -θ 0 2q 1 ≤ (1 + 2π + 2π) 2q-2 E 3 θ -θ 0 2 ≤ K (q)n -1 .Moreover, we can apply the Rosenthal inequality to the variables Y k = e ilX k -E(e ilX k ): there exists C(2p) > 0 such that

  -1) ∧ 1, c(δ) = 2(1 + 2δ) and sup t∈B ψ t ∞ ≤ M 1 , E sup t∈B |ν n (ψ t )| ≤ H, and sup t∈B Var (ψ t (X 1 )) ≤ v.

  It remains to control the variance. If t ∈ B L Var(ψ t (X))

Table 1 :

 1 Mean squarred errors for estimating parameter θ 0 over 50 Monte Carlo replications.

		0121 0.6848 0.1131	0.0017	0.1919	0.0238
	f V M , κ = 5	0.0030 0.0285 0.0049 1.4632e-04	0.0017	4.4861e-04
	f V M , κ = 7	0.0033 0.0133 0.0031 1.6721e-04	0.0013	3.0102e-04
	f W C , ρ = 0.8 0.0029 0.0124 0.0024 2.0788e-04 8.5435e-04 1.8942e-04
	f W N , ρ = 0.8 0.0077 0.1679 0.0457	0.0020	0.0238	0.0037
	density		n = 100			n = 1000
		p	α	β	p	α	β
	f V M , κ = 2 0.0938 0.4212 0.1171	0.0116	0.0685	0.0062
	f V M , κ = 5 0.0031 0.0360 0.0049 2.9965e-04 0.0025 6.6273e-04
	f V M , κ = 7 0.0031 0.0084 0.0029 2.4553e-04 0.0014 3.5541e-04

Table 2 :

 2 Spurr and Koutbeiy procedure: mean squared errors for estimating parameter θ 0 over 50 Monte Carlo replications on {

Table 3 :

 3 Spurr and Koutbeiy procedure: mean squared errors for estimating parameter θ 0 over 50 Monte Carlo replications on {(0, 1 2

S 1 φ(x)e -ilx dx 2π , the Fourier coefficients. Note also that we use notation f and f for two densities, where f is not the derivative of f .
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where we set U k (θ 0 ) := 4 l=-4

Jl (θ 0 )Z l k (θ 0 ). Note that the U k (θ 0 )'s are i.i.d and centered. Invoking the central limit theorem, we have that

where V /4 is the covariance matrix of U 1 (θ 0 ), equal to E(U 1 (θ 0 )U 1 (θ 0 ) ).

Step 2-Let us prove that Sn (θ * n )

Jl (θ 0 ) Jl (θ 0 ) . First, we have

Next we write the decomposition

We get due to the Lipschitz property of Sn stated in Lemma 13 that

Last, let us focus on the term Sn (θ 0 ) -E Sn (θ 0 ) F . We remind that

From now on, we drop indices l and θ 0 to simplify the notation. We center the variables in order to find uncorrelatedness:

Using the weak law of large numbers for uncorrelated centered variables, we obtain that Sn (θ 0 ) -E Sn (θ 0 ) F P → 0 which completes the step 2. Finally it is sufficient to apply Slutsky's Lemma to obtain the theorem. Z l k ( θn )Z l k ( θn ) Żl j ( θn )( Żl j ( θn )) .

Estimation of the covariance

tends almost surely toward V when n tends to +∞.

Thus we obtain a consistent estimator for V (that allows to estimate the covariance Σ). Nevertheless this estimator is biased. Notice that the quantity

and we could also prove (with some additional technicalities in the following proof about the uniform convergence in k) that it tends almost surely toward V . However, we lose the "unbiased" property when replacing θ 0 by θn .

Using twice Schwarz inequality

Var(ψ t (X)) ≤ 1 2π

Inequality ( 10) becomes

with K and c positive constants depending on P, c 1 , c 2 , c 3 , δ. This ends the control of ν n,1 with κ

Finally it is sufficient to take

to conclude the proof. Since δ can be chosen arbitrary small, and we have assumed κ > 3/(2π 2 ), this condition is satisfied.