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Abstract—Tree-based search algorithms applied to combina-
torial optimization problems are highly irregular and time-
consuming when it comes to solving big instances. Solving
such instances efficiently requires the use of massively par-
allel distributed-memory supercomputers. According to recent
Top500 trends, the degree of parallelism in these supercomputers
continues to increase in size and complexity, with millions of
heterogeneous (mainly CPU-GPU) cores. Harnessing this scale
of computing resources raises at least three challenging issues
which are described and addressed in this paper. Indeed, as
a step towards exascale computing, we revisit the design and
implementation of tree search algorithms dealing with multiple
GPUs, in addition to scalability and productivity-awareness using
Chapel. The proposed algorithm exploits Chapel’s distributed it-
erators by combining a partial search strategy with pre-compiled
CUDA kernels for more efficient exploitation of the intra-node
parallelism. Extensive experimentation on big N-Queens problem
instances using 24 GPUs shows that up to 90% of the linear
speedup can be achieved.

Index Terms—Backtracking, GPU, PGAS, Chapel.

I. INTRODUCTION

Tree search algorithms are strategies that implicitly enumer-
ate a solution space, dynamically building a tree. Algorithms
from this class, such as backtracking and branch-and-bound
(B&B), are popular to efficiently solve permutation com-
binatorial optimization problems (PCOPs), especially when
combined with parallel/distributed computing. As the decision
version of PCOP is often NP-complete, the size of problems
that can be solved to optimality is limited, even if large-
scale distributed computing is employed [1]. In this sense,
the use of GPUs became crucial because it enables solving to
the optimality instances having prohibitive execution times on
CPUs [2], [3]. Also in the context of large-scale distributed
computing, the use of accelerators such as GPUs and FPGAs
plays a special role, as the energy-efficiency of such devices
helps to break the power barrier towards exascale [4].

It is important to point out that such large-scale hetero-
geneous systems are going to be complex to program, and
efforts towards productivity are crucial for better exploiting
the future generation of supercomputers [5]. The DARPA High
Productivity Computing System Program (HPCS) represents
an effort for creating high-productivity languages for the next
generation of supercomputers [6]. Among the HPCS high-
productivity languages, Chapel stands out, as it is competitive
to both C-OpenMP and MPI+X in terms of performance and

scalability [7]. Existing work on distributed tree search [8]
show that it is possible to achieve parallel efficiency and
performance, but also high productivity, by using the Chapel
language. However, due to Chapel’s lack of official GPU
support, related works do not employ GPUs, which is critical
in the exact optimization field [3].

The objective of the present research is to deal with multiple
GPU accelerators as a major step towards exascale using
a high-productivity language. In this sense, we revisit the
design and implementation of tree search algorithms taking
into account GPU heterogeneity, in addition to scalability and
productivity-awareness using Chapel. The proposed algorithm
is a distributed GPU-based tree search algorithm for solving
PCOPs. Chapel’s lack of official GPU support is overcome by
combining the language’s features with pre-compiled CUDA
kernels. Chapel’s distributed iterators are used for work dis-
tribution and load balancing between computer nodes. For
more efficient exploitation of the intra-node parallelism, each
subproblem received by a computer node is processed locally
on CPU and then offloaded to the local GPUs.

Extensive experimentation on big N-Queens problem in-
stances using up to 24 GPUs shows that 90% of the linear
speedup can be achieved compared to an optimized CUDA-C
baseline. We also compare the proposed algorithm to another
implementation using an existing approach from the literature
that enables GPU support in Chapel [9]. Results show that
the proposed algorithm is up to 1.77× faster and almost 2×
more efficient than its counterpart, mainly due to its lack of
distributed load balancing. It is worth to mention that we use
the N-Queens problem as a proof-of-concept that motivates
further improvements in solving related combinatorial opti-
mization problems.

The remainder of this document is structured as follows.
Section II brings background information and the related work.
Section III details the distributed GPU-based tree search algo-
rithm in Chapel. In turn, Section IV presents the performance
evaluation of the proposed algorithm. Next, Section V brings
a discussion of the reported experimental results. Finally,
conclusions are outlined in Section VI.



II. BACKGROUND AND RELATED WORK

A. Tree-based Search Algorithms

Tree search algorithms are strategies that implicitly enu-
merate a solution space, dynamically building a tree [10].
Algorithms that belong to this class start with an initial (root)
node, which represents the initial state of the problem to
be solved. Nodes are branched during the search process,
generating children nodes more constrained than their father
node. The generated nodes are evaluated, and then, the valid
and feasible ones are stored in a pool-like data structure called
Active Set. The search generates and evaluates nodes until
the data structure is empty or another termination criterion
is satisfied.

During the search, if an undesirable state is reached, the
algorithm discards this node and then chooses an unexplored
(frontier) node in the active set. This action prunes some
regions of the solution space, preventing the algorithm from
unnecessary computations. However, the pruning of subprob-
lems makes the shape of the tree irregular, which might result
in severe load imbalance when parallel computing is used. In
this sense, load balancing schemes are crucial for achieving
parallel efficiency in tree-based search algorithms.

B. The Chapel Language

Chapel is an open-source parallel programming language
designed to improve productivity in high-performance comput-
ing. In Chapel, the program is started with a single task, and
parallelism is added through data or task-parallel features [7].
Furthermore, as Chapel belongs to the partitioned global
address space languages (PGAS), the application has a global
memory addressing space, and each segment of this space is
assigned to a different locale [11]. In Chapel, the term locale
usually refers to a symmetric multiprocessing computer in a
parallel system. Due to the PGAS, a task can refer to any
variable lexically visible, whether this variable is placed on the
same locale on which the task is running, or on the memory
of another one. Moreover, indexes of data structures can be
globally expressed, even in the case where the implementation
of such data structures distributes the indexes across several
locales.

Although Chapel is a parallel programming language, there
is no official support for GPUs. There are solutions that
translate the body of a forall loop into GPU code [12],
[13]. However, these solutions may not always deliver the best
possible performance on GPU, particularly when advanced
GPU optimization techniques such as warp-shuffles and shared
memory utilization are required.

C. Chapel’s Parallel Iterators

Iterators in Chapel are similar to procedures that can be
used to isolate iterations from the loop body. Each value
yielded by the iterator corresponds to an iteration of the loop.
Chapel provides different parallel and distributed iterators
that implement load balancing between computer cores and
locales. Related work on distributed tree search shows that the
iterators provided by Chapel are the key feature to achieve a

trade-off between productivity and parallel efficiency [8]. The
complex communication pattern of a distributed master-worker
algorithm is encapsulated by the iterators. As a consequence,
there is no need for explicitly dealing with work distribution,
load balancing, termination criteria, or metrics reduction. Due
to Chapel’s lack of official GPU support, related work do not
deal with the CPU-GPU heterogeneity, which is critical in the
exact optimization field.

As Chapel does not provide any iterator dedicated to GPUs,
Hayashi et al. [9] propose the GPUIterator module that
allows Chapel programmers to perform forall loops on
both CPU and multi-GPU with minor additions to the code.
The GPUIterator automatically divides a given iteration
space into CPU and GPU portions by looking at a user-
specified parameter, namely CPUPercent. A forall loop
that is responsible for the CPU portion is executed on CPUs.
On the other hand, the user needs to prepare a callback
function that is expected to invoke a GPU program that is
responsible for the GPU portion. It is worth noting that the
GPUiterator also facilitates distributed execution. Also,
in the current implementation, the GPUIterator does not
dynamically update the CPU-GPU percentage to mitigate load-
imbalance during the execution, neither provides distributed
load balancing.

III. THE PROPOSED ALGORITHM

This section presents a productivity-aware distributed CPU-
GPU backtracking to solve permutation combinatorial prob-
lems. The algorithm follows the master-worker model and
is implemented for enumerating all complete and feasible
solutions to the N-Queens problem.

Backtracking is a fundamental tree-based search that dy-
namically enumerates a solution space in a depth-first fashion.
Due to its low memory requirements and its ability to quickly
find new solutions, depth-first search (DFS) is often preferred
as a search strategy for branch-and-bound (B&B) search
algorithms [14]. In turn, the N-Queens problem consists of
placing N non-attacking queens on a N ×N chessboard, and
it is often used as a benchmark for novel tree-based search
algorithms [15]. N-Queens is easily modeled as a permutation
problem: position r of a permutation of size N designates the
column in which a queen is placed in row r.

The concepts herein presented are similar to any PCOP and
can be adapted for solving other problems with straightforward
modifications [16], [17]. In this paper, we use the N-Queens
problem as a proof-of-concept that motivates further improve-
ments in solving related combinatorial optimization problems.

A. Initial Premises

One can see in Section II-B that a couple of approaches try
to mitigate the gap between Chapel and GPUs. Those solutions
are not feasible for the implementation of distributed tree-
based search algorithms, as they require problem-specific data
structures and several advanced programming features from
the CUDA API [16], [17]. In turn, the GPUIterator module
fulfills this requirement since it is designed to facilitate the
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Fig. 1. Schematic representation of an initial search on locale 0 - task 0 that
generates the pool P for a problem size N = 4 and cutoff = 3. The figure
depicts the branch that has the element 1 of the permutation as the root and
generated 4 valid and feasible incomplete solutions at depth cutoff = 3.

use of pre-compiled optimized kernels. However, its lack of
distributed load balancing makes it unfeasible for the purpose
of this work, since the irregular loads produced by tree search
algorithms demand load balancing for efficient use of the
computational resources [8]. In turn, Chapel’s iterators are not
well suited for the GPU programming model, as the loop body
is executed for each element e of an iteration space. However,
one element is not enough to use efficiently a massively
parallel device such as a modern GPU. In order to cope with
the challenge, we proceed as follows.

Firstly, the master locale generates initial load through a
partial search on CPU, filling a pool of nodes. Chapel’s
distributed iterators are used for work distribution and load
balancing among locales. Then, for more efficient exploitation
of the intra-node parallelism, each subproblem received by
a worker locale is processed locally on CPU, by another
partial search, generating a task-local pool. Then, this set of
subproblems is divided by the number of existing GPUs and
then offloaded to the local devices. Details concerning the
master locale and the initial search on CPU are presented in
the next subsection.

Algorithm 1: The Master locale.
1 N ← get problem( )
2 cutoff ← get cutoff depth( )
3 second cutoff ← get scnd cutoff depth( )

4 P ← {} Node
5 metrics ← (0, 0)
6 metrics + = initial search(N, cutoff, P )

7 Size ← {0..(|P | − 1)} // Domain
8 D ← Size mapped onto locales to a standard distribution
9 Pd ← [D] : Node

10 Pd = P // Using implicit bulk-transfer

11 forall node in Pd following a distributed iterator with(+ reduce
metrics) do

12 metrics + = Algorithm 2(N,node, cutoff,
13 second cutoff)
14 end
15 present results(metrics)
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Task-local pool (P)

Pd = P
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Distributed pool (Pd)

0
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Fig. 2. The distributed pool Pd consists of several sets P i
d, i ∈ {0, ..., L−1},

where L is the number of locales on which the application runs (based on [8]).

B. The Master Locale and the Initial Search

The algorithm starts with task 0 running on locale 0. As
one can see in Algorithm 1, task 0 initially receives the size
N of the problem, the first cutoff depth, and the second
one (lines 1 − 3). As illustrated in Figure 1, the initial pool
of nodes P is generated though a partial search (line 6),
called initial search. This procedure is performed by task 0
and implicitly enumerates all feasible and valid incomplete
solutions containing cutoff elements of the permutation,
keeping them into the pool P .

Lines 7 to 9 are responsible for defining the distributed pool
of nodes Pd. As one can see at line 7, initially the domain
D (0..|P | − 1) is mapped onto the locales according to a
distribution. Then, the distributed pool Pd is defined over the
domain D. Finally, as depicted in Figure 2, Pd is initialized via
implicit bulk transfer, represented by the assignment operator
at line 10, which performs L−1 transfers through the network,
where L is the number of locales on which the application
runs, instead of |Pd| small ones.

The parallel distributed search takes place in line 11,
adding parallelism by using the forall statement along
with distributed iterators (DistributedIters), which are
responsible for the assignment of nodes in Pd to locales in
a master-worker manner (distributed load balancing). Finally,
there is no need for programming termination criteria or a
reduction of the search metrics. The search finishes when the
distributed active set Pd is empty, and metrics are reduced by
using the reduction intents provided by Chapel (+ reduce).

C. Exploiting Intra-node Parallelism

As commented in Section III-A, one node yielded by the
distributed iterator used in Algorithm 1 (line 11) is not enough
for the efficient use of all GPUs a locale has. For the efficient
use of the GPUs the locale is equipped with, we proceed as
outlined in Algorithm 2.



Before the intra-locale search starts, a task-local pool Pl of
type Node is defined (line 2). Next, a second partial search
is performed from depth cutoff until second cutoff , also
storing into Pl all feasible and valid incomplete solutions
found at second cutoff (line 3). Finally, the multi-GPU
search takes place (line 4), searching for valid and complete
solutions, i.e., from depth second cutoff until the problem
size (N ). The algorithm returns a tuple (metrics) containing
the explored tree size and the number of valid and complete
solutions found by Algorithm 3.

Algorithm 2: Generating the task-local pool.
Input: N , node, cutoff , scnd cutoff
Output: A tuple containing the explored tree size and the number of

complete and valid solutions found on GPU.
1 metrics ← (0, 0)

2 Pl ← {} Node // Task-local pool

3 metrics+ = partial search(N,node, cutoff, scnd cutoff, Pl)

4 metrics + = Algorithm 3(N,Pl, scnd cutoff)

5 return metrics

The Intra-locale Multi-GPU Search: The GPUs of the
locale are exploited as shown in Algorithm 3. Initially, the
vectors used by the CUDA kernel to retrieve the metrics
from the GPU are defined in lines 1 – 2, and the variable
γ receives the number of GPUs the computer node on which
the task is running has (line 3). In turn, lines 5 to 14 are
responsible for launching the searches on GPU. Initially, one
task gpu id is created for each GPU. Next, the id of the
GPU onto which the task gpu id is going to offload is set
though function cuda set gpu(), which calls the the CUDA
function cudaSetDevice() though the C-interoperability
layer. At line 7, the number of subproblems each GPU
processes is calculated. The function get_load() simply

Algorithm 3: Exploiting multiple GPUs.
Input: N , P , the second cutoff depth
Output: A tuple containing the explored tree size and the number of

complete and valid solutions found on GPU.

1 tree h ← [0..|P | − 1] int
2 sols h ← [0..|P | − 1] int
3 γ ← cuda get num devices( )

4 GPU load ← |P |
5 forall gpu id in 0..γ − 1 do
6 cuda set gpu(gpu id)
7 device load ← get load(gpu id,GPU load, γ)
8 stride ← get starting point(GPU load, gpu id, γ)
9 sols ptr ← sols h + stride

10 tree ptr ← tree h + stride
11 pool ptr ← P + stride

12 call GPU search(N, depth, device load, pool ptr,
13 tree ptr, sols ptr)
14 end
15 redTree ← (+ reduce tree size h)
16 redSols ← (+ reduce sols h)
17 metrics+ = (redTree, redSol)

18 return (redTree, redSols)

verifies whether the division GPU load
γ is exact. If it is not

exact, the GPU with its id gpu id equals to γ−1 receives the
remainder of the division. Next, it is required to specify which
slices of P , sols h and tree h each one of the γ kernels are
going to work on (lines 8–11). The task-local variable stride
represents the beginning of the range belonging to each GPU
and is calculated as shown in (1).

gpu id ∗ (bGPU load/γc) (1)

Once the starting positions on the vectors are known, the
task-local variables sols ptr, tree ptr, and pool pts are
defined pointing to the beginning of the range the GPU
gpu id is responsible for working on. Then, the function
written in C responsible for launching the kernel is called
(line 12). It is important to point out that host− to− device,
device− to− host, error checking, and other CUDA-specific
functions are performed in this function. Finally, a parallel
reduction of the metrics is performed (lines 15–16), and then,
the metrics are returned (line 17–18). One can see in Figure 3
an overview of the proposed algorithm.

D. Implementation Aspects

The master-worker behavior is obtained by setting the
coordinated flag of the distributed iterator to true. This
way, locale 0 does not search but coordinates the search
process. To avoid losing the computational resources of the
computer on which locale 0 resides, one locale more than
the number of computer nodes available is launched by using
the -nl launching option. Thus, the first computer of the
reservation hosts two locales: locale 0 and locale 1.

Concerning the intra-node parallelism, the pointers arith-
metic of Algorithm 3 are performed by using Chapel’s
c_ptrTo() function. The CUDA-C kernel is based on a
serial and hand-optimized backtracking for solving permuta-
tion combinatorial problems [17], and it is a non-recursive
backtracking that does not use dynamic data structures, such
as stacks.

The semantics of a stack is obtained by using a variable
depth and by trying to increment the value of the vector board
at position depth. If this increment results in a feasible and
valid incomplete solution, the depth variable is then incre-
mented, and the search proceeds to the next depth. After trying
all configurations for a given depth, the search backtracks to
the previous one.

It is important to point out that the Node data structure is
similar to any permutation-based combinatorial/combinatorial
optimization problem. It contains two integer vectors of size
cutoff . The first one, identified by board, stores the feasible
and valid incomplete solution. The second one keeps track of
board lines by setting position n to 1 each time a queen is
placed in the n-th line.
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Fig. 3. The locale 0 (master) is responsible for generating the distribute pool Pd and controlling the search. Each worker locale receives nodes from the
master and generates a local pool (Pl) that is partitioned into γ subsets. As said in Section III-D, L locales are launched on L − 1 computer nodes (Own
representation adapted from [1]).

IV. PERFORMANCE EVALUATION

A. Experimental Protocol

In our experimental study, the following applications for
enumerating all valid and complete configurations of the N-
Queens problem are considered.

• Baseline (CUDA-C): multi-GPU implementation opti-
mized for single-locale execution written in CUDA-C.
It consists of an initial search on CPU until a cutoff
depth, which generates a pool of nodes P . Then, this
set is divided into γ subsets, where γ is the number of
GPUs the computer node is equipped with. Finally, after
the kernel execution, the CPU part of the code reduces
the metrics (tree size and number of found solutions).

• GPUIterator: distributed version of the baseline imple-
mentation written in Chapel. The main difference be-
tween the GPUIterator and the baseline is that this variant
uses the GPUIterator module [9], which has been
introduced in Section II. Differently from the algorithm
proposed in this paper, the GPUIterator implementation
performs no distributed load balancing. In turn, it first di-
vides Pd into L subsets, where L is the number of locales
on which the application runs. Then, on each locale, the
iterator further divides each set Li, i ∈ {0, ..., L−1} into
γ subsets to be offloaded to the GPUs.

• ChplGPU: implementation of the productivity-aware dis-
tributed search detailed in the last section, which employs
Chapel’s distributed iterators for work distribution and
load balancing.

It is important to point out that all implementations intro-
duced above employ the same kernel written in CUDA-C 1.
Finally, it is worth mentioning that it is not the objective of
this work to compare Chapel vs. MPI+X for implementing
distributed tree search in terms of productivity, performance,
and scalability, as such a study has already been performed [8].

1All implementations can be found on the Chapel-based Optimization
Project (ChOp) repository: https://github.com/tcarneirop/ChOp

Instead, the objective of this evaluation is to investigate how
the Chapel-based applications scale as the number of GPUs
increases.

TABLE I
SUMMARY OF THE ENVIRONMENT CONFIGURATION FOR MULTI-LOCALE

EXECUTION AND COMPILATION.

Variable Value
CHPL_RT_NUM_THREADS_PER_LOCALE 48

CHPL_TARGET_ARCH native
CHPL_COMM gasnet

CHPL_GASNET_SEGMENT everything
CHPL_COMM_SUBSTRATE ofi
GASNET_PSM_SPAWNER ssh

B. Parameters Settings

N-Queens problems of size (N ) ranging from 17 to 21 are
considered. The experiments take from a few seconds (N =
17) to ten hours of parallel processing on two GPUs (N = 21).
The number of computer nodes considered in the experiments
ranges from 1 to 12. Computer nodes operate under Debian
4.9.0, 64 bits. They are equipped with two Intel Xeon E5-
2650 v4 @ 2.00 GHz (a total of 24 cores/48 threads per node)
and 128 GB RAM. Each computer node is equipped with
two NVIDIA GeForce GTX 1080 Ti – Pascal generation (11
GB RAM and 3584 CUDA cores @ 1582 Mhz). Thus, the
maximum number of GPUs used in the experiments is 24
(86, 016 CUDA cores). The computer nodes are interconnected
through a 100 Gbps Intel Omni-Path network.

The ChplGPU and GPUIterator implementations are pro-
grammed with Chapel 1.22, and the default task layer
(qthreads) is the one employed. The GPU kernel is pro-
grammed in CUDA and compiled with NVCC 10.1, whereas
the function that calls the kernel is programmed in C and com-
piled with gcc 8.3. Both implementations written in Chapel
are executed on top of GASNet, and appropriate environment
variables should be set to fully utilize the capability of the
target platform. Table I shows a summary of the runtime

https://github.com/tcarneirop/ChOp
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for 24 GPUs (12 computer nodes).

configurations for multi-locale execution. The OpenFabrics
GASNet implementation is the one used for communication
(CHPL_COMM_SUBSTRATE) along with SSH, which is re-
sponsible for getting the executables running on different
locales (GASNET_PSM_SPAWNER).

Chapel provides two different distributed load balancing
iterators: guided and dynamic, which are also similar to
OpenMP’s schedules of the same name. Experiments were
also carried out to identify the best chunk for both load bal-
ancing strategies. As depicted in Figure 4, using the dynamic
distributed iterator results in the best overall performance
for ChplGPU. Therefore, it is the distributed iterator to be
considered hereafter in the results presented for the ChplGPU
implementation.

Experiments were also carried out to choose suitable cutoff
depths for all implementations. This parameter directly influ-
ences the size of the pool of nodes, the granularity of the
nodes, the GPU occupancy and the capacity of load balancing
of the iterators [8], [17], [18]. One can see in Table II the
best parameters experimentally found for all implementations
introduced in Section IV-A

TABLE II
BEST PARAMETERS EXPERIMENTALLY FOUND FOR THE CHPLGPU,
GPUITERATOR AND THE OPTIMIZED CUDA-C IMPLEMENTATION.

Parameter ChplGPU GPUIterator CUDA-C
cutoff 2 7 7

second cutoff 8 − −
Distributed iterator dynamic − −
Distributed chunk 1 − −

C. Performance Results

1) Single-locale Execution: Figure 5 shows the single-
locale performance of both implementations written in Chapel
compared to the CUDA-C baseline. Firstly, the GPUIterator
implementation is equivalent to the baseline one in terms of
performance. While it is 3% slower than the baseline when
N = 17, the performance difference is not significant as N
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Fig. 5. Normalized execution time of the optimized CUDA-C implementation
compared to its Chapel-based counterparts. Results are for one one computer
node – two GPUs.

increases. This indicates that the use of the GPUIterator
module does not incur significant overhead. However, this is
not the case with ChplGPU. For example, ChplGPU is more
than twice as slow as the baseline when N = 17.

The CUDA-C implementation is straightforward and opti-
mized for single-locale execution. The initial search on CPU
creates the active set and divides it into γ sets, one for each
GPU, and only γ kernel calls are performed. The same is
true for GPUIterator. In turn, ChplGPU has several sources
of overhead for a single-locale execution. It consists of two
partial searches on CPU before starting the search on GPU.
The iterator distributes nodes to the worker locales, which
perform another partial search on CPU for generating a task-
local pool of nodes (Pt). In turn, local active sets are much
smaller than the single one generated by CUDA-C, which
results in less efficient use of the GPUs for the smallest
sizes [18].

It is also worth to point out that, unlike the CUDA-C
baseline and the GPUIterator implementation that only launch
γ kernels, ChplGPU launches |Pd| ∗ γ kernels. For instance,
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ChplGPU launches 240 ∗ 2 kernels for N = 17. Addition-
ally, each kernel launch requires host-to-device, device-to-host
transfers, and metrics reductions on CPU, which is also a
source of overhead. As the problem size grows, the overhead
becomes less significant compared to the solution space to be
evaluated. Therefore, ChplGPU, which is 2.15× slower than
the baseline for N = 17, is only 15% and 10% slower for
sizes N = 20 and 21, respectively.

2) Multi-locale Execution: Figure 6 presents the normal-
ized execution times of ChplGPU and GPUIterator solving
the N-Queens problems using from 4 to 24 GPUs. Firstly,
consider the results for the smallest instance (N = 17). As
solving this instance takes only a few seconds, GPUIterator is
faster than ChplGPU for 4 to 20 GPUs. As more computer
nodes are added, GPUIterator performs poorly due to the
lack of distributed load balancing. In turn, the performance
difference between ChplGPU and GPUIterator grows as more
computer nodes are added. For N = 18 and 16 – 24 GPUs,
ChplGPU is from 1.32× – 1.45× faster than its counterpart.
As the problem size grows, GPUIterator becomes slower than
ChplGPU even on 2 computer nodes – 4 GPUs. For N = 20,
ChplGPU is from 1.13× (4 GPUs) to 1.77× (24 GPUs) faster
than the GPUIterator implementation.

Figure 7 shows the strong scaling of ChplGPU and GPUIter-
ator on 2 GPUs (1 computer node) to 24 GPUs (12 computer
nodes) over the CUDA-C baseline on 2 GPUs (1 computer
node). Note that for each instance, the performance numbers
are normalized to Baseline(2). In general, as the number
of GPUs increases, the performance of both ChplGPU and
GPUIterator improves except for the ChplGPU on 2 GPUs as
with Figure 5. Also, ChplGPU achieves further performance
improvements over GPUIterator as N , and the number of
GPUs increases, due to the dynamic scheduling feature, which
is not supported in GPUIterator.

To quantify these performance trends, we compare the per-
formance numbers with the linear speedup – i.e., the CUDA-C
baseline on nGPUs gives n× speedup. Initially, consider the

results for ChplGPU (Figure 7a). When N ≥ 19, the speedups
achieved for all < problem,#GPUS > configurations are
at least 80% of the linear speedup. For N ≥ 20, results
are even better, ranging from 87% to 91% of the linear
speedup. In turn, due to its static load distribution scheme, the
GPUIterator-based implementation reaches around 80% of
the linear speedup for all sizes when only 4 GPUs (2 computer
nodes) are used (refer to Figure 7b). For N ≥ 18, the speedups
achieved by the GPUIterator implementation are around 50%
of the linear speedup.

V. DISCUSSION

Initially, if only the single-locale programming is taken into
account, the GPUIterator module is indeed an option in
terms of time to a first implementation. Error-prone details
such as division of the pool among locales and GPUs, pointers
arithmetic, and dealing with the CUDA API are hidden to the
programmer. As a consequence, the size of the single-locale
version of the GPUIterator implementation has almost the
same number of source lines of code (SLOCS) of the CUDA-
C baseline implementation. Moreover, it also enables one to
conceive a GPU-based distributed implementation by adding
a few lines of code. For instance, an addition of 8 SLOCS
is required to make GPUIterator a distributed application.
However, the lack of load balancing of the GPUIterator
module results in poor scalability, which justifies the more
complex implementation of ChplGPU.

In terms of SLOCS, ChplGPU is 1.5× longer than the
GPUIterator implementation. The partial searches neces-
sary to exploit the distributed iterators, along with the C-
interoperability code related to the use of GPUs, amount for
more than 50% of the SLOCS of ChplGPU. In the scope of
this work, the higher programming effort of coding two levels
of partial search and the functions responsible for offloading
and getting data from the GPU pays off, as ChplGPU achieves
parallel efficiency up to 2× higher and it is up to 1.77× faster
than its Chapel-written counterpart. In this sense, a further



necessary improvement to the GPUIterator module is im-
plementing distributed GPU-oriented load balancing iterators.
This effort would make it possible to program a distributed
tree search that scales but having only a fraction of the size
of ChplGPU.

Finally, it is important to mention that some of the chal-
lenges concerning employing GPUs for irregular tree search
remain when using a high-productivity language. On the one
hand, we can exploit high-level features provided by Chapel
for several aspects of the search, such as work distribution and
termination criteria. On the other hand, mixing programming
models also brings GPU’s challenges along with it. For in-
stance, it is required to tune the chunk size of the distributed
iterator taking into account that a subproblem yielded by the
iterator must provide load enough for multiple GPUs. The
performance of ChplGPU can be drastically decreased due
to a bad parameter choice. This is also true for GPUIterator.
Despite its straightforward implementation, it is still required
to tune the depth parameters to generate a distributed pool that,
after divided into L ∗ γ subsets also can provide load enough
to the GPUs, so they can be used efficiently.

VI. CONCLUSIONS AND FUTURE WORK

In this work, we revisited the design and implementation
of distributed tree search algorithms dealing with multiple
GPU accelerators, in addition to scalability and productivity-
awareness, using Chapel. A distributed backtracking for enu-
merating all valid solutions of the N-Queens problem was con-
ceived. The proposed algorithm exploits Chapel’s distributed
iterators combined with pre-compiled CUDA kernels through
Chapel’s C-interoperability layer.

According to the performance results, the implementation
of the proposed algorithm is slower than a hand-optimized
CUDA-C implementation, when taking into account single-
locale execution. However, in distributed scenarios, the pro-
posed algorithm scales, achieving more than 90% of the linear
speedup in the biggest test-cases.

Permutation combinatorial optimization problems are com-
monly solved to optimality by using branch-and-bound search
algorithms [1]. Therefore, the first future research direction
is to extend the proposed multi-locale backtracking into a
distributed B&B. This way, it will be possible to solve
challenging optimization problems, such as the Quadratic
Assignment and the Flow-shop Scheduling Problem.

Going one step further towards exascale, the scalability
should be increased considering more GPU-powered process-
ing nodes. Also, heterogeneity can be improved to consider
other accelerators such as FPGAs thanks to Chapel’s in-
teroperability capabilities. Finally, checkpointing-based fault
tolerance should be addressed in addition to scalability,
productivity-awareness, and CPU-GPU heterogeneity issues to
achieve a holistic exascale-aware design and implementation.
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