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Abstract

This paper implements a generalized multiplicative regularization for esti-

mating the mechanical loads acting on a linear structure. The proposed

strategy extends the ordinary multiplicative regularization, previously pub-

lished by the authors, by introducing an extra tuning parameter, which is

determined through an original iterative procedure. To assess the practical

interest and the overall performances of the proposed approach, numerical

and real-world applications are proposed. Obtained results illustrate the in-

fluence of the extra tuning parameter according to the measurement noise

level and highlight the benefits brought by the generalized multiplicative

regularization in terms of solution accuracy.

Keywords: Linear inverse problem, Force reconstruction, Multiplicative

regularization.

1. Introduction

Input estimation remains an important problem for the structural dy-

namics community as evidenced by the abundant literature dedicated to this
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topic in the recent years. Generally speaking, inverse methods can be classi-

fied into two groups. The first group includes methods that are specifically

designed to solve the inverse problem in the time or frequency domains.

In the time domain, one can cite Kalman-like approaches [1–3] or dynamic

programming [4–6] , while, in the frequency domain, methods based on the

filtering of the equation of motion of structures, such as beams, cylindrical

shells or plates, have been developed [7–9] The second group gathers more

general approaches that can be used indistinctly in both domains. This is,

for instance, the case of methods based on the virtual work principle [10–

12]. However, among all the methods belonging to this second group, reg-

ularization techniques are certainly the most widely used, because it allows

including some prior information on the sources to identify. From a mathe-

matical standpoint, the latter information is encoded in a regularization term

generally incorporated in the formulation as an additive constraint to give

rise to the so-called Tikhonov-like regularization [13]. Although this form of

additive regularization has proved its efficiency to solve force reconstruction

problems [14–16] , it requires the determination of the well-known regular-

ization parameter. Unfortunately, this task reveals to be far from easy and

automatic selection procedures have been developed for this purpose, such

as the Generalized Cross-Validation [17], the L-curve principle [18] or the

Bayesian indicator [19] to cite only only a few of them . However, it should

be mentioned that all the above-cited selection techniques are generally com-

putationally intensive and have been developed in the context of Tikhonov

regularization (a.k.a. `2-regularization). It results that they cannot be easily

or directly applied to more general additive regularizations, such as `1 [20],

2



`q [21] or mixed-norm regularizations [22]. To circumvent to this potential

undesirable feature, we have recently introduced the ordinary multiplicative

regularization in the context of structural source identification [23–25]. In

its more general form, the proposed multiplicative regularization is expressed

as:

F̂ = argmin
F\{0}

F(X,F) · R(F), (1)

where:

• X and F are the measured vibration field and the unknown excitation

field respectively;

• F(X,F) is the data-fidelity term, which is a measure of the deviation

of the estimated vibration field from the measured one. It actually

encodes prior information related to the noise corrupting the data [26];

• R(F) is the regularization term that encodes prior information on the

excitation field F [27].

One of the remarkable properties of the previous formulation is that the

corresponding solution is the point of intersection between the L-curve and

a straight line with a slope equal to −1 [23]. In this regard, it can be in-

teresting to add an extra tuning parameter that brings a greater flexibility

by modifying the slope of the straight line and so the identified solution.

Such an idea has been introduced by Regińska [28] and further developed by

Viloche Bazán [29] in the context of Tikhonov regularization to only compute

the corresponding optimal regularization parameter α̂. In those papers, the
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regularization parameter is sought such that:

α̂ = argmin
α∈R+∗

F(X,Fα) · R(Fα)
µ, (2)

where Fα is the solution of the Tikhonov regularization for a given regulariza-

tion parameter α, while µ ∈ R+∗ is an extra tuning parameter. Practically,

Eq. (2) is solved from a fixed-point algorithm that automatically adjusts the

value of the extra tuning parameter [29].

In the light of these works, this paper proposes to revisit the ordinary

multiplicative regularization by introducing an extra tuning parameter in the

framework we have previously developed to efficiently solve input estimation

problems. This particular form of multiplicative regularization, referred to

as Generalized Multiplicative Regularization (GMR) in the rest of the paper,

differs from the works of Regińska and Viloche Bazán by its philosophy, since

it considers more general regularization terms and aims at solving the for-

mulation as a whole. In particular, this means that the identified excitation

field, the related regularization parameter and the extra tuning parameter are

computed within the same iterative resolution procedure. Hence, the basic

motivation of this paper is to assess the applicability of the GMR for identi-

fying mechanical loads acting on a structure. To this end, the mathematical

formulation of the GMR and the related resolution algorithm are detailed in

section 2. In section 3, a numerical experiment is carried out to thoroughly

analyze the influence of the extra tuning parameter on the identified solution

according to the measurement noise level. Based on these results, an original

iterative procedure is proposed in section 4 to automatically compute an op-

timal value of the extra tuning parameter. Finally, a real-world experiment is
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carried out in section 5 to assess the ability of the whole resolution procedure

in providing consistent reconstructions in operating conditions.

2. Generalized Multiplicative Regularization

This section introduces the mathematical formulation of the Generalized

Multiplicative Regularization (GMR), as well as its resolution algorithm.

More specifically, this section highlights the main features of the GMR and

focuses on the basic steps of the resolution process.

2.1. General formulation

As stated in the introduction, the GMR follows the idea proposed by

Regińska and Viloche Bazán consisting in introducing an extra tuning pa-

rameter in the formulation of the functional to minimize. It results that the

target excitation field F̂ is sought as the solution of the following minimiza-

tion problem:

F̂ = argmin
F\{0}

F(X,F) · R(F)µ. (3)

To explicitly define the data fidelity and regularization terms, F(X,F)

and R(F), three assumptions are made. The first one consists in considering

the studied structures as linear and time-invariant systems. If we further

assume that the mechanical problem is expressed in the frequency domain,

then the dynamic behavior of the structure is completely determined by the

transfer functions matrix H, relating the vibration field X to the excitation

field F, such that:

X = HF + N, (4)
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where N models the noise corrupting the measured data.

The second assumption is related to the statistical properties of the noise

vector previously defined. Indeed, it has been recalled in the very beginning

of this paper that the data-fidelity encodes any prior information available on

the measurement noise. In this respect, the data-fidelity term has to reflect

the main characteristics of the actual noise. Consequently, if the noise is

supposed Gaussian and spatially white, the data-fidelity term is expressed as

[30, 31]:

F(X,F) = ‖X−HF‖22. (5)

The last assumption concerns the definition of the regularization term,

which encodes one’s prior knowledge of the spatial distribution of the exci-

tation sources over the structure. Generally, forces of different nature can

act simultaneously on a structure. As a result, it is supposed that the struc-

ture is excited in R different regions by local excitation fields Fr of various

types (localized or distributed, for instance). Formally, this naturally leads

to introduced local regularization terms R(Fr), which are defined such that:

R(Fr) = ‖Fr‖qrqr , (6)

where ‖ • ‖qr is the `qr -norm (or quasi-norm), while qr is the related norm

parameter defined in R+∗. The latter parameter allows promoting either a

sparse (or localized) excitation field when qr ≤ 1 or a smooth (or distributed)
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one when qr ≥ 21.

Formally, the local regularization terms can be combined in an additive or

a multiplicative manner [25]. The one retained in this paper is based on a

Bayesian analysis and consists in defining the regularization term as the sum

of the local regularization terms, that is:

R(F) =
R∑
r=1

‖Fr‖qrqr . (7)

By bringing everything together, the general form of the GMR considered

in this paper is finally written:

F̂ = argmin
F\{0}

‖X−HF‖22 ·

(
R∑
r=1

‖Fr‖qrqr

)µ

. (8)

At this stage, two comments can be made regarding the global behavior

of the GMR. First of all, whatever the particular form of the data-fidelity

and regularization terms, the solution obtained from the GMR is the point at

which the corresponding L-curve is tangent to a straight line having a slope

equal to −1/µ. A general proof of this statement can be found in Ref. [28].

Then, the solution obtained from the GMR is directly conditioned to the

value of the extra tuning parameter µ. Indeed, when µ = 0, the GMR reduces

to an Ordinary Least Squares regression, whereas it reduces to the Ordinary

Multiplicative Regularization (OMR) when µ = 1 [23, 25]. More generally,

solutions minimizing the data-fidelity term are promoted when µ < 1, while

solutions minimizing the regularization term are favored when µ > 1. To

1In the present paper, the subscript r (bold or italic) refers to a particular region of

the structure. From a notation point of view, a bold character (r) is used for vectors and

matrices, while an italic character (r) is used for scalar quantities.
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some extent, µ can be seen as a trade-off parameter, since it allows weighting

the relative importance of the data-fidelity and regularization terms.

2.2. Resolution algorithm

The resolution of the GMR requires the implementation of an iterative

procedure. From a very general standpoint, the resolution algorithm is di-

vided into three main steps:

1. set k = 0 and initialize F̂
(0)

2. while convergence is not reached do

a. Compute F̂
(k+1)

b. Compute the convergence indicator

end while

3. return F̂

In the present paper, the initialization step as well as convergence moni-

toring are not described and the interested reader can refer to Ref. [23] for

further information. Actually, the core of the proposed algorithm is the com-

putation of the excitation field at iteration k+1 (step 2.a), around which all

the procedure is built. Practically, it is derived from the direct application

of the first-order optimality condition to the functional:

J(F) = ‖X−HF‖22 ·

(
R∑
r=1

‖Fr‖qrqr

)µ

. (9)

In doing so, the fixed-point iterate at iteration k + 1 is written:

F̂
(k+1)

=
(
HHH + α(k+1) W(k+1)

)−1
HHX, (10)
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where α(k+1) is the adaptive regularization parameter, while W(k+1) is a

global weighting matrix. Formally, the adaptive regularization parameter

α(k+1) is defined by the relation:

α(k+1) = µ

∥∥∥X−HF̂
(k)
∥∥∥2
2

R∑
r=1

∥∥∥F̂(k)

r

∥∥∥qr
qr

. (11)

On the other hand, the global weighting matrix W(k+1) is defined such that:

W(k+1) = diag
[
W(k+1)

1 , . . . ,W(k+1)
r , . . . ,W(k+1)

R

]
. (12)

In the previous relation, each local weighting matrix W(k+1)
r is a diagonal

matrix given by:

W(k+1)
r = diag

[
w

(k+1)
r,1 , . . . , w

(k+1)
r,i , . . . , w

(k+1)
r,Nr

]
(13)

with

w
(k+1)
r,i =

qr
2
max

(
εr,
∣∣∣F̂ (k)

ri

∣∣∣)qr−2 , (14)

where Nr is the number of identification point in the region r, F̂ (k)
ri is the

ith component of the local excitation vector F̂
(k)

r , while εr is a small positive

number avoiding infinite weights when
∣∣∣F̂ (k)

ri

∣∣∣ → 0 and qr < 2. The value of

this parameter is chosen so that 5% of the values of
∣∣∣F̂(0)

∣∣∣ are less than or

equal to εr [21].

3. Numerical experiment

The numerical experiment proposed in this section aims at analyzing the

behavior and the performances of the GMR on an academic application.
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More specifically, the main objective of this application is twofold. First, it

is intended to assess the influence of the extra tuning parameter µ on the

solutions identified by the GMR. Second, it is sought to determine whether

an overall trend emerges from the simulation results regarding the evolution

of µ with respect to the measurement noise level.

3.1. Test case description

The present numerical experiment aims at identifying a unit point force

exciting, at 350 Hz, a simply-supported steel plate as well as the result-

ing reaction forces at boundaries. The dimensions of the plate are 0.6 m ×

0.4 m× 0.005 m while the external point force is located at point (x0, y0) =

(0.42 m, 0.25 m), measured form the lower left corner of the plate.

To carried out this numerical experiment, a synthesized vibration field

and the transfer functions matrix of the structure must be provided as input

data to the GMR. The generation of the experimental data is performed in

two steps. First, the noiseless reference displacement field Xref is computed

from a FE mesh of the plate made up with 187 shell elements2, assuming

that only bending motions are measured. Then, a Gaussian white noise with

a prescribed signal-to-noise Ratio (SNR) is added to the reference data to

simulate the measured vibration field. As for the definition of the transfer

function matrix H, it has been chosen to compute it from the FE model

of the plate with free boundary conditions, assuming, here again, that only

bending motions are measurable. Such a modeling enables the reconstruction

2The FE mesh has been defined using 8 elements per bending wavelength. Conse-

quently, the current mesh is theoretically valid up to 590 Hz.
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of the point force and the reaction forces, insofar as they are then considered

external to the system.

Finally, it is necessary to define the reference force vector Fref, that could

serve as a benchmark, as well as a set of qualitative indicators measuring

the accuracy of the identified solutions. In the present case, the reference

force vector must include the external point force as well as the reaction

forces at boundaries, since their reconstruction is the primary objective of

the proposed numerical experiment. This is for this particular reason that

the reference force vector is computed as follows:

Fref = H−1Xref. (15)

Fig. 1 presents the spatial distribution of the sources to identify. As expected

from the problem description, the reference force vector exhibits smooth

reaction forces at boundaries of the plate as well as a unit point force F0

at (x0, y0) = (0.42 m, 0.25 m).
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Figure 1: Reference force vector Fref at 350 Hz

Regarding the definition of qualitative indicators allowing to assess the
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actual performances of the GMR, three particulars indicators have been im-

plemented: the global relative error (GRE), the relative error on the iden-

tification of the reaction forces (RERF) and the peak error (PE). Formally,

the global relative error is a global indicator of the reconstruction quality,

defined by the relation:

GRE =

∥∥∥F̂− Fref

∥∥∥
1

‖Fref‖1
. (16)

In a similar fashion, the relative error on the reaction forces is an indicator of

the reconstruction quality of the reaction forces. Its mathematical definition

is similar to the global relative error, since:

RERF =

∥∥∥F̂(rf)
− F(rf)

ref

∥∥∥
1∥∥∥F(rf)

ref

∥∥∥
1

, (17)

where F̂
(rf)

is the force vector corresponding to the identified reaction forces

at boundaries , while F(rf)
ref is the related reference force vector.

Contrary to the foregoing indicators, the peak error is a local indicator de-

scribing the reconstruction quality of the point force amplitude. Mathemat-

ically, it is defined such that:

PE =
F̂p − F ref

p

F ref
p

, (18)

where F ref
p is the point force amplitude associated to the reference force vector

Fref, while F̂p is the point force amplitude associated to the identified solution

F̂ at point (x0, y0).

Finally, it worth mentioning that the quality of the identified excitation

field is conditioned to the convergence of FE mesh used to build the the trans-

fer functions matrix. Indeed, at a particular frequency, the FE model must
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be fine enough to properly describe the dynamic behavior of the structure,

which is the case here. Another possibility, not used in this work, consists

in computing the transfer functions matrix for a converged mesh and then

applying selection matrices to fit with the measurement and reconstruction

meshes.

3.2. Application

In this section, the behavior and the performances of the GMR with

respect to the value of the extra tuning parameter µ and the measurement

noise level are investigated. More precisely, by applying the GMR for various

SNR values ranging from 30 dB to 0 dB (i.e. from weakly to extremely

noisy data), one expects to see a trend emerge for the parameter µ with

the measurement noise level. But before that, it remains to characterize the

identification regions as well as the value of the related norm parameters qr.

Following the description of the problem and the distribution of the sources

presented in Fig. 1, two identification regions can be defined: (i) a central

region associated to the norm parameter q1 and including the external point

force only and (ii) a region corresponding to the boundaries of the plate and

associated to the norm parameter q2 [see Fig. 2]. Practically, this division

invites us to promote the sparsity of the excitation field in the central region

and its continuity at boundaries. From the indications given in section 2.1

and our own experience of such problems [31], choosing q1 = 0.5 and q2 = 2

fulfills this requirement.

To properly analyze the influence of µ on the reconstruction accuracy,

the results obtained from the Ordinary Multiplicative Regularization (OMR),

corresponding to the GMR for µ = 1, are first presented in Table 1 and Fig. 3
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Figure 2: Definition of the identification regions - (◦) region 1 (Point force), (×) region 2

(Reaction forces) and (♦) location of the point force

for the sake of comparison. In the present case, the OMR globally leads

to satisfying reconstructions both qualitatively and quantitatively, except

for extremely low SNR value (i.e. 0 dB), for which the point force is not

identified contrary to the reaction forces. For the sake of the completeness,

the reconstructions obtained for µ = 0.5 and µ = 2 are presented in Appendix

A.

Practically, better solutions may be obtained by varying the value of the

parameter µ. Here, the parameter leading to an optimal solution is said itself

optimal for the problem considered and is noted µ̂ in the following. After

a manual tuning, the optimal values of the extra parameter as well as the

quality indicators are summarized in Table 2, while the corresponding ex-

citation fields are presented in Fig. 4. Obtained results clearly emphasize

the influence of the extra tuning parameter on the quality of the identified

solutions. Indeed, whatever the SNR considered, it is possible to find a value

of µ adapted to the problem and leading to a fair compromise between the
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Figure 3: Reconstructed excitation field at 350 Hz from the OMR (i.e. GMR for µ = 1) –

(a) SNR = 30 dB, (b) SNR = 20 dB, (c) SNR = 10 dB and (d) SNR = 0 dB
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Table 1: Performances of the OMR (GMR for µ = 1) for various measurement noise levels

– Nit: Number of iterations of the resolution algorithm

SNR

Indicators 30 dB 20 dB 10 dB 0 dB

GRE (%) 33.61 30.27 30.74 52.88

RERF (%) 35.79 31.81 31.10 45.52

PE (%) 0.83 2.25 0.16 –99.45

Nit 27 13 15 16

reconstruction of the point force and that of the reaction forces. This is es-

pecially noticeable for extremely noisy data (i.e. SNR = 0 dB). In this case,

the point force location is identified at (x̂0, ŷ0) = (0.46 m, 0.25 m) instead of

(x0, y0) = (0.42 m, 0.25 m), corresponding to a location error less than 10%.

On the other hand, the PE computed from the point force amplitude identi-

fied at (x̂0, ŷ0) is equal to 0.973 N instead of 1 N (see Table 2). Consequently,

all things considered, this is a remarkable result for such an extreme configu-

ration. Finally, it is worth noting that the optimal value of the extra tuning

parameter decreases as the measurement noise level increases. More specif-

ically, µ should be greater than 1 in case of weakly and moderately noisy

data, while it should be less than or equal to 1 for highly and extremely

noisy data. This observation perfectly reflects the subtle balance induced by

the regularization process, i.e. the relative weighting of the data-fidelity and

regularization terms controlled by the adaptive regularization parameter α.
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Figure 4: Reconstructed excitation field at 350 Hz from the GMR for µ = µ̂ (manually

tuned) – (a) SNR = 30 dB, (b) SNR = 20 dB, (c) SNR = 10 dB and (d) SNR = 0 dB
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Table 2: Performances of the GMR for the optimal parameter µ̂ (manually tuned) for

various measurement noise levels – Nit: Number of iterations of the algorithm

SNR

Indicators 30 dB 20 dB 10 dB 0 dB

µ̂ 5 2.35 1 0.4

GRE (%) 15.10 20.04 30.74 71.39

RERF (%) 15.44 20.63 31.10 51.97

PE (%) 3.3×10−3 4.2×10−3 0.16 –2.70 (*)

Nit 12 13 15 51

(∗) PE computed from the amplitude at the identified point force location

4. Automatic computation of the extra tuning parameter

The results obtained in the previous section have shown that the optimal

value of the extra tuning parameter decreases with the SNR. However, finding

this value a priori is far from an easy task. This observation points out the

need for implementing an automatic selection procedure. In this section, an

original fixed-point algorithm is introduced for this purpose.

4.1. Basic principle

A careful analysis of the resolution algorithm, described in section 2.2,

shows that an optimal solution should be obtained provided that [see Eq. (11)]:

α̂

R∑
r=1

∥∥∥F̂r

∥∥∥qr
qr∥∥∥X−HF̂
∥∥∥2
2

≈ µ, (19)
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where α̂ is the value of the adaptive regularization parameter obtained at

convergence of the resolution algorithm.

This observation suggests the definition of the following function:

ψ(α, µ) = α

R∑
r=1

‖Frα‖qrqr

‖X−HFα‖22
, (20)

where Fα is the solution of the additive counterpart of the GMR obtained

for a constant regularization parameter α, that is3:

Fα = argmin
F

‖X−HF‖22 + α

(
R∑
r=1

‖Fr‖qq

)µ

, (21)

while Frα is the subset of Fα restricted to the region r.

It results from Eqs. (19) and (20) that an optimal value of the extra

regularization parameter µ̂ should be found when:

µ̂ = ψ (α̂, µ̂) , (22)

which is equivalent to seek the solution such that F̂ = Fα̂.

This very basic observation suggests the implementation of the iterative al-

gorithm presented in the next section and satisfying Eq. (22) within some

tolerance when the iterative process has converged.

3Fα is computed from the algorithm presented in section 2.2. However, the actual

regularization parameter at iteration k + 1 is α(k+1) = µα

(∑R
r=1

∥∥∥F(k)
rα

∥∥∥qr
qr

)µ−1

and not

simply α.
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4.2. Practical implementation

Before detailing the practical implementation of the proposed iterative

procedure, it is important to fully understand its expected behavior. To this

end, let us take another look at the numerical experiment presented in sec-

tion 3 for an SNR of 30 dB. The starting point of our reflection is illustrated

in Fig. 5 presenting the plot of ψ (α, µ0) for µ0 = 1 (µ0: initial choice of the

extra tuning parameter). This figure shows that the point (α̂0, µ0), indicated

by the marker (∗), does not lie on the curve defined by ψ(α, µ0), meaning

that the corresponding initial solution (F̂0, α̂0) is not optimal in the sense of

Eq. (22).
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-0.5
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1

1.5

(
, 

)

Figure 5: Plot of ψ(α, µ0) for µ0 = 1 – (—) ψ (α, µ0), (−−) µ = µ0 and (∗) α̂0 (the

abscissa and the ordinate are scaled logarithmically using the common logarithm)

For finding a value of µ adapted to the problem, it is chosen to apply the

GMR once again using an updated value of µ, noted µ1 and chosen such that

µ1 = ψ (α̂0, µ0) (see Fig. 6a). In doing so, the new point (α̂1, µ1), associated

to the updated solution (F̂1, α̂1), is almost located on the curve defined by

ψ(α, µ1) (see Fig. 6b), meaning that F̂1 ≈ Fα̂1 , i.e. µ1 ≈ ψ(α̂1, µ1). Following
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this first iteration, the process can be continued until the relative variation

of µ between two successive iterations is less than or equal to some toler-

ance fixed by the user. The whole fixed-point algorithm used to determine

the optimal triplet (F̂, α̂, µ̂) is summarized by the pseudo-code presented in

Algorithm 1.
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Figure 6: Illustration of the first iteration of the process – (a) Selection of µ1 - zoomed

portion of ψ(α, µ0) and (b) plot of ψ(α, µ1) (the abscissa and the ordinate are scaled

logarithmically using the common logarithm)

4.3. Application

For the numerical experiment considered in section 3, the application

of the algorithm previously described for a tolerance set to 10−3 (i.e. 0.1%)

allows obtaining the results gathered in Table 3 and Fig. 7. From the analysis

of these results, some comments can be made. First of all, the value of the

optimal extra tuning parameter found by the algorithm tends to decrease as

the measurement noise level increases. This observation is actually in line

with the conclusion drawn in section 3. Then, the value of µ, retained by
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Algorithm 1: Pseudo-code of the proposed iterative algorithm
Inputs : X, H, qr, tol

Outputs: F̂, α̂, µ̂

Set j = 0, δ = 1, µ0 = 1

Compute (F̂0, α̂0) from the GMR for µ0 (see section 2.2)

while δ > tol do

µj+1 = ψ(α̂j, µj)

Compute (F̂j+1, α̂j+1) from the GMR for µj+1

δ =
|µj+1−µj |

µj

j = j + 1

end

F̂ = F̂j, α̂ = α̂j, µ̂ = µj

the algorithm, leads to a reasonable compromise between the reconstruction

accuracy of the point force and that of the reaction forces. Obviously, better

solutions can be obtained by manually tuning µ (see section 3), but this is

a perilous undertaking without a precise knowledge of the target excitation

field. Finally, it should be noted that, for the two lowest SNR values (i.e.

10 dB and 0 dB), the proposed algorithm either has difficulty converging or

even diverges due to numerical issues during the process.

However, in the light of the previous results and those presented in Fig. 6,

it is legitimate to question the interest of continuing the iterative process

beyond the first iteration in terms of solution accuracy and computational

efficiency. To address this issue, the results obtained after the first iteration

of the algorithm are given in Table 4 and Fig. 8. It can be especially noted
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Figure 7: Reconstructed excitation field at 350 Hz from the GMR for µ = µ̂ – (a) SNR

= 30 dB, (b) SNR = 20 dB and (c) SNR = 10 dB
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Table 3: Performances of the GMR for µ = µ̂ for various measurement noise levels – Nit:

Number of iterations of the algorithm

SNR

Indicators 30 dB 20 dB 10 dB 0 dB

µ̂ 1.57 1.23 0.96 –

GRE (%) 26.06 26.95 31.21 –

RERF (%) 27.79 28.24 31.57 –

PE (%) 0.69 1.86 0.60 –

Nit 4 6 200 (∗) –

(∗) Maximum number of iterations allowed for the main loop

that the quality of the reconstructed excitation field is not significantly im-

proved by completing the iterative process. Perhaps more interesting is the

result obtained in case of extremely noisy data (i.e. SNR = 0 dB). Indeed,

contrary to what observed previously, a solution is obtained by stopping the

process right after its first iteration. As observed in section 3.2, the point

force location is not properly identified (see PE in Table 4), while the reaction

forces are reasonably well estimated. A closer look at Fig. 8d shows that the

reconstructed point force is actually located at (x̂0, ŷ0) = (0.46 m, 0.25 m)

with an amplitude of 0.84 N. Quantitatively, this corresponds to a PE equals

to –15.4% for a location error less than 10%, which remains acceptable con-

sidering such a low SNR.
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Figure 8: Reconstructed excitation field at 350 Hz from the GMR for µ = µ1 – (a) SNR

= 30 dB, (b) SNR = 20 dB, (c) SNR = 10 dB and (d) SNR = 0 dB
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Table 4: Performances of the GMR for µ = µ1 for various measurement noise levels

SNR

Indicators 30 dB 20 dB 10 dB 0 dB

µ1 1.53 1.19 0.97 0.50

GRE (%) 26.37 27.42 31.16 63.69

RERF (%) 28.15 28.26 31.52 46.17

PE (%) 0.7 1.92 0.55 –15.40 (*)

(∗) PE computed from the amplitude at the identified point force location

5. Real-world experiment

In this section, a real-world application is carried out on a simple struc-

ture in order to assess the identification ability of the GMR in operating

conditions.

5.1. Description of the experimental set-up

The structure under test is a steel parallelepiped box, excited on one of

its faces by a shaker fed by a white noise signal and equipped with a force

sensor (see Fig. 9). The dimensions and the thickness of the excited face are

(Ly, Lz) = (0.3 m, 0.35 m) and h = 5 mm respectively, while the excitation

point is approximately located at (y0, z0) = (0.10 m, 0.09 m).

As explained in section 3, the application of the GMR requires a measured

vibration field X and a transfer function matrix H as input data. In the

present experiment, the vibration field has been recorded by a scanning laser

vibrometer on a grid of (Ny × Nz) = (19 × 22) measurement points using

the force sensor as phase reference. Furthermore, the measured velocity field
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is, in the following, normalized to the signal delivered by the force sensor

to obtain the vibration field resulting from the application of a unit point

force (i.e. F ref
p = 1). Regarding now the definition of the transfer functions

matrix, it has been chosen to derive it from the FE model of a free plate

having the same dimensions and material as the excited face, assuming that

the measured bending motions are the only available data. Accordingly, the

FE mesh of the equivalent plate has been built from the measurement grid

and is made up with 378 shell elements 4.

Figure 9: Experimental set-up - A parallelepiped box excited on one of its faces by a

shaker

4In the present experimental validation, the FE mesh has been defined using 8 elements

per bending wavelength. Consequently, the reconstruction mesh is theoretically valid up

to 3 kHz.
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5.2. Application

The analysis of the experimental set-up suggests the definition of two

identification regions similar to those defined in the numerical application.

More precisely, the first region, associated to the norm parameter q1, contains

the external point force only, while the second one, associated to the norm

parameter q2, corresponds to the boundaries of the excited face [see Fig. 10].

As explained in section 3.2, the values of the norm parameters must be

chosen so as to reflect the spatial distribution of the forces to identify in the

considered regions, i.e. the sparsity in the first region and the continuity of

the boundary forces in the second region. Following the latter observation,

the norm parameters q1 and q2 are respectively set to 0.5 and 2.

00.050.10.150.20.250.3
0
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m
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Figure 10: Definition of the identification regions - (◦) region 1 (Point force), (×) region

2 (Boundary forces) and (♦) location of the point force

In the present experiment, the GMR is applied at 625 Hz. This specific

frequency has been chosen because it is not a natural frequency of the sys-
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tem5. In the following, because no reference excitation field is available, only

the PE is evaluated from the results obtained for three values of the extra

tuning parameter, corresponding respectively to the value used to initial-

ize Algorithm 1 (µ0), that computed after the first iteration (µ1) and that

reached at convergence (µ̂) for a tolerance set to 10−3. Table 5 and Fig. 11

gather the results derived from the GMR.

Table 5: Peak error obtained at 625 Hz from the GMR

Indicator µ0 = 1 µ1 = 3.66 µ̂ = 2.76× 10−9

PE (%) –1.96 0.089 -7.76

First of all, it is important to note that the least-squares solution is ob-

tained by letting Algorithm 1 reach the convergence, which is obviously not

the expected behavior. In the two other cases, the spatial distribution of

the equivalent boundary forces are consistent with our expectations6 and

are somewhat equivalent whatever the value considered. On the contrary,

the reconstruction of the excitation fields in the central region leads to no-

ticeable differences. Indeed, Fig. 11 shows that the OMR (i.e. µ0 = 1)

allows reasonably well quantifying and locating the external point force de-

spite the presence of small reconstruction artifacts, since it is identified at

5At natural frequencies of a lightly damped structure, the mechanical response is driven

by the modes of the system. This implies that the solution is generally not unique at these

particular frequencies.
6Because a force-only model has been adopted here, the identified boundary forces are

actually the sum of pure forces and equivalent forces due to the potential existence of

boundary moments.
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Figure 11: Reconstructed excitation field from the GMR at 625 Hz for (a) µ0 = 1, (b)

µ1 = 1.44 and (c) µ̂ = 2.76× 10−9
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(ŷ0, ẑ0) = (0.103 m, 0.088 m) with a normalized amplitude F̂p of 0.98 (see

Fig. 11a). Actually, the reconstruction artifacts, observed previously, are

eliminated by applying the GMR for µ = µ1, while leading to a better quan-

tification of the point force amplitude (see Table 5 and Fig. 11b). These

findings are in line with the conclusion drawn in section 3.2 and suggesting

that completing the iterative process is not necessarily beneficial in terms of

solution accuracy. More specifically, stopping the process right after the first

iteration allows obtaining consistent solutions while limiting the computa-

tional cost of the iterative scheme described in Algorithm 1.

6. Conclusion

A generalized multiplicative regularization has been proposed for solving

linear input estimation problems. The proposed method extends the ordi-

nary multiplicative regularization by introducing an extra tuning parameter.

In the course of this paper, the influence of this additional parameter accord-

ing to the measurement noise level has been studied through a numerical

experiment. It has been shown that the value of the extra tuning parameter

tends to decrease as the noise level increases. However, because determin-

ing an optimal value of this parameter can be tricky, an original iterative

procedure has been implemented. The application of this procedure both

numerically and experimentally demonstrates the practical interest brought

by the generalized multiplicative regularization in terms of solution accuracy

and computational efficiency. More peculiarly, it has been shown that com-

pleting the iterative process is not necessarily beneficial in terms of solution

accuracy and computational efficiency. Consequently, it is recommended to
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stop the process right after the first iteration. The application of the pro-

posed approach to other forms of regularization terms, such as mixed-norm

regularization terms, will be the matter of future works.

Appendix A. Application of the GMR for µ = 0.5 and µ = 2

We present in this section the results obtained from the GMR for two

particular values of µ, namely 0.5 and 2, for the numerical experiment carried

out in section 3. These values have been chosen because they differently

weight the relative importance of the data-fidelity and regularization terms

and allows putting into perspective the results obtained from the OMR (i.e.

µ = 1).

Appendix A.1. GMR results for µ = 0.5

Table A.1 and Fig. A.1 summarize the results obtained from the GMR

when µ = 0.5. In particular, it is worth noting that the reconstructed exci-

tation field is less accurate than that obtained from the OMR (i.e. µ = 1)

from weakly to highly noisy data. On the contrary, the opposite is observed

for extremely noisy data, which is in agreement with the results presented

in Figs. 4d and 8d. Actually, these conclusions are quite logical, since the

data-fidelity term is promoted when µ > 1. This is especially important for

an SNR of 0 dB, since the information brought by the reconstruction model

(see Eq. (4)) helps to obtain a physically consistent solution.

Appendix A.2. GMR results for µ = 2

Table A.2 and Fig. A.2 gather the results obtained from the GMR when

µ = 2. Contrary to what observes for µ = 0.5, the excitation field identified is
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Figure A.1: Reconstructed excitation field at 350 Hz from the GMR for µ = 0.5 – (a) SNR

= 30 dB, (b) SNR = 20 dB, (c) SNR = 10 dB and (d) SNR = 0 dB
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Table A.1: Performances of the GMR for µ = 0.5 for various measurement noise levels –

Nit: Number of iterations of the algorithm

SNR

Indicators 30 dB 20 dB 10 dB 0 dB

GRE (%) 56.66 48.58 45.62 63.82

RERF (%) 55.82 50.11 45.96 46.26

PE (%) 1.98 3.19 6.91 –15.11 (*)

Nit 31 13 36 10

(∗) PE computed from the amplitude at the identified point force location

more accurate than that obtained for µ = 1 for highly and moderately noisy

data, which is in line with the results presented in sections 3.2 and 4.3. In the

present case, the regularization term is favored, meaning that solutions based

on prior knowledge of the sources to identify are promoted. This explains

the disappointing results obtained for highly and extremely noisy data.

Table A.2: Performances of the GMR for µ = 2 for various measurement noise levels –

Nit: Number of iterations of the algorithm

SNR

Indicators 30 dB 20 dB 10 dB 0 dB

GRE (%) 22.84 21.33 25.46 76.30

RERF (%) 24.25 22.08 24.68 73.47

PE (%) 0.59 0.59 –16.96 –99.99

Nit 12 13 16 24
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Figure A.2: Reconstructed excitation field at 350 Hz from the GMR for µ = 2 – (a) SNR

= 30 dB, (b) SNR = 20 dB, (c) SNR = 10 dB and (d) SNR = 0 dB
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